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A Compliant Hybrid Zero Dynamics Controller
for Stable, Efficient and Fast Bipedal Walking

on MABEL
Koushil Sreenath, Hae-Won Park, Ioannis Poulakakis, J. W. Grizzle

Abstract—The planar bipedal testbed MABEL contains
springs in its drivetrain for the purpose of enhancing
both energy efficiency and agility of dynamic locomotion.
While the potential energetic benefits of springs are well
documented in the literature, feedback control designs that
effectively realize this potential are lacking. In this paper,
we extend and apply the methods of virtual constraints
and hybrid zero dynamics, originally developed for rigid
robots with a single degree of underactuation, to MABEL,
a bipedal walker with a novel compliant transmission
and multiple degrees of underactuation. A time-invariant
feedback controller is designed such that the closed-loop
system respects the natural compliance of the open-loop
system and realizes exponentially stable walking gaits. Five
experiments are presented that highlight different aspects
of MABEL and the feedback design method, ranging from
basic elements such as stable walking and robustness under
perturbations, to energy efficiency and a walking speed of
1.5 m/s (3.4 mph). The experiments also compare two feed-
back implementations of the virtual constraints, one based
on PD control as in (Westervelt et al., 2004), and a second
that implements a full hybrid zero dynamics controller. On
MABEL, the full hybrid zero dynamics controller yields
a much more faithful realization of the desired virtual
constraints and was instrumental in achieving more rapid
walking.

Index Terms—Bipedal robots, Hybrid Systems, Zero
Dynamics, Compliance.

I. I NTRODUCTION

MABEL is a novel bipedal testbed at the University
of Michigan. The robot is planar, with a torso, two
legs with revolute knees, and four actuators. Two of
its actuators are in series with large springs for the
purpose of enhancing both energy efficiency and agility
of locomotion. The actuators are housed in the torso
and the legs are light, placing the center of mass of the
robot significantly above the hips, as shown in Figure
1. A more detailed description of the robot has been
presented in (Hurst et al., 2007; Hurst and Rizzi, 2008;
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Fig. 1. (a) MABEL, an experimental testbed for bipedal locomotion.
The robot is planar, with a boom providing stabilization in the
frontal plane. The robot weighs58 kg and is1 m at the hip. The
robot’s drivetrain contains springs for enhanced power efficiency. (b)
The virtual compliant leg created by the drivetrain through a set
of differentials. The coordinate system used for the linkage is also
indicated. Angles are positive in the counter clockwise direction.

Hurst, 2008), and the identification of its dynamic model
is reported in (Park et al., 2010).

Bipedal robots that are simultaneously robustly sta-
ble, efficient, and fast are extremely rare. The desire
to achieve these traits is driving the introduction of
innovative mechanism designs and feedback control
methods. MABEL was designed to be both a robust
walker and a fast runner. It pushes the state of the art in
bipedal mechanism design and provides an opportunity
for effective control design methodology to maximize the
robot’s efficiency, speed and stability. This paper reports
analytical and experimental results for walking on flat
ground, a very important preliminary stage for running
on flat ground and for walking on uneven ground. In
particular, a Compliant Hybrid Zero Dynamics controller
(HZD) is designed and the HZD controller is experimen-
tally implemented to achieve stable, efficient, and fast
walking.

A. Background

The stability of a biped can be enhanced by introduc-
ing large feet, in which case relatively simple controller
designs can be used. Honda’s ASIMO (Sakagami et al.,
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2002), Sony’s QRIO (Geppert, 2004), and the HRP
series (Kaneko et al., 2002) have large feet and use
zero moment point-based controllers (Vukobratović and
Borovac, 2004) to achieve stable walking. The walking
gaits are flat-footed and the achieved energy efficiency
is low.

Enhanced agility has been demonstrated on hopper-
style robots (i.e., springy, prismatic leg) employing
intuitive controllers, as demonstrated in (Hodgins and
Raibert, 1990; Brown and Zeglin, 1998). These robots
are highly underactuated, though for the most part, their
control systems did not have to deal with stabilization
of significant torso dynamics; indeed, if a torso was
present, its center of mass was coincident with the hip
joint (Poulakakis and Grizzle, 2009b).

The bipedal robot RABBIT was planar, had revo-
lute knees, and a non-trivial torso (Chevallereau et al.,
2003). It was deliberately designed to have point feet
in order to inspire new analytical control approaches to
stabilizing periodic motion in underactuated mechanical
systems, and hence move beyond flat-footed walking
gaits. Research on RABBIT gave rise to the methods
of virtual constraints and hybrid zero dynamics (Grizzle
et al., 2001; Westervelt et al., 2002, 2003; Morris and
Grizzle, 2005; Westervelt et al., 2007), which provide
a systematic method of designing asymptotically sta-
ble walking controllers. A related approach based on
designing a linear feedback controller that stabilizes
the time-varying transverse linearization of a hybrid
system along a periodic orbit has been developed in
(Manchester et al., 2009; Shiriaev et al., 2005, 2010;
Song andŽefran, 2006). Other types of controllers to
achieve stable walking are based on machine learning
and neuronal control, as presented in (Russ Tedrake and
Seung, 2005) and (Manoonpong et al., 2007; Sabourin
et al., 2006), respectively.

The efficiency of bipedal robots is being enhanced by
using minimal actuation, incorporating compliance, or a
combination of the two. Motivated by passive dynamic
walkers which exhibit stable gaits on small downward
slopes, and where gravity compensates for energy losses
at leg impacts, researchers have devised efficient means
of walking on flat ground by injecting minimal amounts
of energy at key points in the gait (Collins et al.,
2005; Kuo, 2002). Another means of enhancing energy
efficiency is by introducing compliant elements. The
energetic benefits of springs in legged locomotion are
well documented (Alexander, 1990). Springs can be used
to store and release energy that otherwise would be lost
as actuators do negative work, and springs can be used
to isolate actuators from shocks arising from leg im-
pacts with the ground. Although these benefits are more
pronounced in running, compliance can also be used
beneficially in walking (Geyer et al., 2006; Iida et al.,
2007, 2008). Enhanced energy efficiency was shown us-
ing pneumatic artificial muscles in (Vanderborght et al.,
2008a,b; Takum et al., 2008), using springs in series with
motors in (Pratt and Pratt, 1998; Schaub et al., 2009),

and using springs in parallel with motors in (Yang et al.,
2008). A combination of both methods, minimalistic
actuation and compliant elements, is employed in the
Cornell Biped (Collins and Ruina, 2005), and the T.U.
Delft bipeds TUlip and Flame (Hobbelen et al., 2008)
in order to improve efficiency. The drawbacks of these
highly efficient walkers are that they cannot lift their legs
over obstacles, readily change speeds, or run.

The speed of a biped can be enhanced by careful
mechanism and control design as suggested in (Koech-
ling and Raibert, 1993), and demonstrated in robots such
as RunBot (Manoonpong et al., 2007).

MABEL achieves stability, efficiency and speed
through a combination of the novel design of its driv-
etrain and the analytical methods being developed to
control it. The robot’s drivetrain uses a set of differentials
to create avirtual prismatic leg between the hip and
the toe such that one actuator controls the angle of
the virtual leg with respect to the torso, and another
actuator controls its length. Moreover, the drivetrain
also introduces acompliant element, a unilateral spring
present in the transmission, that acts along the virtual
leg in series with the actuator controlling the leg length.
A controller that properly utilizes this natural compliant
dynamics will lead to an efficient gait. Further, with the
above mechanical design, it is possible to place all of the
actuators in the torso, thereby making the legs relatively
light and enabling rapid leg motion for fast gaits. More
details on the design philosophy are available in (Grizzle
et al., 2009; Hurst, 2008).

MIT’s Spring Flamingo achieved stable, efficient
and fast walking by employing series elastic actuators
(SEAs) and a virtual model controller (Pratt and Pratt,
1998; Pratt, 2000; Pratt et al., 2001). The virtual model
controller creates virtual components, such as springs,
dashpots, etc., through carefully computed joint torques.
This enables intuitive tuning of parameters of the con-
troller, though no formal stability results exist. The
spring in MABEL may seem similar to that in the SEA,
however the resemblance is only superficial. The SEA
is designed for force control and cannot store significant
amounts of energy. MABEL’s springs provide a revolute
instantiation of a spring-loaded prismatic (pogo-stick)
leg. They can easily absorb 150 J of energy (the equiva-
lent of dropping the robot from a height of 25 cm.) The
spring in the SEA is several orders of magnitude smaller
in size, and is used primarily for filtering and sensing of
external forces, rather than energy storage.

The presence of compliance in MABEL’s transmission
has led to new control challenges that cannot be met
with the initial theory developed for RABBIT. On the
mathematical side, compliance increases the degree of
underactuation, which in turn makes it more difficult to
meet the invariance condition required for a hybrid zero
dynamics to exist. This technical difficulty was overcome
in (Morris and Grizzle, 2009) with a technique called a
“deadbeat hybrid extension”.

A second challenge arising from compliance is how
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to use it effectively. A first attempt in (Morris and
Grizzle, 2006) at designing a controller for a biped
with springs took advantage of the compliance along a
steady state walking gait, but “fought it” during tran-
sients; the compliance was effectively canceled in the
HZD (for details, see (Poulakakis and Grizzle, 2009b,
p. 1790)). The problem of ensuring that the feedback
action preserves the compliant nature of the system even
during transients was studied in (Poulakakis and Grizzle,
2009b,a; Poulakakis, 2008) for the task of hopping in
a monopod, where the HZD itself was designed to be
compliant.

B. Contributions

The key results of the paper are summarized next.
Firstly, a HZD-based controller is designed for walking
such that the natural compliant dynamics is preserved
in the closed-loop system (robot plus controller). This
ensures that the designed walking gait uses the compli-
ance to do negative work at impact, instead of it being
done by the actuators, thereby improving the energy
efficiency of walking. Stability analysis using the method
of Poincaŕe is then carried out to check stability of the
closed-loop system. Prior to experimentally testing the
controller, simulations with various model perturbations
are performed to establish robustness of the designed
controller. The controller is then experimentally vali-
dated on MABEL.

Secondly, walking gaits are designed to optimize the
energetic cost of mechanical transport (Collins et al.,
2005; Collins and Ruina, 2005). This results in a gait that
is more than twice as efficient on the testbed than a gait
that we had designed by hand and reported in (Grizzle
et al., 2009). The resulting cost of mechanical transport is
approximately three times more efficient than RABBIT,
and 12 times better than Honda’s ASIMO, even though
MABEL does not have feet. This puts MABEL’s energy
efficiency within a factor of two of T.U. Delft’s Denise
and a factor of three of the Cornell Biped, none of which
can step over obstacles or run; it is also within a factor
of two of the MIT Spring Flamingo which can easily
step over obstacles but cannot run, and within a factor
of three of humans, who can do all of the above.

