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Abstract. Dynamical bipedal walking subject to precise footstep place-
ments is crucial for navigating real world terrain with discrete footholds
such as stepping stones, especially as the spacing between the stone loca-
tions significantly vary with each step. Here, we present a novel method-
ology that combines a gait library approach along with control Barrier
functions to enforce strict constraints on footstep placement. We nu-
merically validate our proposed method on a planar dynamical walking
model of MARLO, an underactuated bipedal robot. We show successful
single-step transitions from a periodic walking gait with a step length
of 10 (cm) to a stepping stone with a 100 (cm) separation (10x step
length change), while simultaneously enforcing motor torque saturation
and ground contact force constraints. The efficacy of our method is fur-
ther demonstrated through dynamic walking over a randomly generated
stepping stones requiring single-step step length changes in the range of
[10:100] (cm) with a foot placement precision of 2 (cm).

1 Introduction

An important advantage of robotic systems employing legged locomotion is the
ability to traverse terrain with discrete footholds, such as “stepping stones.”
Current approaches to handling this form of terrain primarily rely on simplis-
tic methods, both at the level of models of bipedal robots (e.g., linear inverted
pendulum) and control (e.g., ZMP) to achieve the desired foot placements. The
overarching goal of this work is to create a formal framework that will enable
bipedal humanoid robots to achieve dynamic and rapid locomotion over a ran-
domly placed, widely varying, set of stepping stones.

Footstep placement control for fully actuated legged robots initially relied on
quasi-static walking and resulted in slow walking speeds [13],[14],[5]. Impressive
results in footstep planning and placements in obstacle filled environments with
vision-based sensing have been carried out in [I5],[4]. The DARPA Robotics
Challenge inspired several new methods, some based on mixed-integer quadratic



programs [7]. However, as mentioned in [8, Chap. 4], mixed-integer-based foot-
step planning does not offer dynamic feasibility even on a simplified model. These
method therefore are not applicable for dynamic walking with faster walking
gaits. The approach developed in [22] allows aperiodic gaits with varying step
lengths designed on a complete dynamical model, but requires the a priori de-
sign of controllers that realize precise transitions between each pair of elements
of the gait library, resulting in exponential (factorial) growth in the number of
pre-designed controllers.

Instead of relying on kinematics of quasi-static motion planning of simpli-
fied dynamical models, such as a linear inverted pendulum with massless legs
[9],[20], this paper presents a novel control strategy based on the full nonlin-
ear hybrid dynamic model of the robot and its environment that can achieve
precise foot placement with formal stability and guarantees on physical con-
straints. We do this by combining a pre-computed library of walking gaits [0]
with control-barrier-function-based quadratic programs (CBF-QPs) for enforc-
ing stepping stone constraints [I7J2]. The gait library is populated with a small
number of feedback controllers that achieve asymptotically stable periodic walk-
ing at pre-determined fixed step lengths, while satisfying torque limits, ground
reaction forces and other key constraints. Instead of pre-computing transition
controllers between discrete elements of the gait library, at the beginning of a
step, the distance to the next stepping stone is determined, and based on this,
the gait library is linearly interpolated to provide a nominal controller with the
desired step length in steady state. To ensure precise foot placement during tran-
sients associated with varying distances between stepping stones, the CBF-QP
based controller relaxes the tracking behavior of the nominal gait and strictly
enforces a set of state-dependent safety constraints that guide the swing foot tra-
jectory to the discrete footholds. Our method enables dealing with a continuum
of widely varying desired foothold separations, while achieving foot placement
on small footholds. This work builds off our recent work on precise footstep
placement using CBF with one nominal walking gait [I7] and gait libraries in
[6]. In this paper, we will use exponential control barrier function (ECBF) [I§]
to handle safety constraints. In comparison to our prior work, this paper makes
the following additional contributions:

— We present gait optimization and a gait-library-interpolation approach for
achieving a continuum of desired step lengths in steady state.

— We incorporate exponential control Barrier functions and control Lyapunov
functions to achieve precise transient footstep placement with the gait library
approach.

— We significantly enlarge the range of variation on step length that can be
handled.

— We provide a way to handle sustained step length perturbations.

