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Abstract— This communication develops an observer-based
feedback controller for the stabilization of periodic orbits
arising in bipedal robots. The robot is modeled as a system with
impulse effects and it is assumed that the robot’s configuration
variables are measured and that the moment of impact of
the swing leg with the ground can be detected as well. It
is shown that if a continuously differentiable static state
variable feedback controller exists that induces an exponentially
stable periodic orbit, then the same orbit can be exponentially
stabilized with a continuously differentiable output feedback
controller.

I. INTRODUCTION

The lack of velocity measurements is as ubiquitous a
problem in the design of feedback controllers for bipedal
robots as it is for robotic manipulators. The presence of
impacts at leg contact with the ground is a fundamental
issue that must be faced in legged robots when attempting
to reconstruct velocity estimates on the basis of position
measurements. The impulsive forces at impact cause jumps
in the velocity variables of the robot [17], [16]. In the study
of walking or running gaits, one is often seeking a periodic
solution, in which case the impacts cannot be treated as an
infrequent disturbance. The objective of this communication
is to prove that the observer designs proposed in [22], [11]
can be tuned to preserve exponential stability of periodic
walking and running gaits created with the full-state feedback
designs of [13], [31], [33], [8], [9], [34], when implemented
with a smooth feedback controller, as in [23].

An extensive literature exists addressing the modeling,
analysis and control of systems with impacts; see [4], [5],
[26], [15], [28], [10] and references therein. Only relatively
recently, however, have the design and analysis of observers
for systems with impacts been undertaken. The papers [21],
[22], [11] consider mechanical systems with repeated rigid
impacts and assume that the configuration variables are
measured, but not the velocity variables. Conditions are
established under which the error in the estimated velocities
converges to zero.

In the context of bipedal robots, closed-loop stability of
observer-based feedback has been addressed in [19], [20],
where only the shape configuration variables are assumed
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measured; in particular, the orientation of the robot with
respect to a world frame has to be estimated as well as all
velocity components. The employed observer is non-smooth
and converges in finite time.

The present communication provides a continuously dif-
ferentiable observer-based feedback controller for achieving
exponentially stable periodic gaits in bipedal robots. It is
assumed that the configuration variables are measured (i.e.,
shape variables and absolute orientation) and that the mo-
ment of impact is detected as well. The latter assumption
is very reasonable for legged robots. Indeed, because it is
crucial that any controller quickly take into account the
respective change in the roles of the two legs (i.e., stance
and swing phases), a force sensor or a contact switch [6],
[33], [24] is usually provided to detect impacts of the feet
with the ground.

A few example robots to which the theory of the paper
applies are depicted in Fig. 1. Though not explicitly ad-
dressed here, the feedback controllers of [7], [30], [1] can
be modified to include velocity estimation as well.

Fig. 1. Example robots to which the observer theory developed in this
communication may be applied. On the left is Ernie [32], in the center is
RABBIT [6] and on the right is a robot under construction by the University
of Michigan and Carnegie Mellon University [18].

II. SYSTEM MODEL

We nominally consider any robot model that can be
expressed as a system with impulse effects

ot = f@)tglu 2 ¢S
> {x* = Az7) z~ €8.

The elements of this model are as follows.
MH1) The continuous dynamics

&= f(z) +g(x)u )

is assumed to arise from a smooth (at least continuously
differentiable) mechanical model of the form

D(q)§ + C(q,4)q + G(q) = B(q)u, 3)

)




where w represents the set of actuator inputs!. The
configuration coordinates of the robot are denoted by
qg=(q1; - ;qn) € Q, the state = := (q; ¢) takes values in
X and is assumed to be a simply connected open subset of
R2N corresponding to physically reasonable positions and
velocities. The vector fields f and g are defined in the
obvious manner.

MH2) The impact (or switching) surface S is an embedded
smooth codimension-one submanifold of X,

S:={reX | H() =0}, 4)

where X is an open subset of X and H : X — R is at least
continuously differentiable and has constant rank on S.
MH3) The impact (or reset) map A : X — X is continu-
ously differentiable’. When formulating the model (1), the
impact map A may arise in several ways [34]. In [13], [31],
[33] it models the outcome of the impact of two rigid bodies
[16] representing the swing leg and the ground, whereas
in [8], [9], [27], it represents the composition of a second
continuous phase of the dynamics followed by an impact
with the ground.