Thirdly, in preparation for future running experiments,
we turn our attention to fast walking, where each single
support phase may be on the order of 300 to 350 ms.
Very precise control is needed for accurately implement-
ing the virtual constraints of an HZD controller with
these gait times. All experimental implementations of
the virtual constraints reported to date have relied on
local PD controllers (Westervelt et al., 2004). The zero
dynamics controllers provide great tracking accuracy in
theory, but are often criticized for being overly dependent
on high model accuracy, and for being too complex to
implement in real-time. Here we demonstrate, for the
first time, an experimental implementation of a compli-
ant HZD controller. The tracking accuracy attained is far
better than the simple PD controllers used earlier.

Finally, we attack the problem of achieving fast walk-
ing. With a zero dynamics controller, we experimentally
attain a top sustained walking speed of1.5 m/s (3.4
mph.)

The remainder of the paper is organized as fol-
lows. Section II describes the general features of MA-
BEL’s morphology, and presents the mathematical hy-
brid model used for walking. Section III provides the
systematic procedure based on virtual constraints that
is used to design a suite of walking gaits. Section IV
presents the design of two controllers to realize the gaits
and studies the stability of the fixed points under the
action of the proposed controllers. Section V describes
the experiments performed to demonstrate the validity
of the designed controllers. Section VI discusses various
aspects of the robot and the feedback controllers re-
vealed by the experiments. Finally, Section VII provides
concluding remarks and briefly discusses future research
plans.

II. MABEL TESTBED

This section presents details about the morphology
of MABEL, and develops the appropriate mathematical
models for the study of walking.

A. Description of MABEL

MABEL is a planar bipedal robot comprised of five
links assembled to form a torso and two legs with knees;
see Figure 1. The robot weighs58 kg, is 1 m at the hip,
and mounted on a boom of radius2.25 m. The legs are
terminated in point feet. All actuators are located in the
torso, so that the legs are kept as light as possible; this
is to facilitate rapid leg swinging for running. Unlike
most bipedal robots, the actuated degrees of freedom of
each leg do not correspond to the knee and hip angles.
Instead, for each leg, a collection of cable-differentials
is used to connect two motors to the hip and knee joints
in such a way that one motor controls the angle of the
virtual leg consisting of the line connecting the hip to
the toe, and the second motor is connected in series with
a spring in order to control the length or shape of the
virtual leg; see Figure 2. The reader is referred to (Park
et al., 2010; Grizzle et al., 2009; Hurst, 2008) for more
details on the transmission.

The springs in MABEL serve to isolate the reflected
rotor inertia of the leg-shape motors from the impact
forces at leg touchdown and to store energy in the
compression phase of a running gait, when the support
leg must decelerate the downward motion of the robot’s
center of mass; the energy stored in the spring can
then be used to redirect the center of mass upwards
for the subsequent flight phase, when both legs are
off the ground. These properties (shock isolation and
energy storage) enhance the energy efficiency of running
and reduce the overall actuator power requirements.
This is also true for walking as we will demonstrate
experimentally. MABEL has a unilateral spring which
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Fig. 2. MABEL’s powertrain (same for each leg), all housed in the
torso. Two motors and a spring are connected to the traditional hip
and knee joints via three differentials. On the robot, the differentials
are realized via cables and pulleys (Hurst, 2008) and not viagears.
They are connected such that the actuated variables are leg angle and
leg shape, see Figure 1, and so that the spring is in series with the leg
shape motor. The base of the spring is grounded to the torso andthe
other end is connected to theBspring differential via a cable, which
makes the springunilateral. When the spring reaches its rest length,
the pulley hits a hard stop, formed by a very stiff damper. When this
happens, the leg shape motor is, for all intents and purposes,rigidly
connected to leg shape through a gear ratio.

compresses but does not extend beyond its rest length.
This ensures that springs are present when they are useful
for shock attenuation and energy storage, and absent
when they would be a hindrance for lifting the legs from
the ground.

B. Mathematical Model

A hybrid model appropriate for a walking gait, com-
prised of a continuous single support phase and an
instantaneous double support phase, is developed next.
The impact model at double support is based on (Hur-
muzlu and Marghitu, 1994). The single support model
is a pinned, planar, 5-link kinematic chain with revo-
lute joints and rigid links. Because the compliance is
unilateral, it will be more convenient to model it as an
external force when computing the Lagrangian, instead
of including it as part of the potential energy.

1) MABEL’s Unconstrained Dynamics:The config-
uration spaceQe of the unconstrained dynamics of
MABEL is a simply-connected subset ofS7 × R

2: five
DOF are associated with the links in the robot’s body,
two DOF are associated with the springs in series with
the two leg-shape motors, and two DOF are associated
with the horizontal and vertical position of the robot
in the sagittal plane. A set of coordinates suitable for
parametrization of the robot’s linkage and transmission
is qe := ( qLAst

; qmLSst
; qBspst

; qLAsw
; qmLSsw

; qBspsw
;

qTor; p
h
hip; p

v
hip ), the subscriptsst and sw refer to the

stance and swing legs respectively. As in Figure 1 and

Figure 2, qTor is the torso angle, andqLAst
, qmLSst

,
and qBspst

are the leg angle, leg-shape motor position,
and Bspring position, respectively for the stance leg.
The swing leg variables,qLAsw

, qmLSsw
and qBspsw

are
defined similarly. For each leg,qLS is determined from
qmLS andqBsp by

qLS = 0.0318qmLS + 0.193qBsp. (1)

This reflects the fact that the cable differentials place
the spring in series with the motor, with the pulleys
introducing a gear ratio. The coordinatesphhip, p

v
hip are

the horizontal and vertical positions of the hip in the
sagittal plane. The hip position is chosen as an indepen-
dent coordinate instead of the center of mass because
it was observed that this choice significantly reduces
the number of terms in the symbolic expressions for the
dynamics.

The equations of motion are obtained using the
method of Lagrange. The Lagrangian for the uncon-
strained system,Le : TQe → R is defined by

Le = Ke − Ve, (2)

where, Ke : TQe → R and Ve : Qe → R are the
total kinetic and potential energies of the mechanism,
respectively. The total kinetic energy is obtained by
summing the kinetic energy of the linkage,Klink

e , the
kinetic energy of the stance and swing leg transmissions,
Ktransst

e ,Ktranssw
e , and the kinetic energy of the boom,

Kboom
e ,

Ke (qe, q̇e) = Klink
e (qe, q̇e) +Ktransst

e (qe, q̇e)+

Ktranssw
e (qe, q̇e) +Kboom

e (qe, q̇e) .
(3)

The linkage model is standard. Physically, the boom
constrains the robot to move on the surface of a sphere,
and a full 3D model would be required to accurately
model the robot and boom system. However, we assume
the motion to be planar and, as in (Westervelt, 2003,
p. 94), only consider the effects due to mass and inertia
of the boom. This will introduce some discrepancies be-
tween simulation and experimental results. The symbolic
expressions for the transmission model are available
online at (Grizzle, 2010b).

Similar notation is used for the potential energy,

Ve (qe) = V link
e (qe) + Vtransst

e (qe)+

Vtranssw
e (qe) + Vboom

e .
(4)

Due to its unilateral nature, the spring is not included in
the potential energy of the transmission; only the mass of
the motors and pulleys is included. The unilateral spring
is considered as an external input to the system.

With the above considerations, the unconstrained
robot dynamics can be determined through Lagrange’s
equations

d

dt

∂Le

∂q̇e
−

∂Le

∂qe
= Γe, (5)
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where,Γe is the vector of generalized forces acting on
the robot and can be written as,

Γe = Beu+ Eext (qe)Fext+

Bfricτfric (qe, q̇e) +Bspτsp (qe, q̇e) ,
(6)

where the matricesBe, Eext, Bfric, andBsp are derived
from the principle of virtual work and define how the
actuator torquesu, the external forcesFext at the leg,
the joint friction forcesτfric, and the spring torquesτsp
enter the model, respectively.

Applying Lagrange’s equations (5), with the kinetic
and potential energies defined by (3) and (4), respec-
tively, results in the second-order dynamical model

De (qe) q̈e + Ce (qe, q̇e) q̇e +Ge (qe) = Γe (7)

for the unconstrained dynamics of MABEL. HereDe is
the inertia matrix, the matrixCe contains Coriolis and
centrifugal terms, andGe is the gravity vector.

2) Dynamics of Stance:For modeling the stance
phase, the stance toe is assumed to act as a passive
pivot joint (no slip, no rebound and no actuation).
Hence, the Cartesian position of the hip,

(

phhip, p
v
hip

)

,
is defined by the coordinates of the stance leg and
torso. The springs in the transmission are appropri-
ately chosen to support the entire weight of the robot,
and hence are stiff. Consequently, it is assumed that
the spring on the swing leg does not deflect, that is,
qBspsw

≡ 0. It follows from (1) that qmLSsw
and

qLSsw
are related by a gear ratio;qmLSsw

is taken as
the independent variable. With these assumptions, the
generalized configuration variables in stance are taken
asqs :=

(

qLAst
; qmLSst

; qBspst
; qLAsw

; qmLSsw
; qTor

)

.
The stance dynamics is obtained by applying the

above holonomic constraints to the model of Section
II-B1. The stance configuration space is therefore a
co-dimension three submanifold ofQe, i.e., Qs :=
{

qe ∈ Qe | qBspsw
≡ 0, phtoest ≡ 0, pvtoest ≡ 0

}

. For later
use, we denote by

qe = Υs (qs) (8)

the value ofqe whenqs ∈ Qs, and by

qs = Πs (qe) (9)

the value ofqe projected ontoQs ⊂ Qe, such that,Πs ◦
Υs = id.

The resulting LagrangianLs : TQs → R can be
expressed as

Ls := Le (qe, q̇e) |{qBspsw
≡0,ph

toest
≡0,pv

toest
≡0}, (10)

and the dynamics of stance are obtained through La-
grange’s equations, expressed in standard form as

Ds (qs) q̈s + Cs (qs, q̇s) q̇s +Gs (qs) = Γs, (11)

where,Γs := Bsu+Bfricτfric (qs, q̇s) +Bspτsp (qs, q̇s)
is the vector of generalized forces acting on the robot.

The state-space form of the stance dynamics, with the
state vectorxs := (qs; q̇s) ∈ TQs, can be expressed as,

ẋs :=

[

q̇s
q̈s

]

=

[

q̇s
−D−1

s Hs

]

+

[

0
D−1

s Bs

]

u

=: fs(xs) + gs(xs)u,

(12)

where,fs, gs are the drift and input vector fields for the
stance dynamics, andHs := Cs (qs, q̇s) q̇s + Gs (qs) −
Bfricτfric (qs, q̇s)−Bspτsp (qs, q̇s).

3) Stance to Stance Transition Map:An impact oc-
curs when the swing leg touches the ground, modeled
here as an inelastic contact between two rigid bodies.
In addition to modeling the impact of the leg with
the ground and the associated discontinuity in the gen-
eralized velocities of the robot as in (Hurmuzlu and
Marghitu, 1994), the transition map accounts for the
assumption that the spring on the swing leg is at its
rest length, and for the relabeling of robot’s coordi-
nates so that only one stance model is necessary. In
particular, the transition map consists of three subphases
executed in the following order: (a) standard rigid impact
model (Hurmuzlu and Marghitu, 1994); (b) adjustment
of spring rest length in the new swing leg; and (c)
coordinate relabeling.