— Through our QP-based real-time controller, we address simultaneously foot-
step placement, foot scuffing avoidance, friction constraints and input satu-
ration.
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Fig.1: The problem of dynamically walking over a randomly generated set of
discrete footholds. Simulation video: https://youtu.be/udpxZUXBi_s.

The remainder of the paper is organized as follows. Section [2| presents the
hybrid dynamical model of 2D MARLO, an underactuated planar bipedal robot.
Section [3] presents gait optimization and a gait library interpolation strategy.
Section [ presents the proposed ECBF-CLF-QP based feedback controller for
enforcing precise footstep placement for dynamic walking. Section [5| presents
numerical validation of the controller on MARLO. Finally, Section [6] provides
concluding remarks.

2 Dynamical Model for Walking

The bipedal robot shown in Fig. [2] is a planar representation of MARLO. Its
total mass is 63 kg, with approximately 50% of the mass in the hips and 40%
in the torso, and with light legs formed by a four-bar linkage. The robot is
approximately left-right symmetric.

The configuration variables for the system can be defined as q := (qr, ¢1r, 2R,
q11,q21) € R5. The variable g7 corresponds to the world frame pitch angle, while
the variables (¢1r, g2r, 11, g21) refer to the local coordinates for linkages. Each
of the four linkages are actuated by a DC motor behind a 50:1 gear ratio har-
monic drive, with the robot having one degree of underactuation. The four-bar
linkage mechanism comprising of the leg coordinates (g1, ¢2) map to the leg an-
gle and knee angle (qra,qxA), as qra = %(ql + g2) and gra := g2 — q1. With
the state  denoting the generalized positions and velocities of the robot and u
denoting the joint torques, a hybrid model of walking can be expressed as

(7, 2 fm oz "
xt = Ax7) x €S,
where S is the impact surface and A is the reset or impact map. A more complete
description of the robot and a derivation of its model are given in [19].
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Fig. 2: Biped coordinates. The world frame pitch angle is denoted by gr, while
(g1, q2) are body coordinates. The model is assumed left-right symmetric.

3 Optimization and Gait library

Having described the dynamical model of MARLO, we will now present a model-
based approach for designing a continuum of stable periodic walking gaits that
satisfy physical constraints arising from the robot and its environment. The
method combines virtual constraints, parameter optimization, and an interpo-
lation strategy for creating a continuum of gaits from a finite library of gaits.

3.1 Gait Design Using Virtual Constraints

The nominal feedback controller is based on the virtual constraints framework
presented in [21I]. Virtual constraints are kinematic relations that synchronize
the evolution of the robot’s coordinates via continuous-time feedback control.
One virtual constraint in the form of a parametrized spline can be imposed for
each (independent) actuator. Parameter optimization is used to find the spline
coefficients so as to create a periodic orbit satisfying a desired step length, while
respecting physical constraints on torque, motor velocity, and friction cone. The
optimization method used here is the direct collocation code from [12], although
other methods, such as [I1] or fmincon can be used as well.
The virtual constraints are expressed as an output vector

Y= hO(q) - hd(s(q)v a)a (2)

to be asymptotically zeroed by a feedback controller. Here, ho(q) specifies the
quantities to be controlled

q
ho() = | %8| Q

sw
dKx A

where st and sw designate the stance and swing legs, respectively, and hy(s, a)
is a 4-vector of Beziér polynomials in the parameters a specifying the desired



evolution of the hg(q), where s is a gait phasing variable defined as
0 — ginit

§i=—
ofinal - einit

(4)
with 0 = gr + ¢§', being the absolute stance leg angle.

The cost function and constraints for the optimization are formulated as in
[21] [Chap. 6.6.2], with the constraints given in Table [1| and the cost taken as
integral of squared torques over step length:

J=-1 / Ju(t)|3 d. (5)

Lstep

Table 1: Optimization constraints

Motor Toque lu| <5 Nm
Impact Impulse F. <15 Ns
Friction Cone ©n <04

Vertical Ground Reaction Force Fy;, > 200 N

Mid-step Swing Foot Clearance hf|s=o0.5 > 0.1 m

Having presented an optimization approach to create an individual walking
gait, we will next discuss the design of a finite set of gaits and a means to create
from it a continuum of gaits, called the gait Library.