In simple terms, a solution of (1) is specified by the differ-
ential equation (2) until its state “impacts” the hyper surface
S at some time t;. At t;, the impact map A compresses the
impact event into an instantaneous moment of time, resulting
in a discontinuity in the state trajectory. The impact model
provides the new initial condition from which the differential
equation evolves until the next impact with S. In order to
avoid the state having to take on two values at the “impact
time” t;, the impact event is, roughly speaking, described
in terms of the values of the state “just prior to impact”
at time “t;”, and “just after impact” at time “t]”. These
values are represented by 2~ and z ™, respectively. From this
description, a formal definition of a solution is easily written
down by piecing together appropriately initialized solutions
of (2); see [35], [13], [14], [34].

The final assumption deals with the existence of a con-
troller inducing stable periodic motion.

CH1) There exists a continuously differentiable state feed-
back controller ug, () such that the closed-loop system

f(@) +g(x)um(z) 2~ ¢S
Alz™) 2 €S

so. I E T
fb' x+:

has an exponentially stable periodic orbit transversal® to S.
For later use, the periodic orbit is denoted O = {z*(¢) | 0 <
t < t*}, where the (least) period is t* > 0. It is further
assumed that O N S is a singleton.

How to design such feedbacks is the topic of [23], [34],
[1], [29], [30] as well as [13], [31], [33], [8], [9].

(&)

III. TWO OBSERVERS AND ELEMENTARY PROPERTIES

Two observer-based implementations of (5) are developed
under the assumption that the configuration variables are

!B is not required to have full rank.

2This is a stronger assumption than was made in [23], for example, where
A was only assumed to be smooth on S. The stronger assumption is needed
for observer design because in general, H(Z) # 0 when H(z) = 0; see
®.

3See [23], [34] for definitions of these terms.

measured,
ym = hm(z) =g,

the impact moments are detected, and Hypotheses MHI1-
MH3 and CHI are satisfied. The structure of the observers is
taken from [22], [11]. The method of analysis of the closed-
loop system is based on [23].

A. Full-order observer

The full-order observer consists of a copy of the model (1)
plus output injection, which may be designed as in [12] to
be a constant matrix* depending on e multiplying the output
estimation error:

& f@) +g9@)u+ L) (ym —9m) 7 ¢S
by o = hm(@)
at A(E7) x~ €S,
(6)
where’
Boy
L(e)::[ill’ Bo=1, B1=2. 7

Note that the switching condition is expressed in terms of the
state of (1), consistent with the hypothesis that the impact
instants of (1) are detected. When integrated with (5), we
obtain the model

i = f(z) +g@un(d) 2~ ¢S
& = f(@)+ g(@)um(#)
+ L(€) (ym — 9m)
St ym = hu(2) ®)
o = ha(2)
zt =A(z7) z= eS8
= AG),

where, through abuse of notation, the switching condition is
expressed as = € § instead of (z7,27) €S x X.

Define the estimation error ¢ := x — Z; then & = x — e
and the model (8) becomes

z  =flx)+g@)um(z—e) 2~ &8
¢ =F(ze)
ym = hu(z)

Yo i = hi(z —e) )
rt = (xf) - €S
et =A(z,e),

where
Fe(zye) = f(z) = f(z—e)+ (9(z) — gz —¢))
ugp(x —e) — L(e) (ym — M) (10)
Az=,e7) = A7) —A™ —e7) (11)

“The result of [12], though stated for scalar outputs, is easily extended
to the case treated here.

5The more general gains of [2], [3] could also be considered, with ( > 0
and 31 > 0.



Proposition 1: Assume Hypotheses MHI-MH3 and
CHI1. Then both F'* and A are continuously differentiable
and

Fé(z,0) = 0
A(z=,0) = 0.

Moreover, there exist § > 0, € > 0 and a continuous function
K : (0,g] — R such that lim. oK (e) = 0 and for all
initial conditions eq satisfying ||eg|| < J, the solution of the
ordinary differential equation

é=EF(z*(t),e), e(0)=ey

satisfies® ||e(t*)|| < K (€)||eo]|.