Before entering into the details, the spring is dis-
cussed. To meet our modeling assumption of Section
II-B2, the post-transition spring position on the new
swing leg has to be non-deflected. This requirement
makes the pre and post-transition position coordinates
not identical. Physically, the spring being non-deflected
is a well-founded assumption because as soon as weight
of the robot comes off the former stance leg, the spring
rapidly relaxes and the pulleyqBsp comes to rest on the
hard stop. This causes a change in torque on the leg-
shape motor, and either the motor shaft or the leg shape
needs to reposition to maintain a balance of torques in
the leg shape differentials. Because the leg shape has a
high reflected inertia at the motor, it is the motor that
repositions. Further, sinceqLS is a linear combination
of qmLS and qBsp per (1), we can assume the spring
and motor position change appropriately such that the
linkage positionsq+LS, q−LS are still identical. Thus, the
pre and post-transition linkage coordinates still remain
identical.

The robot physically transitions from one stance phase
to the next when the swing toe contacts the ground. It
is assumed that there is no rebound or slip at impact,
and that the old stance leg lifts off from the ground
without interaction. The external forces are represented
by impulses, and since the actuators cannot generate
impulses, they are ignored during impact. Mathemati-
cally, the transition then occurs when the solution of
(12) intersects the co-dimension one switching manifold

Ss→s :=
{

xs ∈ TQs | pvtoesw = 0
}

. (13)

The stance to stance transition map,∆s→s : Ss→s →
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TQs, is defined as

∆s→s :=

[

∆q
s→s

∆q̇
s→s

]

, (14)

where, the components∆q
s→s and ∆q̇

s→s define the
transition maps for the configuration variables and their
velocities, respectively.

The transition map for the velocities is derived as
follows. Let IR be the impulsive force on the foot due
to the ground-foot impact and letτR be the impulsive
torque on the spring due toBspring hitting the hard stop1.
Then the generalized external impulsive force acting on
the system is obtained from the principle of virtual work
as,

Fext =

(

∂ptoesw
∂qe

)T

IR +

(

∂qBspst

∂qe

)T

τR. (15)

We have three constraints that need to be satisfied at
impact. The first condition is for the new swing leg to
have zero spring velocity. The second condition is for the
new stance toe to have zero velocity. The third constraint
is obtained by integrating the unconstrained dynamics,
(7), over the duration of the instantaneous event. These
conditions are

q̇+Bspst
= 0 =⇒

∂qBspst

∂qe
q̇+e = 0, (16)

ṗ+toesw = 0 =⇒
∂ptoesw
∂qe

q̇+e = 0, (17)

De

(

q+e
)

q̇+e −De

(

q−e
)

q̇−e = Fext. (18)

By assembling the constraints (16)-(18), and solving
for the post-impact velocity, we can define a map,Γ,
such that,q̇+e = Γ (q̇−e ). Thus, the transition map for the
velocities is

∆q̇
s→s :=

∂Πs

∂qe
◦R ◦ Γ ◦

∂Υs

∂qs
, (19)

whereΥs, Πs are as defined in (8), (9), andR is a linear
operator representing coordinate relabeling as found in
(Westervelt et al., 2007, p. 57).

Next, as per earlier discussions regarding the adjust-
ment of spring rest length for the new swing leg, the
transition map for the coordinates can be expressed as

∆q
s→s := Πs ◦R ◦ TmLSst

◦Υs, (20)

where TmLSst
resets the spring to its rest position by

modifying the stance leg-shape motor position such that
the stance leg-shape position itself is unchanged.

1We have checked that first doing the standard impact for the swing
leg, and then doing a second impact forqBsp hitting the hard stop,
with the constraint that the new stance leg end velocity remains zero,
gives the same result as the model presented here.

4) Hybrid Model of Walking:The hybrid model of
walking is based on the dynamics developed in Section
II-B2 and transition map derived in Section II-B3. The
continuous dynamics with discrete state transitions is
represented as,

Σs :

{

ẋs = fs(xs) + gs(xs)u x−

s /∈ Ss→s

x+
s = ∆s→s(x

−

s ) x−

s ∈ Ss→s.
(21)

III. G AIT DESIGN USINGZERO DYNAMICS

This section presents a feedback controller for achiev-
ing asymptotically stable, periodic walking gaits on
MABEL. In addition to orbital stability, a key objective
is to take advantage of the spring in the robot’s drivetrain
that is placed in series with the leg-shape motor andqLS.
Inspired by analysis in (Poulakakis and Grizzle, 2009b,
p. 1784) and (Poulakakis, 2008, Chap. 6) for monopedal
hoppers with compliance, this will be accomplished by
controlling variables on the motor end of the spring
and letting the joint end of the spring, which sees the
large ground reaction forces, remain passive. In this
way, the robot in closed-loop with the controller will
respond to impulsive forces at impact in a manner similar
to a pogo stick. In particular, the closed-loop system
will use the compliance to do negative work at impact
(i.e., decelerating the center of mass and redirecting it
upward2), instead of it being done by the actuators,
thereby improving the energy efficiency of walking.

It will be shown that the method of virtual con-
straints and hybrid zero dynamics is flexible enough to
accomplish the control objectives outlined above. The
method of Poincaré is used to verify stability of the
closed-loop system. Prior to experimentally testing the
controller, simulations with various model perturbations
are performed to establish robustness of the designed
controller. The controller is then experimentally vali-
dated on MABEL.

The rest of the section is as follows: Section III-A
presents the virtual constraint design for walking, Sec-
tion III-B presents the compliant zero dynamics for
MABEL, Section III-C mathematically formalizes the
event transitions between the subphases of the virtual
constraints, Section III-D presents two cost functions for
optimization and, finally, Section III-E presents the fixed
points obtained by optimization.

A. Virtual Constraint Design for Stance

Recall that virtual constraints are holonomic con-
straints on the robot’s configuration variables that are
asymptotically imposed through feedback control. They
are used to synchronize the evolution of the robot’s links
throughout a stride in order to synthesize a gait (Wester-
velt et al., 2007). One virtual constraint is designed per
independent actuator.

2The double support phase of human walking is spring-like in the
vertical direction and redirects the center of mass (Rebula et al., 2009;
Geyer et al., 2006). The COM redirection is obtained here without a
double support phase.
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The virtual constraints are parametrized byθs, a
strictly monotonic function of the joint configuration
variables, and can be expressed in the form

y = hs (qs) = Hs
0qs − hs

d (θs) . (22)

If a feedback can be found such thaty is driven
asymptotically to zero, thenHs

0qs → hs
d (θs) and thus

the controlled variablesHs
0qs evolve according to the

constraintHs
0qs = hs

d (θs). Here, the controlled variables
are selected to be the rotor angle of the stance leg-shape
motor, qmLSst

, the swing leg variables,qLAsw
, qmLSsw

,
and the absolute torso angleqTor. From hereon, the rotor
angle of the stance leg-shape motor is simply referred to
as stance motor leg shape.

1) Deciding what to control:The torso is selected
as a controlled variable instead of the stance leg angle,
because, for MABEL, the torso represents over 65% of
the mass of the robot, and hence the position of the torso
heavily influences the gait. The stance motor leg shape,
qmLSst

, is chosen instead of the stance leg shape,qLSst
,

so that the joint side of the spring remains passive, as
discussed above. Mathematically, with this choice, the
spring variable will become a part of the zero dynamics,
thereby rendering the zero dynamics compliant. From
(1), if qmLSst

is held constant, thenqLSst
responds to the

spring torque throughqBspst
. On the other hand, ifqLSst

were selected as a controlled variable, then the actuator
is forced to cancel the spring dynamics.

The swing leg virtual constraints are similar to the
controlled variables on RABBIT, a robot without com-
pliance. This is because under the assumption that the
swing spring is at its rest position throughout stance,
qBspsw

≡ 0, which from (1) shows that the motor leg
shape,qmLSsw

, is related to the leg shape,qLSsw
, through

a gear ratio.
In summary, the controlled variables are

Hs
0qs =









qmLSst

qLAsw

qmLSsw

qTor









, (23)

The desired evolution of each of the controlled variables
are denoted byhd

mLSst
, hd

LAsw
, hd

mLSsw
, andhd

Tor respec-
tively, and assembled as

hs
d (θs) =









hd
mLSst

(θs)
hd
LAsw

(θs)
hd
mLSsw

(θs)
hd
Tor (θs)









. (24)

For MABEL, we chooseθs to be the absolute angle
formed by the virtual compliant leg relative to the
ground, i.e.,

θs (qs) = π − qLAst
− qTor. (25)

2) Specification of the constraints:Virtual constraints
for the stance phase of MABEL are inspired by the
constraints designed for Thumper in (Poulakakis and
Grizzle, 2009a; Poulakakis, 2008). The stance phase is

broken up into subphases: the motor-compression phase
(mc), the stance-compression phase (sc), the stance-
injection phase (si), and the stance-decompression phase
(sd). The details of these subphases are given later in
the section. Figure 3 illustrates the evolution of each of
these constraints onqmLSst

, qLAsw
, qmLSsw

, andqTor.
The reason behind breaking up the stance phases

into four subphases is to facilitate the design of virtual
constraints that effectively make use of the compliance.
A key idea is to hold the stance motor leg shape at a
constant value shortly after impact in order to allow the
spring (which is in series with this actuator) to absorb
the impact shock entirely. Note that if the motor position
is held constant, then its velocity is zero and the motor
performs no mechanical work. The spring then does the
negative work of decelerating the center of mass and
redirecting it upwards; in other words, the spring stores
the impact energy and returns it later to the gait instead
of the actuator doing negative work and dissipating it
as heat. This effectively preserves the natural compliant
dynamics of the system and prevents the actuator from
fighting the spring.

Another key subphase involves the torso. Because it
is heavy, we have observed that making the pre-impact
torso velocity close to zero at the end of the gait helps
in avoiding excessive forward pitching of the torso just
after swing leg impact. This is achieved by designing
the torso virtual constraint such that, before impact, the
torso position is constant and its velocity is zero; see
phasesd in Figure 3.

Remark 1: The choice of the variables to be con-
trolled in the virtual constraints makes the zero dynamics
compliant. The choice of the evolution of the virtual
constraints facilitates efficient use of the compliance.

In our design of the virtual constraints for MABEL,
we use the framework for virtual constraints with sub-
phases developed in Appendix A, with the index set for
the subphases given by

P := {mc, sc, si, sd}, (26)

and with the index set for the virtual constraints given
by

V := {mLSst,LAsw,mLSsw,Tor}. (27)

Further, we chooseM = 5 in (52), and imposeC1

continuity between successive subphases. This ensures
continuity of position and velocity at the boundary of
two phases of a virtual constraint. However, acceleration,
and consequently, the actuator torques, are allowed to be
discontinuous at phase boundaries.