3.2 Gait Library and Interpolation

The optimization problem posed in the previous section is used to generate five
gaits having step lengths L., = {0.08,0.24, 0.40,0.56,0.72} metersﬂ. For values
of step length between the discrete values, Lgtep i, 1 <4 < 5, define the Beziér
coefficients « in by linear interpolation of the coefficients «; for the five
nominal step lengths. In particular, define,

Lstep - Lstep,i

C(Lstep) = , 1<i<4 6
( ‘ p) Lstep,i-{—l - Lstep,i ( )

a(Lstep) = (1 - C(Lstep))ai + C(Lstw)ai-ﬁ-b (7>

For step lengths longer than 0.72, linear extrapolation is used. As in [6] Eqn. (8,9)],
this defines a continuum of gaits, called the gait library

A = {a(Lstep) 10.08 < Lygep < 0.72}. ©)

! The number of gaits is arbitrary. A finer grid did not change the results. A coarser
grid was not tried.
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Fig. 3: Diagram of the controller structure integrating the gait library and CBF
based controller. Solid lines represent signals in continuous time; dashed lines
represent signals in discrete time.

The update resets the periodic orbit to adapt the step length, while re-
specting the physical constraints and approximately optimizing the cost on the
periodic point. During a transient following a change in commanded step length,
the footstep placement and optimization constraints shown in Table[T] are not
guaranteed to be satisfied. In the next Section, we will introduce the method of
control Barrier functions to handle real-time constraints on footstep placement,
scuffing avoidance, friction cone, and input saturation.

4 Control Barrier Function based controller for stepping
stones

Having presented the creation of a library of gaits for a small set of step lengths
and an associated switching controller, we now discuss the low-level continuous-
time controller design that uses control Lyapunov functions for driving the out-
puts in to zero and control Barrier functions for strictly enforcing foot place-
ment constraints. We will incorporate both features through a quadratic program
that will also be used to enforce torque saturation input constraints and state
constraints such as ground contact force and friction cone constraints. The con-
trol diagram for the combination of gait library and CBF based controller is
shown in Fig[3]

4.1 Control Lyapunov Function based Quadratic Programs
Revisited

In this section we will review recent innovations in control Lyapunov functions
for hybrid systems and control Lyapunov function based quadratic programs,
introduced in [3] and [I0] respectively.

Input-output linearization Consider the control output vector y(q) defined
in (2) with vector relative degree 2, then the second derivative takes the form

§ = L3y(4:4) + LoLyy(g. 4) w. )



We can then apply the following pre-control law

u(g,d) = u*(q.9) + (LyLy(a,9) " . (10)

where

u*(q,q) == —(LgLsy(q,9) ' Liy(q, q), (11)

and p is a stabilizing control to be chosen. Defining transverse variables n =
[y, 9]T, and using the 10 linearization controller above with the pre-control law

, we have,

B]=?'7=F77+Gu (12)
where
F:{gﬂ sz. (13)

CLF-based Quadratic Programs A control approach based on control Lya-
punov functions, introduced in [3], provides guarantees of exponential stability
for the traverse variables 7. In particular, a function V(n) is a exponentially sta-
bilizing control Lyapunov function (ES-CLF') for the system if there exist
positive constants c¢1, ca, A > 0 such that

cllnl* < V() < eafln]?, (14)

Vi(n,p) +AV(n) <0. (15)

In our problem, we chose a CLF candidate as follows

V(n)=n"Pn, (16)

where P is the solution of the Lyapunov equation ATP + PA = —Q (with A
being a Hurwitz matrix such that 77 = An is exponentially stable, and @) being
any symmetric positive-definite matrix). The time derivative of the CLF is
computed as

V(n,p) = LiV(n) + LgV (n)p, (17)
where
LiV(n) =n"(F"P+PF)n; LgV(n)=2n" PG. (18)
The CLF condition in then takes the form

LV (n) + LgV(n)u+ AV (n) <O0. (19)



If this inequality holds, then it implies that the output n will be exponentially
driven to zero by the controller. The following CLF-QP based controller, initially
presented in [I0], takes the form:

CLF-QP:
p* =argmin " p+py di
w,d1
st Vi) + V() <d (CLF) (20)

Aac(q,q) 1 <bac(q,¢) (Constraints)

where p; is a large positive number that represents the penalty of relaxing
the CLF condition and Aac, bac represent additional constraints such
as torque constraints, contact force constraints, friction constraints and joint
limit constraints. This formulation opened a novel method to guarantee stabil-
ity of the nonlinear systems with respect to additional constraints, such as torque
saturation in [I0] and L, adaptive control in [16].