Proof: Because the velocity components are obtained
trivially by differentiating yyg, the continuous portion of the
system is observable. On any compact subset L C X with
O contained in its interior, the Lipschitz conditions of [12,
Thm. 3] are met. Following the Lyapunov argument of [12,
Thm. 3] with

12)
13)

(14)

el —€2I
Suul(l/e) = [ T } ,

one deduces that there exist 4 > 0 and € > 0 such that for
all |le|]] < dand 0 < e <&,

d 1
— (¢'Su(1/€)e) P < — = (¢80 (1/€)e) P,
dt 3e
which gives
1+ 2€e2 + (1 + 4e4)(1/2) t
o= ¢1 r2e— 1+ aen Pl
Evaluating at t = t* completes the proof. [ ]

It will be proved in Section IV that these properties imply
that for € > 0 sufficiently small, the closed-loop system (8)
has an exponentially stable periodic orbit.

B. Reduced-order observer

A reduced-order observer is now developed, based on [22].
Assuming the configuration variables ¢ are available through
yM = ¢, the equation governing the velocity states can be
expressed with w := ¢ and additional dummy states 7 as
follows. Define n via

15)

where k£ > 0 is a scalar to be chosen. Differentiating the

above equation along a solution of (3) yields

@ = kgm = D™ (ya) {~Cym, w)w — Glym)

+ B(ym)u} — kw

= D ym) {=Clym, (n + kyn)) (0 + kym) — Glywm)
+ Blym)u} — k(1 + kywm). (16)

The continuous portion of the reduced-order estimator is
defined as

w =1+ kym,

’f]:

7/’}:

D~ (ym) {=C(ym, (7 + kyn)) (7 + kynt) — Gym)
+ B(ym)u} — k(1 + kywm) 17)

SRecall that t* is the period of the orbit in Hypothesis CHI.

Defining error states as e = n—1) leads to the error dynamics
W—w— ke (18)
=D~ (ym){Cym, ww — Clym, @)&} — ke,

and it follows that e(¢) — 0 implies w(t) — w(t). Assuming
a common choice for C,

> (5

1 Oqk

é =

0Dy,
8qj

- aD”) wr, (19)

Cij(qvw) = 8q

yields [25]

Clg,w1 +wz) = Clg,w1)+Clq,w2)
C(Qa wl) w2 = C(qa w?) w1
C(q,aw) = alC(q,w) a€R (20)
D(q) —2C(q,w) = skew symmetric.
Substituting these into (18) gives
¢ =—D" ) {2C (ym,w)e — Clyu, e)e} — ke, (21)

Finally, passing directly to the closed-loop system with the
observer written in error coordinates, we have

R R

é = FE(yM,w,e)
YMm =4q
Yl U = um(ym, w — €)
+ —
5] s []es
w w
e+ = A(q_7w_)e_))
(22)
where
F‘E(yM,w,e) = —Dil(yM) {2C (ym, w)e—
C(ym,e)e} — ke (23)
A(qiawivei) = Aq(qivwi)_Aq'(qivwi_ei)a

and Ay is the velocity component of the impact map, A.

Proposition 2: Assume Hypotheses MHI-MH3  and
CHI1. Then both ' and A are continuously differentiable
and

Fe(y,w,0) = 0

Alg ,w™,0) = 0.

(24)
(25)
Moreover, setting k = 1 and letting (y3;(t),w* (t)) = z*(t),
0 <t < t*, denote the periodic orbit of (5), there exist & > 0,
€ > 0 and a continuous function K : (0,€] — R such that
lime\ o K (¢) = 0 and for all initial conditions e satisfying
[leo]| < d, the solution of the ordinary differential equation

¢ = F(yy(t). 0" (0),0), e(O)=en  (26)

satisfies ||e(t*)|| < K (¢€)||eo]]-
Proof:
Let V(e) = €’ D(yx;(t))e. Then, after some algebra,

V(e) = —%e' {D(yni (1) + €Clyn (1), w"(t) — e)}e. (27)



Because D(q) is everywhere continuous and positive definite,
and the periodic orbit is bounded, there exist 0 < 1 < po <
oo such that, for all e and 0 <t < t*,

puie'e < e’ D(yi(t))e < poe'e.