3) Stance motor leg-shape virtual constraint:The
desired evolution of the stance motor leg-shape position,
hd
mLSst

, is as follows. During the motor-compression
phase, the velocity of the motor leg-shape immediately
after impact,q̇s+mLSst

, is usually nonzero and is smoothly
brought to zero by the end of the motor-compression
phase, i.e.,̇qmc−

mLSst
= 0.
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qs+mLSst

qsc
mLSst

qs+Tor = qs−Tor

qs+mLSsw

qs+LAsw

qs−mLSst

qs−mLSsw

qs−LAsw

hd
mLSst

(θs)

hd
Tor (θs)

hd
mLSsw

(θs)

hd
LAsw

(θs)

θs

θs

θs

θs
θs+ θs−

θmc+

θmc− θsc+ θsc− θsi+ θsi− θsd+ θsd−

mc sc si sd

q̃s+mLSst

q̃s+Tor

q̃s+mLSsw

q̃s+LAsw

(θs− − θs+) /2

(

θsi− − θ+s
)

/2

Fig. 3. The general shape of the stance phase virtual constraints. The
thick solid lines illustrate the evolution of each of the virtual constraints
as a function ofθs. Each virtual constraint is broken into subphases
(mc, sc, si, sd) and each subphase is locally expressed by a5th order
Bézier polynomial. The thin lines show the evolution of corresponding
local s that parametrizes the local Bézier curve and goes from0
to 1. The subphases can be combined as, for instance, in the torso
virtual constraint, which lumps the first three subphases together and
normalizess appropriately. The swing leg virtual constraints combine
all four phases. The thick dashed lines are correction polynomials
introduced to create hybrid invariance of the zero dynamics and are
discussed in Section IV.

Throughout the stance-compression phase, the leg-
shape motor position is kept at a constant angleqsc

mLSst
.

With the motor position locked, the bending of the
stance knee compresses the spring. The phase lasts until
qBspst

= qsc+
Bspst

with q̇Bsp < 0, the point at which the
spring decompresses to a value near the nominal spring
compression at mid-stance, a typical value being five
degrees. This ensures that the impact kinetic energy is
first stored in the spring and then returned to the gait

without the actuator performing unnecessary negative
work on the leg shape,qLSst

.
The stance-injection phase starts with the spring just

decompressed toqsc+
Bspst

. The actuator then rapidly repo-
sitions the motor shaft to a new desired position,qs−mLSst

.
Under nominal conditions, this straightens the leg during
mid-stance for ground clearance of the swing leg. Under
large perturbations, this motion will cause the actuator
to inject (or remove) energy through compression (or
decompression) of the spring by rapidly repositioning
the motor end of the compliance.

Following the stance-injection phase, the motor shaft
is maintained at the positionqs−mLSst

throughout the
stance-decompression phase, waiting for the spring to
decompress again in preparation for leg touchdown.

The virtual constraints for the stance motor leg shape
are depicted in Figure 3. The thick solid line is the
virtual constraint, and the thin line is the locals that
parametrizes the local B́ezier polynomial. The figure
also shows the virtual constraints for the other controlled
variables. Appendix A provides further details regarding
choosing the the B́ezier polynomial coefficients for each
subphase.

4) Torso virtual constraint: The desired evolution
of the torso angle,hd

Tor, does not need to be as
finely specified; it’s evolution will be primarily left
to optimization, which will be discussed in Section
III-D. The motor-compression, stance-compression, and
stance-injection phases, are combined into a single
phase. This phase serves as a transient phase that
drives the torso in a smooth manner from the initial
configuration,

(

qs+Tor, q̇
s+
Tor

)

, to the final configuration,
(

qs−Tor, q̇
s−
Tor = 0

)

, in preparation for impact.
During the stance-decompression phase, the torso is

held constant in preparation for impact. Simulations with
the model and experiments with a simpler PD controller
detailed in (Grizzle et al., 2009) showed that achieving
a nearly zero pre-impact velocity tends to prevent the
heavy torso from excessively pitching after impact.

5) Swing leg virtual constraints:The desired evolu-
tion of the swing leg angle,hd

LAsw
, and motor leg shape

position,hd
mLSsw

are the simplest of all of the constraints
as no subphases are used. A single virtual constraint on
swing leg angle is designed to bring the leg forward,
preparing it for impact with a desired step length. The
constraint on swing motor leg shape is responsible for
lifting the swing leg from the ground, avoiding foot
scuffing during the gait, and extending the leg before
impact. These two constraints are similar to RABBIT
(Westervelt et al., 2004).

6) Discussion:The use of subphases in the evolution
of the stance motor leg shape and torso introduces
additional independent parameters to be specified in the
constraint design. One benefit is that it approximately
decouples the evolution of these angles from one phase
to another; changing the evolution in one phase does not
strongly affect the other as long as the boundary condi-
tion is maintained. This facilitates intuitively specifying
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the initial shape of the virtual constraints and makes
the optimization task easier. For a list of independent
parameters to be found by optimization, refer to Table
IV in Appendix B.

For later use, we can organize the virtual constraints
for each phase separately. For eachp ∈ P, we can define
the output,

yp = hp (qs, αp) = Hp
0 (qs)− hp

d (θs, αp) , (28)

and,

hp
d (θs, αp) =











hd,p
mLSst

(θs)

hd,p
LAsw

(θs)

hd,p
mLSsw

(θs)

hd,p
Tor (θs)











. (29)

The B́ezier coefficients for each phase can be organized
as,

αp =









αp
mLSst

αp
LAsw

αp
mLSsw

αp
Tor









. (30)

Remark 2: Both the local virtual constrainthp
d and

the local selection of the controlled variablesHp
0 can

be modified for each subphase resulting in (28). Here
we only change the parameters used in the Bézier
polynomialsαp

v and leaveHp
0 = Hs

0 as defined in (23),
andhp

d = hs
d as defined in (24), for each phasep ∈ P.

B. Stance Zero Dynamics

The organization of the stance phase into four sub-
phases creates four continuous dynamics and discrete
transitions between them. As discussed in Section III-A6,
for each phasep ∈ P, an output functionyp has been
associated with the continuous stance dynamics defined
in (12). The zero dynamics is defined as the maximal
internal dynamics of the system that is compatible with
the output being identically zero (Isidori, 1995). Differ-
entiating the output twice with respect to time results
in

d2yp
dt2

= L2
fs
hp (xs, αp) + LgsLfshp (qs, αp)u, (31)

whereLgsLfshp (qs, αp), the decoupling matrix, has full
rank. Under the conditions of (Westervelt et al., 2007,
Lemma 5.1),

u∗ (xs, αp) := − (LgsLfshp (qs, αp))
−1

L2
fs
hp (xs, αp) ,

(32)

is the unique control input that renders the smooth four-
dimensional embedded submanifold

Zαp
= {xs ∈ TQs | hp (qs, αp) = 0,

Lfshp (xs, αp) = 0}
(33)

invariant under the stance dynamics (12); that is, for
everyz ∈ Zαp

,

f∗

p (z) := fs (z) + gs (z)u
∗ ∈ TzZαp

. (34)

Achieving the virtual constraints by zeroing the corre-
sponding outputs reduces the dimension of the system
by restricting its dynamics to the submanifoldZαp

embedded in the continuous-time state spaceTQs. Zαp

is called the zero dynamics manifold and the restriction
dynamicsż = f∗

p |Zαp
(z) is called the zero dynamics.

From Lagrangian dynamics (the derivation is standard
(Westervelt et al., 2007, Chap. 5) and skipped for sake
of brevity), a valid set of coordinates onZαp

is

xp
zd =









ξ1
ξ2
ξ3
ξ4









=













θs
qBspst

∂Ls

∂q̇Bspst

∂Ls

∂q̇Tor













. (35)

This set of coordinates explicitly contains theBspring

variable, which illustrates clearly that the zero dynamics
is compliant:

ẋp
zd =









ξ̇1
ξ̇2
ξ̇3
ξ̇4









=













Lfsθs
LfsqBspst

∂Ls

∂qBspst

+ τsp

∂Ls

∂qTor













. (36)

C. Event Transitions

The division of the stance phase into subphases when
specifying the virtual constraints in Section III-A neces-
sitates the specification of the transition maps between
the subphases. In preparation for the next section, we
model the hybrid dynamics on the zero dynamics man-
ifold by concatenating the solutions of the parameter-
dependent hybrid systems for each subphase

Σp :



















xp ∈ Zαp

ẋp = f∗
p (xp)

Sp→q =
{

xp ∈ Zαp
| Hp→q (xp) = 0

}

x+
q = ∆p→q

(

x−
p

)

.

The model captures the continuous-time dynamics
of the system in phasep ∈ P and the discrete
transition to phaseq ∈ P, with the only valid
choice of transitions for walking being(p, q) ∈
{(mc, sc) , (sc, si) , (si, sd) , (sd,mc)}.

The switching surfaces,Sp→q, for the transitions for
walking are defined by the zero level sets of the corre-
sponding threshold functionsHp→q : TQs → R, which
are given below,

Hmc→sc := θs − θ−mc

Hsc→si := qBspst
− 5◦

Hsi→sd := θs − θ−si
Hsd→mc := pvtoesw .

(37)

The transition maps,∆p→q : Sp→q → TQs, provide the
initial conditions for the ensuing phaseq ∈ P, and are
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motor-compression

stance-compression

stance-injection

stance-decompression

Smc→sc

∆mc→sc

Ssc→si

∆sc→si

Ssi→sd

∆si→sd

Ssd→mc

∆sd→mc

Fig. 4. The hybrid system for stance with continuous-time phases
and discrete event transitions.

given below,

∆mc→sc := id

∆sc→si := id

∆si→sd := id

∆sd→mc := ∆s→s,

(38)

whereid is the identity map and∆s→s is defined in (14).
The event transitions are indicated in Figure 4. To find

a set of values for the independent parameters of the
constraint design specified in Section III-A, we employ
the above hybrid system and formulate the problem as
a constrained optimization.

D. Gait Design Through Optimization

A periodic walking gait is designed by selecting the
free parameters in the virtual constraints. As in (Wester-
velt et al., 2003, 2007), this is most easily done by posing
an optimization problem, such as minimum energy per
step length, subject to constraints to meet periodicity,
workspace and actuator limitations, and desired walking
speed. The equations of the compliant zero dynamics,
which are of reduced dimension compared to the full dy-
namics, are employed in the optimization for efficiency
of computation.

The nonlinear constrained optimization routine
fmincon of MATLAB’s Optimization Toolbox is
used to perform the numerical search for desired
gaits. The quantities involved in optimization are the
scalar cost function to be minimized,J , the vector of
equality constraints, EQ, and the vector of inequality
constraints, INEQ. The optimization algorithm, equality
and inequality conditions are given in Appendix B and
the list of optimization parameters is specified in Table
IV.