Having presented control Lyapunov function based quadratic programs, we
will next introduce control Barrier functions and control Barrier function based
quadratic programs.

4.2 Control Barrier Function based Quadratic Programs

Exponential Control Barrier Function Consider an affine control system:

i = f(2) + g(a)u (21)
with the goal to design a controller to keep the state x in the set
C={zeR":h(z)>0} (22)

where h : R™ — R is a continuously differentiable function.

In order to systematically design safety-critical controllers for higher order
relative degree constraints, we will use “Exponential Control Barrier Functions”
(ECBFs), introduced in [I§].

With application to precise footstep placement, our constraints will be po-
sition based, h(q) > 0, which has relative degree 2. For this problem, we can
design an Exponential CBF as follows:

B(gq,4) = h(q,9) +nh(q), (23)
and the Exponential CBF condition will be simply defined as:
B(g,d,u) +~vB(g,4) > 0, (24)

where v; > 0, > 0. Enforcing will then enforce B(q,¢) > 0. Moreover, we
also note that by plugging the ECBF into the condition , we have,

(S +m)0 (5 +7) o hla) 20. (25)

Thus, 71,y play the role of pole locations for the constraint dynamics H(q, q,u).



Combination of ECBF and CLF-QP We have the exponential CBF con-
straint B(z) as a real-valued function with relative degree one, i.e,

B(x,u) = Ly B(x) + LyB(z) u, (26)

where LyB # 0. Substituting for the pre-control law , we can rewrite the
above in terms of the control input u, i.e., B(z, u). We then have the following
QP based controller:

ECBF-CLF-QP:

p* =argmin  p"p+py d3
pydy

s.t. Vn,w) + AV(n) < dy (CLF) (27)

B(z,u) +vB(z) >0 (ECBF)
Umin < u(p) < Umee  (Input Saturation)

where B(z) is constructed based on the safety constraint h(z) in (23).

Having revisited control Barrier function based quadratic programs, we will
now formulate our controller to achieve dynamic walking with precise footstep
placements.

4.3 Safety-Critical Control for Dynamical Bipedal Walking with
Precise Footstep Placement

Constraints on Footstep Placement If we want to force the robot to step
onto a specific position (see Fig. , we need to guarantee that the step length
when the robot swing foot hits the ground is bounded within a given range
[lmin; lmaz]- Let hy(g) be the height of the swing foot to the ground and ()
be the distance between the stance and swing feet. We define the step length at
impact as,

ls = lf(‘])|hf(q):o,hf(q,q)<o~ (28)
The discrete foothold constraint to be enforced then becomes,

lmin S ls § lmam~ (29)

However, in order to guarantee this final impact-time constraint, we construct
a state-based constraint for the evolution of the swing foot during the whole step,
so that at impact the swing foot satisfies the discrete foothold constraint .
We now offer a solution for this issue. The geometric explanation for this is
presented in Fig. [ If we can guarantee the trajectory of the swing foot, F,
to be bounded between the domain of the two circles O; and Os, it will imply
that the step length when the swing foot hits the ground is bounded within
[lmin; lmaz]. These two constraints can be represented as:

lmin l
OIF S Rl + lmaz; O2F 2 \/R% + (%)2



Fig.4: Geometric explanation of CBF constraints for the problem of bipedal
walking over discrete footholds. If we can guarantee the trajectory of the swing
foot F' (the red line) to be limited in the blue domain, we will force our robot
to step onto a discrete foothold position (thick red range on the ground). This
approach therefore also provides a safety guarantee against foot scuffing or swing
foot being always above the ground prior to contact.

When the swing foot hits the ground at the end of the step, the step length is
ls (see (28)), implying the discrete foothold constraint (29).

Remark 1. (Avoiding Foot Scuffing) In this paper, we want to deal with a very
large range of step lengths. Implementing the switching gait library based con-
troller results in frequent foot scuffing for the swing foot since the gait library
offers no guarantees on foot scuffing and other constraints during transient steps.
We can address this issue by constructing a Barrier that enforces no foot scufff-
ing. We do this by enlarging the circle O3, which guarantees the lower bound
constraint on step length (I5 > l,:n), to also ensure foot scuffing avoidance si-
multaneously. In particular, the circle O, intersects with the swing foot position
at start of gait and therefore ensures no scuffing for the entire step, especially
when combined with the gait library switching controller.