By continuity, there exist § > 0 and € > 0 such that, for all
le]| <6, 0<e<e0<t<tr,

Siee < & (D () + eCluis (1) 0 (1) — )} e < Zse'e

(28)
Therefore, (27) implies
t
V(e(t) < exp(—222)V (e), (29)
p2 €
and hence
t
le@®)]1? < 2 exp(—EL2) el 2. (30)
121 p2 €

Evaluating at ¢ = t* and taking the square root of both sides
complete the proof. [ ]

IV. MAIN CONVERGENCE RESULT

An immediate corollary of the following theorem is that
for € > 0 sufficiently small, if the full-state feedback used in
(5) is implemented with either the full-order or the reduced-
order observer of Sec. III, then exponential stability of the
closed-loop system will be preserved. In particular, for € >
0 sufficiently small, the observer-based closed-loop systems
(8), (9) and (22) will have an exponentially stable periodic
orbit whenever (5) does.

Theorem 1: Consider a system with impulse effects that
depends on a real parameter € > 0,

= F(z,e) x= ¢S
e . é= F<(ze) 31
ext xt A(z™) x” €S8 (3D

et = Az, e),
with state manifold X x £, where X and £ are open
connected subsets R™* and R™ for some n; > 0 and
ng > 0. Suppose that S is an embedded codimension-one
Q 1-submanifgld of X and that for each value of ¢ > 0, F,
F<, A and A are continuously differentiable. In addition,
suppose that the following structural hypotheses are met:
CLH1) For all = and €, F(x,0) = 0 and A(z~,0) = 0;
CLH2) The system with impulse effects

| F(z,0) o= ¢8
= { A(z™) 2z~ €8,

has an exponentially stable period-one orbit
transversal to S. Let t* denote the period and let
x*(t) denote the periodic solution of (32).

CLH3) There exist § > 0, € > 0 and a continuous function
K : (0,€] — R such that lim.\ o K(¢) = and for
all initial conditions e satisfying ||eg|| < §, the
solution of the ordinary differential equation

é=F(z*(t),e), e(0)=ep
satisfies [|e(t*)|] < K (€)]|eo]]-

"t =
e (32)

(33)

Then there exists €* > 0 such that for all 0 < € < €*,
Oext = {(x*(t),0) | 0 < ¢t < t*} is an exponentially stable
periodic orbit of (31).

The proof is given in the appendix.

e > o

Fig. 2. Example 5-link robot. The parameter values are given in [31,
Table 1].

V. NUMERICAL EXAMPLE

The reduced-order observer is illustrated on the underac-
tuated, 5-link, planar, bipedal robot of [31, Sect. VII]; see
Fig. 2. The system has five degrees of freedom in single
support, and hence five velocity components to estimate.
A state feedback was designed on the basis of virtual
constraints as in [31], and then implemented with an input-
output linearizing controller as in [23]. The system with
state feedback has an exponentially stable periodic orbit, as
depicted in Fig. 3. The state feedback was then implemented
using the reduced-order observer, with a gain of ¢ = 0.3.
The asymptotic convergence of the velocity errors is shown
in Fig. 4.
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Fig. 3.
feedback. The thin (red) line corresponds to the jump due to the impact
map. The average walking rate is 1.04 ms™!. The period is 0.51 s and
the step length is 0.53 m. The generalized coordinates are in radians and
radians per second.

Projection of a limit cycle of the 5-link robot using full-state
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Fig. 4. Velocity errors (rad s~ 1) of the 5-link robot with the reduced-order
observer.

VI. CONCLUSION

This communication has investigated the use of observer-
based feedback control for the stabilization of periodic
orbits arising in walking and running of a bipedal robot.
It was assumed that the robot’s configuration variables were
measured and the moment of impact of the swing leg with
the ground could be detected. It was then proved that if a
continuously differentiable state variable feedback controller
existed that induced an exponentially stable periodic orbit,
then the same orbit could be exponentially stabilized with a
continuously differentiable output feedback controller, based
on an observer. The observer error had to be converging to
zero sufficiently rapidly. The theoretical results were based
on attractive invariant manifolds in systems with impulse
effects. Simulation results supported the theoretical analysis.
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VII. APPENDIX: PROOFS

The objective of this Appendix is to prove Theorem 1. This
is accomplished as follows: Theorem 2 of [23] is extended
to allow nonlinear terms in the transverse dynamics; the
notation of [23, Thm. 2] is preserved so that only the required
changes to the otherwise rather long proof need be given.
The extended result is then applied to Theorem 1 in order to
prove the stability of an observer-based feedback controller.