Several popular cost functions for bipedal gait design
are given in (Westervelt et al., 2007, Sec. 6.3.3). Here,
two cost criteria are used in in the optimization process.
First we use a nominal cost function, as used in RABBIT
in (Westervelt et al., 2004), consisting of the integral over

a step of squared torque divided by distance traveled,

Jnom (αs) =
1

phtoesw
(

q−s
)

∫ TI

0

||u(t)||2dt, (39)

where TI is the step duration andphtoesw is the step
length. Minimizing this cost function tends to reduce
peak torque demands and minimizes the electrical energy
consumed per step.

Next we use a cost function that quantifies the me-
chanical energy consumed. The specific mechanical cost
of transport,cmt is introduced in (Collins et al., 2005;
Collins and Ruina, 2005) as means of quantifying energy
consumed for bipedal locomotion.cmt is the energy
consumed per unit weight per unit distance traveled and
can be defined as a cost function,

Jcmt
=

∫ TI

0

∑4
i=1 Ei (t) dt

Mgd
, (40)

whereM is the mass of the robot,g is the acceleration
due to gravity,d is the distance traveled, and

Ei (t) =

{

ui (t) q̇i (t) ui (t) q̇i (t) > 0
0 ui (t) q̇i (t) ≤ 0

(41)

Mechanical power can be either positive (energy is
injected) or negative (energy is absorbed). Some au-
thors, (Hobbelen and Wisse, 2008), consider the absolute
mechanical power while defining thecmt, whereas the
definition in (40), (41) does not take into account any
negative work that is performed by the actuators, the
idea being that if the actuators were redesigned, energy
could be absorbed mechanically through a friction brake
or electronically through regenerative breaking.

E. Fixed Point for Walking

This section presents a nominal fixed point of0.8 m/s
obtained by applying the optimization procedure outlined
in Section III-D to the virtual constraints of Section
III-A, and with the cost function (39). Figure 5 illustrates
the nominal evolution of the virtual constraints and other
configuration variables for one step. It is seen that the
stance motor leg shape is held constant for the first part
of the gait right after impact, and both the stance motor
leg shape and the torso are held constant towards the
final part of the gait. Interestingly, the torso moves less
than two degrees throughout the step.

Figure 6 illustrates the evolution of the leg shape
and the stanceBspring variables. Notice that the spring
compresses to its peak value, and thesc → si tran-
sition is triggered as the spring decompresses to five
degrees. The injection of energy in thesi-phase causes
the spring to compress again. Figure 7 illustrates the
actuator torques used to realize the gait. These torques
are small in comparison to the peak torque capacities of
the actuators:30 Nm atumLA and55 Nm atumLS. The
torques are discontinuous at phase boundaries, as noted
earlier, due to the choice of the virtual constraints being
C1 at phase boundaries. Figure 8 illustrates the evolution
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Fig. 5. Evolution of the virtual constraints and configuration variables
for a nominal fixed point (periodic walking gait) at a speed of0.8
m/s and step length0.575 m. The dots on the stance motor leg-
shape virtual constraint illustrate the location of transition between
consecutive subphases.

of the swing leg height and the vertical position of the
center of mass (COM) of the robot. The COM moves
downward immediately after impact, before reversing
course and following a roughly parabolic path. Such
a trajectory more closely resembles that of a human
(Lee and Farley, 1998) than that of a robot with rigid
links and rigid gearing. The specific cost of mechanical
transport for this nominal gait is,cmt = 0.0452. The
corresponding power plot is very similar to the power
plot for the next designed gait and is not shown.

A second walking gait was designed, this time using
cost function (40), which optimizes for the specific cost
of mechanical transport. The optimization terminated
with a value ofcmt = 0.0385 which is over10% lower
than that for the nominal gait. For this fixed point, Figure
9 compares the total power provided by the stance leg
shape motor to the total power at stance leg shape, where
the latter is the sum of the actuator and compliance
power. It is clear that the spring is doing the vast majority
of the negative work that is necessary on the stance leg.
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to the choice ofC1 continuity of the virtual constraints at subphase
boundaries as per Appendix A-A.
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IV. CLOSED-LOOP DESIGN AND STABILITY

ANALYSIS

The feedback presented in (32) renders the zero dy-
namics manifold invariant under the stance phase dynam-
ics. It is used in the optimization process of gait design
in order to evaluate the torques along a solution of the
model respecting the virtual constraints. The feedback
(32) does not however render the solution stable or
attractive in any way. In the following, two controllers
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Fig. 9. Power plot of a fixed point obtained by optimization of (40),
specific cost of mechanical transport. The thick line illustrates the total
instantaneous power at the leg shape from the actuator and the spring,
and the thin line illustrates the instantaneous power at theleg shape
from the motor alone. The difference is the energy that is saved and
that would otherwise have to be provided by the actuator if the spring
were absent. This plot shows the significant energy economy atimpacts
due to the presence of the compliance in the transmission.
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based on the classic input-output linearizing controller

u = u∗ (xs, αp)− LgsLfshp (qs, αp)
−1

(

Kp,P

ǫ2
y +

Kp,D

ǫ
ẏ

)

,
(42)

wherep ∈ {mc, sc, si, sd}, are discussed.

A. A PD + Feedforward Controller

With an eye toward experimental implementation, we
look at successful controllers that have been employed to
enforce virtual constraints in experiments. For RABBIT,
it was possible to implement the virtual constraints
through a simple PD controller (Westervelt et al., 2004),
per

u = −KP y −KDẏ

for y given by (22), andẏ computed numerically. On
MABEL, such a controller (employed in experiments in
(Grizzle et al., 2009)) resulted in virtual constraints that
were not accurately achieved due to large tracking errors,
and attempts at reducing the errors with high controller
gains were unsuccessful. See Section VI-F for discussion
of this point.

To address this, the vector of nominal control torques
u∗ from (32) is incorporated as a feedforward term in
the PD controller. In particular, along the nominal orbit,
for each of the actuated variablesm ∈ M and for
each of the phasesp ∈ P, u∗ is regressed againstθs
with 5th order B́ezier polynomials to obtain the Bézier
coefficientsβm

p and resulting in the controller

uexp = u∗ (θs, βs)−KP y −KDẏ, (43)

where,y is as defined in (22),̇y still computed numeri-
cally, andβs =

(

βm
p

)

.
The stability of the fixed-points with the proposed

closed-loop controller (43) can be tested numerically
using a Poincaŕe mapP : S → S with the switching
surface taken to be the switching surface at thesi → sd
event transition, i.e.,S = Ssi→sd, and

P (xs) = φ (TI ◦∆si→sd (xs) ,∆si→sd (xs)) , (44)

where,φ (t, x0) denotes the maximal solution of (12),
with initial condition x0 at time t0 = 0 and with u as
defined in (43). Finally,TI is the time-to-impact function
defined in the usual way (Westervelt et al., 2007, p. 94).

Using the Poincaŕe return map (44), we can numeri-
cally calculate the eigenvalues of its linearization about
the fixed-point. The analysis shows that the walking gait
obtained by optimizing (39) and with the closed-loop
controller (43) is exponentially stable with a dominant
eigenvalue of0.6921.

Similarly, the gait obtained from optimizing (40) is
also exponentially stable, with a dominant eigenvalue of
0.8194.

B. Hybrid Invariance

The above controllers are not hybrid invariant. It
was discovered in (Morris and Grizzle, 2006, 2009)
that, in the presence of compliance, while the feedback
controller (42) will render the zero dynamics manifold of
a given phase invariant under the continuous dynamics,
it will not necessarily render it invariant under the
transition maps, that is, at transitions from one phase
to another, invariance is lost. The loss of invariance
manifests itself as an impulsive disturbance to the control
law at each transition off the periodic orbit. These per-
turbations do not prevent asymptotic stability from being
achieved, but they do cause the actuators to do more
work. The reference (Morris and Grizzle, 2009) proposed
a supplemental event-based controller that eliminates this
issue and, in fact, creates ahybrid zero dynamicsfor the
closed-loop system, that is, the zero dynamics manifold
is invariant under the continuous dynamics as well as
the transition maps.

For the related robot, Thumper, (Poulakakis, 2008;
Poulakakis and Grizzle, 2009a) propose an event-based
control at each phase transition. This is not practical
here, however, because we have certain phases with
extremely small duration (themc phase for instance).
Instead, we create a hybrid zero dynamics by updating
parameters only at the impact event (swing leg contacts
the ground).

Following (Morris and Grizzle, 2009; Grizzle et al.,
2008), the virtual constraints are modified stride to stride
so that they are compatible with the initial state of the
robot at the beginning of each step. The new output for
the feedback control design is,

yc = hs

(

qs, y
s+, ẏs+

)

= Hs
0qs − hs

d (θs)− hs
c

(

θs, y
s+, ẏs+

)

.
(45)

The output consists of the previous output, (22), and an
additional correction term that depends on the previous
output evaluated at the beginning of the step, specifically,
ys+ = Hs

0q
+
s − hs

d (θ
+
s ), and ẏs+ = Hs

0q̇
+
s − ∂hd(θs)

∂θs
θ̇+s .

The values ofys+, and ẏs+ are determined at the
beginning of each step and held constant throughout the
step. The functionhs

c is taken here as

hs
c (θs) =









0
hc
LAsw

(θs)
hc
mLSsw

(θs)
hc
Tor (θs)









, (46)

with eachhc
v (θs), v ∈ V\{mLSst} taken to be twice

continuously differentiable functions ofθs such that,














hc
v (θs, y

s+, ẏs+) = ys+

∂hc
v

∂θs
(θ+s ) = ẏs+

θ̇
+
s

hc
v (θs, y

s+, ẏs+) = 0,
θ+
s +θmc+

v

2 ≤ θs ≤ θmc−
v

.

(47)
With hc

v designed this way, the initial errors of the output
and its derivative are smoothly joined to the original
virtual constraint at the middle of the first phase of
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the corresponding virtual constraint. By the choice of
θmc−
LAsw

, θmc−
mLSsw

and θmc−
Tor (defined in Section III-A), the

joining of the swing leg virtual constraints occurs at the
middle of the step, while the joining for the torso virtual
constraint occurs earlier, at the middle of the combined
phasesmcscsi. This is illustrated in Figure 3 with thick
dashed lines.

As noted in the definition ofhs
c in (46), we have

selectedhc
mLSst

≡ 0 since themc phase is too short
to handle significant transients without large actuator
torques, and further we want to enforce the virtual
constraint in thesc phase to be constant in order to effec-
tively use the compliance. To overcome this, we propose
an event-based control action specific for themLSst
virtual constraint that updatesαmc

mLSst
, αsc

mLSst
, αsi

mLSst
at

the beginning of each step such that during themc phase,
the virtual constraint only drives the motor leg shape
velocity to zero, and during thesc phase, the virtual
constraint keeps the motor shaft locked at a constant
position. Not until thesi phase does the modified virtual
constraint smoothly join the nominal virtual constraint.
This correction term is also illustrated in Figure 3 with
thick dashed lines.