We now define the two barrier constraints based on this approach, through
the position constraints

hl(q) = Rl + lmaz - OlF > 0;

lnin +1
M)Z > (. (30)

hg(q):OQF—\/R%+( 2 =

We can then apply the ECBF-CLF-QP based controller for the above con-
straints. This involves creating two barriers By, B for the corresponding position
functions hq, hy respectively.



Constraints on Friction Cone In bipedal robotic walking, contact force con-
straints are very important for the problem of robotic walking. Any violation of
these constraints will result in the leg slipping and the robot potentially falling.
Although walking gait optimization is usually designed to respect these con-
straints, however, we cannot guarantee these constraints when switching between
different walking gaits. In particular, we consider, F'(z,u) and N(z,u), the fric-
tion force and vertical contact force between the stance foot and the ground.
Then, the constraints to avoid slipping during walking are,

N(z,u) > dn >0,
|F (2, u)|

NG, u)] (51

where 0y is a positive threshold for the vertical contact force, and ks is the
friction coefficient. We enforce the above ground contact constraints with dy =
150(N), ks = 0.6.

Remark 2. Note that since the gait optimization is performed offline, we enforce
stricter constraints (ground reaction force F, > 200(N) and friction cone p <
0.4) (see Table , allowing for a margin of safety. These constraints hold only
for the gaits in the gait library and not for the transient steps generated by the
gait library controller. Our ECBF-CLF-QP controller enforces the constraints
F? > 150(N) and friction cone p < 0.6 in real-time for the transient steps.

We then have the following ECBF-CLF-QP based controller that can handle
simultaneously footstep placement, scuffing avoidance, friction constraint and
input saturation:

p* =argmin  p'p+py di
,da

s.t. V(n, 1) +AV(n) < dy (CLF)
By (z, 1) + vBi(z) >0 (ECBF on I, < lna.)
Bg(a:, @) +vBa(x) >0 (ECBF on ls > lnin

32
& Foot Scuffing) (32)
N(z,u(p)) >dén >0 (Normal Force)
Pz, () -
——= <k (Friction Cone)
[N (2, u(p))|
Umin < u(p) < Umas (Input Saturation)

Remark 3. Note that all the constraints are affine in x4 and thus the above op-
timization problem is still a quadratic program that can be solved in real-time.

Remark 4. The gait library approach offers a switching strategy under a wide
range of step lengths. Based on the desired step length, the interpolation between
different gaits in the library will result in a new walking gait for the next step. If



the system state is on or close enough to the periodic orbit, it will converge to the
desired step length while maintaining physical constraints mentioned in Table[T}
However, in our problem, we want the robot to be able to switch between two
gaits with very different step lengths, the initial condition is basically very far
from the periodic orbit of the next step. Therefore, the transition to the new
gait is not guaranteed to satisfy constraints such as friction constraints as well
as scuffing avoidance. In the simulation, these two main reasons make the gait
library approach fail almost all the time.

Note that the CBF-CLF-QP controller in [17] is only based on one nominal
gait and tries to adjust the control inputs so as to enforce the footstep placement
constraint, friction constraints and input saturation while following the nominal
gait. Due to the limitation of having only one walking gait, the working range
of step length is therefore limited.

In this paper, we attempt to combine the advantages of each method and
develop the ECBF-CLF-QP controller with foot scuffing constraints and combine
it with the gait library approach (see Fig. Given a desired step length, the
gait library assigns an interpolated gait for the next walking step and the ECBF-
CLF-QP controller tracks the outputs corresponding to this gait by solving a
quadratic program in real-time to find the control input that follows this new gait
while maintaining all above constraints (footstep placement, friction constraints,
scuffing avoidance and input saturation).

In the next Section, we present numerical validation of our proposed controller
on the dynamical model of the bipedal robot MARLO.