A. Extension of Theorem 2 of [23]

Consider a system with impulse effects that depends on a
real parameter € > 0,

€ ‘i:
e x+:

and suppose that for each value of ¢ > 0, hypotheses H1
hold:

H1.1) X C IR™ is open and connected,
H1.2) f¢: X — R"is C!,

fe(x)
Az7)

x= ¢S

z~ €S, (34

H1.3) H: X — R is C1, for X an open subset of X,

Hi14) S := {2 € X | H(z) = 0} is non-empty and
v € S, %—ZI‘T £ 0 (that is, S is C' and has
co-dimension one),

H15) A:S— X is C', and

H1.6) A(S)NS = 0.

In addition, suppose that the following structural hypotheses
H2 are met:

H2.1) there exist global coordinates x = (z,n) for X C
R", z € RF,andn € IR" %, 1 < k < n, in which
f€ has the form

fre(z,m) ]7

[(x) = f(z,m) = { feiim(zm)

with f1.x(z,7) independent of € and ff ., (2,0) =

0;
H2.2) For Z:={(2,n) € X |n=0},SNZisa (k—1)-
dimensional, C''-embedded submanifold of Z, and
ASNZ)C Z; (35)

H2.3) (34) has a periodic orbit O that is contained in Z,
and hence the orbit is independent of ¢;

H2.4) z* := O N Z is a singleton;

H2.5) LyH(z*) # 0;

H2.6) there exists 6 > 0, € > 0 and K : (0,¢ — [0, 0)
with lime o K (e) = 0, such that for all ||| <4,
the solution of the ordinary differential equation

satisfies

()] < K ()l Inoll, 37
where (z*(t),0), t € [0,¢*) is the periodic orbit of
Hypothesis H2.3 and ¢* is its (least) period.

Hypotheses H2.1 and H2.2 imply that the restriction of
3¢ to the manifold Z is a well-defined system with impulse
effects, called the restriction dynamics, X z,

Yz { zji f2()

Az(z7)

where fz(z) = f9(2,0))z = f1x(2,0), and Az :=
A(2,0)z. There is an obvious bijection between periodic
orbits of (38) and periodic orbits of (34) that lie in Z.

Theorem 2: Suppose that (34) satisfies Hypotheses H1
and H2. Then there exists €* > 0 such that for all € € (0, €*],
O is an exponentially stable periodic orbit of (34) lying in
Z if, and only if, its restriction to Z, denoted Oz, is an
exponentially stable periodic orbit of (38).

Remark 1: The result can be equivalently stated in terms
of Poincaré maps; see [23].

2~ ¢SNZ

- eSnNz (38)



B. Proof of the Extension of Theorem 2

The proof requires only a slight modification to the proof
of Theorem 2 in [23, pp. 4202], where Hypothesis H2.6 was
given as fr 1..(n) = A(e)n, and lime\ o eA©) = 0. The
changes are:

a) On page 4203 of [23], remove part (iii) of Lemma

1.
b) On page 4203 of [23], in (24d) and (29), replace
At by
.
Qs3(€) == Fa (t,m0) , (39
Mo t=t*, no=0

where ¢ is the solution of (36).

c) Use Taylor’s Theorem to show that the modified
Hypothesis H2.6 implies that lim.\ o Q33(e) = 0,
and hence M35, in (29) of [23, Lemma 3] and [23,
Sect. IV-C] goes to zero as € goes to zero.

This concludes the required changes.

C. Proof of Theorem 1

The proof follows immediately from Theorem 2. The
system X¢ of (34) is given by X¢ . in (31); it has state
manifold Xgyy = X X & and impact surface Sext :=
S x &. The smoothness Hypotheses H1.1 through H1.6 of
Theorem 2 are contained in the first part of Theorem 1. The
hypotheses H2.1 through H2.6 of Theorem 2 are now eval-
uated. Hypotheses H2.1 and H2.2 are immediate from (31)
and Hypothesis CLH1. Hypotheses H2.3-H2.5 follow from
CLH2. Hypothesis H2.6 is given by CLH3. The conclusion
of Theorem 2 establishes that of Theorem 1.
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