Under the new control law defined by (45), the be-
havior of the robot is completely defined by the event
transition maps and the swing phase zero dynamics,
with hs

d replaced byhs
d + hs

c. The stability of the
fixed-point x∗ can now be tested numerically using a
restricted Poincaré mapρ : S ∩ Z → S ∩ Z where
Z = {xs ∈ TQs | yc (qs) = 0, ẏc (qs) = 0}, the
switching surface is taken to be the switching surface
at thesi → sd event transition, i.e.,S = Ssi→sd, and

ρ (xs) = φ (TI ◦∆si→sd (xs) ,∆si→sd (xs)) , (48)

where,φ (t, x0) denotes the maximal solution of (12),
with initial condition x0 at time t0 = 0 and u as
defined in (42). Hybrid invariance is achieved because
the transition map for these events,∆si→sd is the identity
map, and∆si→sd (Ssi→sd ∩ Z) ⊂ Ssi→sd ∩ Z.

Using the restricted Poincaré return map (48), we can
numerically calculate the eigenvalues of its linearization
about the fixed-point. For the gait obtained by optimizing
(39), we obtain the eigenvalues

eig

(

∂ρ (xs)

∂xs

)

=







0.7258

2.6380e− 5

−1.8001e− 6






. (49)

From (Morris and Grizzle, 2009, Cor. 2), the feedback
(42) and (45) renders the periodic orbit of the closed-
loop system exponentially stable forǫ in (42) sufficiently
small, andKP , KD such thatλ2 +KDλ +KP = 0 is
Hurwitz.

The orbit obtained from optimizing (40) is also expo-
nentially stable, with a dominant eigenvalue0.7065.

V. EXPERIMENTS

This section documents experimental implementations
of the controllers of Section IV in various walking

scenarios. Figure 10 depicts the experimental setup. To
illustrate the power and limitations of the proposed
methods, five experiments are presented. First, the ro-
bustness and efficiency of walking motions, resulting
from enforcing the virtual constraints of Section III
through a feedforward plus PD controller developed in
Section IV-A, is evaluated. Then, to achieve fast walking
motions, the full compliant HZD controller developed in
Section IV-B is implemented.

For each experiment, the controller was first coded in
C++ and evaluated on a detailed simulation model of the
robot that included encoder quantization and numerical
estimation of velocity variables from encoder measure-
ments. The controller was tested under various model
perturbations, such as errors in the torso mass, spring
stiffness, torso center of mass position, and deviations
in initial conditions. These simulations are not discussed
here for the sake of brevity. The simulation model was
then replaced with the physical robot. The experimental
protocol is identical to the one used in (Westervelt et al.,
2004, Sect. 4). The experiments varied in duration from
78 steps to 265 steps, and were ended in each case by the
experimenter stopping the robot and killing the power.

The results of the experiments are presented in Figures
11-19. In order to facilitate comparisons, Figures 11-13
assemble results from Exp. 1, 4 and 5; the remaining
figures pertain to individual experiments. In the experi-
ments, the left leg refers to the inner leg, which is closer
to the center boom, and the right leg refers to the outer
leg, which is farther from the center boom. All walking
speeds are measured with respect to the center point of
the hip between the two legs. Videos of the experiments
are available on YouTube (Grizzle, 2010a).

Fig. 10. Experimental setup of the bipedal testbed MABEL.
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A. Exp. 1: Nominal Walking at a Fixed Speed

This experiment approximately implements the virtual
constraints depicted in Figure 5 with the feedforward
plus PD controller given in (43). It was noticed in early
experiments that the transition from thesc phase to the
si phase given by (37) did not always occur. The spring
was not decompressing to the5◦ trigger point, and was
probably due to the initial few steps being far away
from the nominal orbit, and also because of inability
of the controller to accurately track the stance motor
leg shape virtual constraint. To ensure that the transition
from thesc phase to thesi phase always occurred in the
experiments, the switching surface for this transition is
modified to have a guard around the nominal value of
θ−sc, such that the transition is guaranteed to occur for
θs ∈ (θ−sc − γ, θ−sc + γ], with γ being a small positive
quantity. The modified switching surface is

Sexp
sc→si := (Ssc→si ∩ {xs ∈ TQs | θs ∈

(θ−sc − γ, θ−sc + γ]
})

∪
{

xs ∈ TQs | θs = θ−sc + γ
}

(50)

This controller led to successful walking, as illustrated
in Figures 11 through 15. The evolution of the desired
and achieved virtual constraints is depicted for the swing
leg variables in Figure 11(a) and for the torso and stance
leg motor positions in Figure 12(a). The nominal track-
ing in the swing leg is very good, whereas considerable
errors occur in the torso and stance leg motor position.
This is consistent with the fact that the swing leg is
unloaded and lightweight, and hence much easier to
control. The torques are given in Figure 13(a).

Figure 14 depicts the evolution of the torso angle
and the evolution ofBspring for the left and right legs
in stance, respectively, over 52 of the 78 steps in the
experiment. Each of these is compared to the nominal
fixed point. There is a pronounced asymmetry in the
robot, as was noted in (Grizzle et al., 2009). This
asymmetry is due to the boom radius not being large
enough and is currently not included as part of the model.
It is also evident that the experimental gait is faster than
the designed value: the nominal fixed point is0.8 m/s,
whereas the average experimental speed is approximately
1.0 m/s. One possible reason for the speed discrepancy
is the impact model; see (Westervelt et al., 2004, p. 569).
This is discussed in Section VI. Another possible reason
is the large errors in tracking the virtual constraints. As
will be seen, controllers in subsequent experiments will
reduce these errors and the walking speed will be closer
to that of the fixed point.

Finally, Figure 15 illustrates the evolution of the
Bspring-pulley for the stance and swing legs. Notice that
the sc → si transition does not occur at five degrees as
on the nominal orbit, and that in the swing phase,Bspring

is not fixed at zero as assumed in the model.
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Fig. 11. Tracking for the swing-leg virtual constraints for(a) PD +
Feedforward controller in Exp. 1, and (b) Decentralized zero dynamics
controller in Exp. 5. The tracking for PD + Feedforward controller
is quite good, whereas the tracking for decentralized zero dynamics
controller is worse right after impact and recovers quite well near
impact.

B. Exp. 2: Demonstration of Robustness to Perturbations

To test the robustness of the controller used in Exp. 1,
external, short duration forces are applied at the hip
at various instants of time. The results are depicted
in Figure 16. Initially, the robot is pushed forward by
the experimenter, causing the robot to speed up by
roughly45%. During the subsequent ten steps, the speed
slowly converges back to the nominal. Next, a retarding
force is applied, causing the robot to slow down by
roughly45%. Over the next three steps, the robot’s speed
has essentially returned to the unperturbed value. This
experiment demonstrates the robustness of the robot in
closed loop with the feedback controller given by (43)
to external disturbances and illustrates an asymmetry in
the rejection of the speed perturbation. A simulation of
the model was carried out to estimate the force applied.
A constant force over the second half of the gait was
assumed to be applied at the end of the boom. In order to
achieve similar speed gains and speed drops, the required
force from simulation is around78 N in the forward
direction, and around71 N in the reverse direction,
respectively.

When the robot is pushed forward (external energy
is injected into the system), the speed of the robot
increases, and the robot takes a large number of steps
to recover. One would expect that, due to the increased
speed, larger amounts of energy would be dissipated
at impacts after the forward push perturbation. This
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Fig. 12. Tracking for the stance-leg virtual constraints for (a) PD
+ Feedforward controller in Exp. 1, (b) Compliant zero dynamics
controller in Exp. 4, and (c) Decentralized zero dynamics controller in
Exp. 5. The PD + Feedforward controller produces significanttracking
errors. The tracking fidelity is much improved using the compliant
zero dynamics controller. However, there are significant oscillations
in tracking the motor leg shape, corresponding to a peak variation
of approximately 1.3◦ in qLS. The decentralized zero dynamics
controller improves the tracking even further, with the oscillations
nearly eliminated.

would cause the robot to converge to its nominal motion
faster. However, this is not the case in the experiment,
indicating that the energy loss at impact is fairly small.
Thus a large number of steps are needed to dissipate
the extra energy injected into the system by the push.
This is also what we see in simulation in Section VI-B.
This indicates that the compliance plays an important
role in the impacts. For pushes in the opposite direction,
additional energy is quickly injected into the system by
the actuators.

C. Exp. 3: Efficient Walking

The fixed point obtained by optimizing for the specific
energetic cost of mechanical transport (40) is imple-
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Fig. 13. Motor torques for (a) PD + Feedforward controller in
Exp. 1, (b) Compliant zero dynamics controller in Exp. 4, and (c)
Decentralized zero dynamics controller in Exp. 5. The torques for
the PD + Feedforward controller are noisy, but are comparablein
magnitude to the nominal predicted values presented in Figure7. The
torques for the compliant zero dynamics controller appear more‘noisy’
and experience significant saturation (saturation limits were set to6
Nm on leg angle motors and10 Nm on leg-shape motors). For the
decentralized zero dynamics controller, the leg angle motor torques are
far less ‘noisy’ than those for the compliant zero dynamics controller,
while the leg shape motor torques are still a little ‘noisy’, but still much
reduced when compared to the compliant zero dynamics controller.

mented experimentally using the feedforward plus PD
controller (43). The designed fixed point has a cost of
cmt = 0.0385 and nominal walking speed of0.8 m/s.

Figure 17 depicts the power plots for the inside and
outside legs obtained by averaging the experimental data
over 77 steps. The realized energetic cost of mechanical
transport iscmt = 0.143. For comparison purposes,
Figure 18 shows the power plot for the hand-tuned
virtual constraints reported in (Grizzle et al., 2009). It

3This is around10% lower than the realized energetic cost of
mechanical transport for Exp. 1, which wascmt = 0.15. The
designed values of the energetic cost of mechanical transport for the
corresponding fixed points also differ by the same amount.
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right legs in stance for Exp. 1 and the evolution of the torso,over
52 steps, and compares them with the corresponding values forthe
nominal fixed point. The step times for the left and right legs vary,
with the robot walking faster when the right (i.e., inside) leg is stance,
and both step times are shorter than the fixed point. This is evident
when we compare the average walking speed in the experiment,1.0
m/s, with the designed fixed point walking speed of0.8 m/s. Possible
reasons for this discrepancy are discussed in the text. Nextnotice in the
qBsp plot, right after impact, in the experiments the spring compresses
more slowly than in the fixed point. This is possibly due to a non-
instantaneous double support phase in the experiments.
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Fig. 15. Stance and swingBspring evolution for nominal experiment.
The asterisks indicate the locations of the transitions from subphasesc
to subphasesi. This transition occurs before theqBsp = 5◦ event due
to the presence of the additional guards in the experiments, (50). It is
also seen that the swingBspring angle is not at0◦ as assumed in the
model. This deviation is significant right after impact, but appears to
quickly die out to a small value for the remaining part of the gait.

is clear that the new control design makes more efficient
use of the compliance available in the open-loop plant
than the controllers previously designed.

The experimentally realizedcmt is approximately
three times the designed value. This is discussed in
Section VI-C.

D. Exp. 4: Compliant Zero Dynamics Controller

This section focuses on achieving greater fidelity in
the tracking of the virtual constraints.