5 Numerical Validation

In this Section, we will demonstrate the effectiveness of the proposed method
by conducting numerical simulations on the model of MARLO. We validate
the performance of our proposed approach through dynamic bipedal walking
on MARLO, while simultaneously enforcing foot placement, scuffing avoidance,
ground contact force constraints and input saturation. Furthermore, in order to
demonstrate the effectiveness of the method, we compare three controllers on
different ranges of desired step lengths:

I: Gait Library
II: CBF (with nominal step length of 56 cm) (33)
III: CBF & Gait Library

For each range of step length (see Table , we randomly generated 100
problem sets, where each set has 10 randomly placed “stepping stones” with
a stone size of 5 (cm) (see Fig. . The controller is successful for a trial run
if the bipedal robot is able to walk over this terrain without violation of foot
placement or friction constraints. The percentage of successful tests for each of
the three controllers is tabulated in Table [2] for various ranges of step lengths.



Table 2: (Main Result) Percentage of successful tests of three controllers (see
(33)) with different ranges of desired step length.

Step Length Range (cm) | Gait Library | CBF|Gait Library & CBF
[50:60] 6% 100% 100%
[40:70] 1% 4% 100%
30:80 1% 17% 100%
25:85 1% 12% 100%
[20:90] 1% 3% 97%
[15:95] 1% 0% 92%
[10:100] 0% 0% 78%

The approach based on the combination of CBF and Gait Library outperforms
the approaches that rely on only the CBF or only the Gait Library. For example,
with the step length range of [20:90] (cm), the percentage of successful tests on
controller IIT (CBF and Gait Library) is 97 %, while that of controller IT (CBF
only) and controller I (Gait Library only) are just 3% and 1% respectively.
Thus the proposed controller not only achieves dynamic walking over discrete
footholds, it also dramatically increases the range of step lengths that are handled
compared to our prior work in [I7].

We show here one simulation of MARLO walking over 20 stepping stones with
desired step lengths randomly generated in the range of [10 : 100] (e¢m), where
the stone size is smaller, i.e., Lz — lmin = 2 (cm). Fig. |5 shows the satisfaction
of foot step placement constraints as well as CBF constraints, without a violation
of the friction cone or input saturation (see Figs. |§| and @

In order to illustrate how aggressively our proposed method can traverse a
set of stepping stones, Fig. [§] shows a simulation where the robot has to switch
between very a large step length (95 cm) and a very small step length (15 cm).

E o
-0.5
0 2 4 6 8 0 2 4 6 8
Time (s) Time (s)
(a) (b)

Fig.5: (a) Footstep placement constraint: Ly, < ls < lynaz, where the step
length [, is the value of the distance between swing and stance feet [; at impact
(see (28)). (b) CBF constraints: hy(z) > 0, ha(z) > 0 (see (30)).
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Fig. 6: Friction constraints: N > 150(N) and |F/N| < 0.6.
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Fig. 7: Control inputs are saturated at 5 (Nm) (Ju| < 5); recall the 50:1 gear
ratio from the motors to the links.

6 Conclusion

We have presented a model-based control framework that allows transition among
widely and randomly varying stepping stones, without an exponential explosion
in the number of pre-computed motion primitives. The control design begins
with model-based optimization producing a small number of periodic walking
gaits that meet desired physical constraints and span a range of step lengths.
In an outer-loop, a gait library is formed by interpolating this set of walking
gaits to provide controllers that realize a continuum of step lengths. In an inner-
loop, a quadratic program mediates safety, interpreted as landing the swing
foot on a stepping stone, and performance, which involves joint-level tracking
commands, friction cone, scuffing avoidance and torque bounds. The resulting
controller achieved dynamic walking while enforcing strict constraints on foot
step placement at impact, resulting in dynamic walking over stepping stones.
Numerical illustration of the proposed method on MARLO, an underactuated
bipedal robot, included the robot handling random step length variations that
are between [10 : 100] (¢m) with a foot placement precision of 2 (cm).



Fig.8: Simulation of MARLO walking over stepping stones with desired step
lengths of [95 15 95 15 15 15 95 95 95 15 15 15]|(em) and stone size of 2 (em).
For clarity of visualization, the rear links of the 4-bar are suppressed. Simulation
video: |https://youtu.be/udpxZUXBi_s.

In future work, the method will be extended to 3D robots so that the

stepping-stone course in the W-Prize [I] can be attempted. In addition to the
challenges of 3D locomotion, the heights of the stepping stones vary over the
course. Even more interesting, the stones are specified to be constructed from
standardized blocks that may topple over.
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