Background: An important goal of MABEL is run-
ning. As an intermediate goal, we have started looking at
fast walking. We consequently designed new fixed points
using the methods of Sections III and III-D, for walking
at 1.0 and 1.2 m/s, and implemented them using the
controller structure of (43). Experiments were unsuccess-
ful, even when the transition controller of (Westervelt
et al., 2007, Chap. 7) was added. The experimental data
showed poor tracking of the torso and stance motor leg
shape virtual constraints and led us to conclude that more
precise control was needed in order to achieve these
higher speeds.
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Fig. 16. Speed at each step for Exp. 2. An external disturbance in the
form of a forward push is applied on step 9 (thick line), and the speed
of the subsequent ten steps is faster than the nominal. An external
disturbance in the form of a backward push is applied on step 32
(thick line), and the speed of the subsequent three steps is slower than
the nominal. In both cases nominal speed is recovered. Interestingly,
it takes more steps for the robot to lose energy and slow down rather
than for the robot to gain energy and speed up. This indicatesthat very
little energy is lost at impact.
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Fig. 17. Power plot of Exp. 3 implementing a fixed point obtainedby
optimizing forcmt (40). The plots are obtained by averaging the power
over 77 steps (39 steps with the left leg as stance and38 steps with
the right as stance). The vertical lines indicate mean phase transition
instants. Most of the negative work is done by the compliance instead
of the actuator.

We thus stepped away momentarily from the problem
of fast walking and concentrated on achieving a higher
fidelity implementation of the virtual constraints. We
decided to use the full I/O linearizing controller (42),
with correction polynomials as in (45). Although zero
dynamics based controllers are great in theory, all experi-
mental implementations to date had been with simple PD
controllers (Westervelt et al., 2004; Morris et al., 2006).
Zero dynamics controllers are often criticized for being
overly dependent on the model being accurate, and for
being too complex to implement in real time.

Results: We report, for the first time, an experimen-
tal implementation4 of the full compliant hybrid zero
dynamics controller to successfully achieve walking on

4To enable computing all terms of the zero dynamics based con-
troller within a1ms sample time, an extremely efficient matrix library
based on C++ expression templates (Veldhuizen, 1995; Alexandrescu,
2001) was used.
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Fig. 18. Power plot for the hand-tuned virtual constraints experiment
reported in (Grizzle et al., 2009). The plots are obtained byaveraging
the power over32 steps. Immediately after impact and during the first
10% of the gait, we can see the motor actually fights the spring. In
the rest of the gait, the motors do almost all the work.

MABEL. The virtual constraints of Exp. 1 are used
here. The tracking accuracy obtained is far better than
the feedforward plus PD controller used previously. The
compliant zero dynamics controller, (32), (42), with the
correction terms, (45), and with the modified event tran-
sition surface, (50), is deployed. The output coordinates
are normalized to approximately the same magnitude
for better conditioning of the decoupling matrix. Unlike
in Section V-A, u∗ is computed from the dynamics
directly and is not approximated. (Recall that in Section
IV-A, u∗ was regressed againstθs to obtain a B́ezier
polynomialu∗ (θs, βs). This approximatedu∗ along the
periodic orbit as a function ofθs but provides no velocity
correction.)

The tracking of the swing virtual constraints is at least
as good as that obtained in Figure 11(a) with the PD
controller and is not shown. Figures 12(a) and 12(b)
compare the tracking ofqTor andqmLSst

under the effect
of the PD and the compliant zero dynamics controllers,
respectively. The tracking is greatly improved, where the
error onqTor reduced from a peak of3.1◦ to 2.4◦, with a
reduction in root mean square error (RMSE) from1.44◦

to 0.89◦. Similarly, the error onqmLSst
reduced from a

peak of59.1◦ to 39.5◦, with a reduction in RMSE from
29.82◦ to 0.28◦ (when scaled by a gear ratio of31.42,
this translates to a reduction in error forqLSst

from a
peak of1.9◦ to 1.3◦, with a reduction in RMSE from
0.95◦ to 0.009◦.)

Figure 19 illustrates the stance and swingBspring

values over a few steps. Notice that thesc → si transition
occurs more closely to the designed value. Figure 13(b)
depicts the control torques at the actuators. These are
noisier than with the PD control torques. This issue will
be resolved in the next section.

The average walking speed for this experiment is
0.9 m/s. This is closer to the designed walking speed
than in Exp. 1. The reduction in errors in the virtual
constraint improves the correlation between the desired
and realized walking speeds.
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Fig. 19. Bspring evolution for the compliant zero dynamics controller
in Exp. 4. The asterisks indicate location of transition from the
stance-compression (sc) to the stance-decompression (sd) phase. The
transitions appear to be closer to the nominal value ofqBsp = 5◦

when compared to the PD controller, Figure 15.

E. Exp. 5: Fast Walking

We return to the problem of achieving fast walking. A
decentralizedzero dynamics controller is implemented
using the virtual constraints of Exp. 1. This is simply
the zero dynamics controller as implemented in Exp. 4,
with the off-diagonal elements of the decoupling matrix,
LgsLfsh, set to zero. This was observed to reduce the
‘cross-talk’ in the control signal due to errors in one
output being transferred to another. Figures 11(b) and
12(c) illustrate the virtual constraint tracking achieved
with the decentralized zero dynamics controller. Figure
13 compares the torques obtained under the effect of the
presented controllers. The torques for the decentralized
zero dynamics controller are less noisy when compared
to the torques for the compliant zero dynamics controller.

With this controller, MABEL started walking at
around1.15 m/s. The torso was gradually leaned forward
to increase the speed. A top walking speed of1.52 m/s
was achieved with a sustained walking speed of1.5
m/s (3.4 mph.) This made MABEL “the fastest walking
biped of any size” in the world on October 31, 2009, and
the record was held until April 22, 2010, when PETMAN
reclaimed the speed record with a1.97 m/s walking gait;
the video was posted to YouTube (Grizzle, 2010a).

Section VI-D compares the walking speed of several
bipedal robots.

VI. D ISCUSSION OF THEEXPERIMENTS

This section discusses various aspects of the robot and
the feedback controllers revealed by the experiments.

A. Asymmetry

The model used in the feedback designs has assumed
a planar robot; in particular, this is predicated on the
robot’s dynamics being identical when the left leg is in
stance or the right leg is in stance. The data shows clearly
that this is false. The robot itself is nearly symmetric.
The asymmetry arises from the boom used to constrain
the robot to the sagittal plane. The facility housing the
robot only permits a boom of length2.25 m from the
center of the floor to the center of the robot. The width of
MABEL’s hips is 0.24 m, which is approximately10%
of the boom. For comparison, RABBIT has a boom of
length 1.7 m, with a hip width of 0.074 m, which is
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approximately4% of the boom. The robot plus boom
may need to be modeled as a 3D system.

It was noted that the experimental walking speed for
Exp. 1 in Section V-A was1.0 m/s. The average speed
with the left (inner) leg as stance is0.98 m/s while the
average speed with the right (outer) leg as stance is1.02
m/s. The ratio of left and right stance speeds is nearly
equal to the ratio of distance of left and right legs to the
center column.

B. Impact Model

For legged robots, the accuracy of the model of
the leg end (foot) impact with the walking surface is
difficult to ascertain and to improve. The vast majority
of researchers adopt an instantaneous double support
model, and use (Hurmuzlu and Marghitu, 1994) to
build the corresponding mathematical model. Several re-
searchers have used or proposed compliant ground mod-
els (Westervelt et al., 2007, p. 278), (Plestan et al., 2003;
Canudas de Wit et al., 1995; Freeman and Orin, 1991;
Bruneau and Ouezdou, 1997, 1999; Pascal, 1994; Wei
et al., 1994, 1993), (Roussel, 1998, Chap. 5) yielding a
double support phase of nonzero duration. Results exist
in the literature in which rigid impact models have also
been used to obtain non-trivial double support phases
(Miossec and Aoustin, 2005; Roussel et al., 1998). While
the compliant models seem more physically realistic, the
uncertainty present in the parameters of such models
does not necessarily yield a more accurate result, and it
certainly does add considerable complexity to the model
via numerical stiffness and / or non-Lipschitz continuous
dynamics.

The bottom line is that when comparing theoretical
predictions to experiments, the impact model should be
considered as one possible source of error. In all of
the experiments reported here, the robot walked faster
than predicted by the dynamic model. The reference
(Westervelt et al., 2004, Fig. 9) suggested that this could
be accounted for by scaling the post-impact velocity
predicted by (19). The scaling is performed here in
such a way that the post-impact velocity still respects
the constraints (16), (17), (18). The impact scaling is
achieved by replacinġq+e with ηq̇+e in these constraints,
whereη is an impact scaling factor. Table I shows various
steady-state walking speeds for different values of the
impact scaling factor. It is notable that for the simulation
to match the experimental walking speed, we require
η = 0.966, a change of less than4% to the impact map.
Figure 20 compares the nominal walking experiment
with a simulation with this impact scaling factor.

C. Exp. 3: Efficient Walking

As mentioned in Section V-C, the experimentally
realizedcmt is approximately three times the designed
value.

One may suppose that this discrepancy is due to the
existence of non-negligible motion of the motor shaft

TABLE I
EFFECT OFIMPACT MAP SCALING ON WALKING SPEED.

Impact map scaling factor η Steady-state walking speed
1.0 0.80 m/s
0.99 0.86 m/s
0.98 0.92 m/s
0.97 0.98 m/s
0.966 1.00 m/s
0.96 1.04 m/s
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Fig. 20. This figure shows the plots of theBspring and the Torso
separately for the left and right legs as stance for Exp. 1 andcompares
with a simulation of the nominal fixed point with an impact scaling
factor,η = 0.966.

during the sc and sd phases, a consequence of the
inability of the actuator to function as an ideal brake.
However, this is not the case. Detailed examination
of the mechanical work performed in thesc and sd
phases reveals that the stance motor leg-shape already
does little work in the experiment. Introducing a brake
in the experimental setup would then have little effect
in improving thecmt value. After several simulations,
perturbing different parts of the model, such as in-
creasing friction and introducing cable stretch, we have
observed that both friction and cable stretch contribute
significantly to increase the specific cost of mechanical
transport.

Table II illustrates the (mechanical) energy efficiency
of several bipedal robots, and is sorted bycmt. Although
the experimentally obtainedcmt value for MABEL is
not as good as the designed value, it is 12 times better
than that of Honda’s ASIMO, over2.75 times better
than RABBIT and twice better than the hand-tuned
virtual constraints based controller on MABEL. This
puts MABEL’s energy efficiency within a factor of two
of T.U. Delft’s Denise and a factor of three of the Cornell
Biped, none of which can step over obstacles or run; it is
also within a factor of two of the MIT Spring Flamingo
which can easily step over obstacles but cannot run, and
within a factor of three of humans, who can do all of
the above..

D. Exp. 5: Fast Walking

In order to compare MABEL’s walking performance
with other bipedal robot designs and control methods,
Table III lists robot parameters, peak walking speed,
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TABLE II
EFFICIENCY NUMBERS FOR VARIOUS BIPEDAL ROBOTS AND

VARIOUS CONTROLLERS ONMABEL.

Robot cmt

Honda’s ASIMO* 1.60
RABBIT (Westervelt, 2003, Sec. 6.5.1) 0.38
MABEL - Hand designed VC (Grizzle et al., 2009) 0.29
MABEL - 0.8 m/s FP, HZD Ctrl (Exp. 4) 0.18
MABEL - 0.8 m/s FP (Exp. 1) 0.15
MABEL - cmt = 0.0385 FP (Exp. 3) 0.14
T.U. Delft’s Denise* (Collins and Ruina, 2005) 0.08
MIT’s Spring Flamingo (Collins and Ruina, 2005) 0.07
Cornell Biped* (Collins et al., 2005) 0.055
McGeer’s Dynamite (Collins and Ruina, 2005) 0.04

*3D, autonomous and untethered.

and the dimensionless velocity5. The table is sorted
by peak speed. Of note is the bipedal robot RunBot
(Manoonpong et al., 2007; Geng et al., 2006), which is
the fastest walker measured by dimensionless velocity
and leg lengths per second. MABEL was the fastest
walker in terms of absolute speed from October 31, 2009
until April 22, 2010, when PETMAN took the record.

Notice that MABEL and it’s predecessor, RABBIT,
are the only ones in this list without ankles and feet.
It has been suggested in (Lee and Piazza, 2009) that
ankles and even toes, in humans, are very useful to
provide a push-off to increase speed. The effect of push-
off in bipedal robots is studied in (Kuo, 2002) and is
established as an energy efficient way to increase speed.

E. Cable Stretch

The differentials in MABEL’s drivetrain, c.f. Figure 2,
are realized by a series of cables and pulleys. The reader
is referred to (Hurst, 2008; Park et al., 2010) for details.
The robot was designed under the assumption that the
cables undergo zero deformation, and this assumption
has been used in developing the dynamic model of the
robot that we used for control design. In the experiments,
it has been observed that there is significant cable
stretch. A representative plot of the cable stretch in the
leg angle is shown in Figure 21, where the variable
qLA + qmLA/23.53 is plotted in degrees. If the cables
were rigid, this variable would be identically zero6.

F. Zeroing the Virtual Constraints

The theorems supporting the method of virtual con-
straints are easier to prove when an input-output lineariz-
ing controller such as (42) is used (Morris and Grizzle,
2009; Westervelt et al., 2007; Poulakakis and Grizzle,
2009b). In practice, the benefits are achieved by any
controller that realizes the constraintsh (qs) = Hs

0qs −
hd (θs) with “sufficient accuracy”. This can be formal-
ized using high-gain feedback via singular perturbations
(Viola, 2008). On RABBIT the actuators were connected

5The dimensionless velocity serves as a speed metric and is defined
as the square root of the Froude number, with the Froude number being
the ratio of the centrifugal force due to motion about the footand the
weight of the robot (Vaughan and O’Malley, 2005).

6Encoders are present to directly measure bothqLA andqmLA.
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right (outer) leg over two consecutive swing and stance phases for the
fast walking experiment, Exp. 5. Negative cable stretch values are not
to be interpreted as cable compression. Cable differentialsrequire two
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to the robot’s linkage through50 : 1 gear ratios, and it
turned out that a high-gain PD implementation resulted
in sufficiently accurate realization of the virtual con-
straints. However, on MABEL, this simple controller was
inadequate for fast gaits, motivating the implementation
of an input-output linearizing controller. We believe
that three things limited our ability to increase the PD
gains in (43) sufficiently high to realize the constraints:
lower gear ratios in the drivetrain7; encoder ‘noise’ when
estimating derivatives; and the additional compliance
arising from the cable stretch discussed above.

VII. C ONCLUSION

MABEL contains springs in its drivetrain for the
purposes of enhancing energy efficiency and agility of
dynamic locomotion. This paper has presented a novel
analytical design method to realize the potential of the
springs. An extensive set of experiments was performed
to illustrate and confirm important aspects of the feed-
back design.

A HZD-based controller was designed to achieve
asymptotically stable walking while recruiting the com-
pliance in the robot’s drivetrain to perform most of
the negative work required to decelerate the downward
motion of the robot’s center of mass after impact, instead
of the actuators. This not only improved the energy
efficiency of walking, but also made the gait more
natural looking. Stability analysis of the walking gait
was performed using the method of Poincaré.

The analytically derived control law was experimen-
tally validated on MABEL. The controller was demon-
strated to be robust to external disturbances as well as
to significant differences between the design model and
the actual robot. In particular, the cables used to realize
the differentials in the robot’s drivertrain exhibited con-
siderable stretch in the experiments, none of which was
considered in the design model. Due to the observations
made as part of these experiments, a more accurate
model incorporating cable stretch has been presented in
(Park et al., 2010).

7MABEL has a gear ratio of23.53 : 1 and31.42 : 1 for leg angle
and leg-shape coordinates respectively. For comparision, RABBIT has
a gear ratio of50 : 1 at both the knees and hips.
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TABLE III
TOP WALKING SPEEDS OF BIPEDAL ROBOTS; THIS TABLE IS MOTIVATED BY (MANOONPONG ET AL., 2007, FIGURE 1).

RunBot RABBIT Spring Flamingo MABEL PETMAN Olympic Record
Mass (Kg) 0.53 32.00 14.20 65.00 - ≈ 70.00
Leg Length (m) 0.23 0.80 0.90 1.00 - 0.9 ≈ 1.15
Peak Speed (m/s) 0.80 1.20 1.25 1.50 1.97 4.60
Dimensionless Velocity 0.53 0.43 0.42 0.48 - 1.4 ≈ 1.5

A walking gait was designed to optimize for the
energetic cost of mechanical transportcmt and then
experimentally evaluated on MABEL. Even though MA-
BEL has no feet, the experimentally realizedcmt is 12
times better than that of ASIMO, approximately thrice as
good as RABBIT, and twice as good as a hand-designed
virtual-constraint-based controller that we had previously
implemented on MABEL. This puts MABEL’s energy
efficiency within a factor of two of T.U. Delft’s Denise,
and a factor of three of the Cornell Biped, which are
specifically designed mechanically for efficient walking.
This demonstrates the interplay of mechanical design and
control design in achieving higher efficiency.

For the first time, a real-time implementation of a
complete hybrid zero dynamics based controller has been
demonstrated in experiments. The tracking accuracy at-
tained is far better than that of simple PD controllers
used in prior experiments on RABBIT and MABEL.
This removed the restriction of hybrid zero dynamics
to theory or simulation, and establishes hybrid zero
dynamics based controllers in the experimental domain.

A controller was implemented on MABEL that real-
ized a sustained walking speed of1.5 m/s (3.4 mph).
This made MABEL “the fastest robotic bipedal walker
of any size” as of October 31, 2009, and the record was
held until April 22, 2010.

This work has experimentally demonstrated a novel
control design that preserves natural dynamics and has
established MABEL as a successful stable, efficient
and fast walker. This sets a very important preliminary
stage for running on flat ground and for walking on
uneven ground. Future research will be directed towards
obtaining analytical and experimental results in these
areas.
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APPENDIX A
BÉZIER POLYNOMIALS FOR SUBPHASES

This section develops a framework for virtual con-
straints with subphases and provides details on how
the B́ezier polynomials for the stance subphases are
obtained.

A. Framework for Virtual Constraints with Subphases

Let P be an index set representing the subphases of
the virtual constraints, and letp ∈ P denote a particular
subphase. Similarly, letV be an index set representing
the virtual constraints, and letv ∈ V denote a particular
virtual constraint. In each subphase, the virtual constraint
will be anM th order B́ezier polynomial parametrized by
θs, where,θp+v , θp−v are the starting and ending values
of θs respectively within phasep of virtual constraintv.
It is convenient to normalize eachθs to [0, 1] by defining

spv :=
θs − θp+v
θp−v − θp+v

, (51)

where θs goes fromθp+v to θp−v during phasep ∈ P.
Then, ifαp

v is the vector of B́ezier coefficients, then the
desired evolution of the virtual constraintv for phasep
can be expressed as

hd,p
v (θs) =

M
∑

k=0

αp
v (k)

M !

k! (M − k)!
spv

k (1− spv)
M−k

.

(52)
To ensureCk continuity between successive subphases

p1, p2 ∈ P, a standard property of B́ezier curves spec-
ifies how the lastk + 1 parameters ofαp1

v and the
first k+1 parameters ofαp2

v must be related (Westervelt
et al., 2007, p. 139). Next, it can be convenient to
treat successive subphasesp1, p2, defined over domains
[θp1+

v , θp1−
v ], [θp2+

v , θp2−
v ] respectively, as a single com-

bined phasep1p2 with domain [θp1+
v , θp2−

v ]. This is
particularly useful for virtual constraints that do not

require the resolution of multiple subphases and enables
parameterizing with a single B́ezier polynomial over
both subphases. To do this, we imposeθp1−

v = θp2−
v ,

θp2+
v = θp1+

v , andαp1
v = αp2

v =: αp1p2
v in our general

framework for virtual constraints with subphases. Thus
we obtain sp1p2

v |p1
= sp1

v and sp1p2
v |p2

= sp2
v , with

sp1p2
v monotonically increasing from zero to one over

both phasesp1, p2. With this setup, the transition event
from subphasep1 to p2 no longer has any effect on the
combined phasep1p2. This phase combination can be
extended to more than two phases, and in fact all of
the phases of a controlled variable can be combined,
resulting in a single virtual constraint over the entire
stance phase with no subphases.

B. Stance Motor Leg-shape Virtual Constraint

In the motor-compresssion phase, the motor leg-
shape position is given by a Bézier polynomial
parametrized by smc

mLSst
, with coefficients αmc

mLSst

and θmc+
mLSst

= θs+, θmc−
mLSst

= θmc−. The bound-
ary conditions

(

qmc+
mLSst

= qs+mLSst
, q̇mc+

mLSst
= q̇s+mLSst

)

, and
(

qmc−
mLSst

= qsc
mLSst

, q̇mc−
mLSst

= 0
)

specify the starting and
the ending two coefficients, and the middle coefficients
are free to be chosen as part of the control design ,and
are chosen to smoothly transition betweenqs+mLSst

and
qsc
mLSst

.
In the stance-compression phase, the motor leg-shape

position is given by a B́ezier polynomial parametrized
by ssc

mLSst
, with coefficientsαsc

mLSst
all equal toqsc

mLSst
,

andθsc+
mLSst

= θs+, θsc−
mLSst

= θsc−.
In the stance-injection phase, the motor leg-

shape position is given by a Bézier polynomial
parametrized by, ssi

mLSst
, with coefficients αsi

mLSst

and θsi+
mLSst

= θsi+, θsi−
mLSst

= θsi−. The
boundary conditions

(

qsi+
mLSst

= qsc
mLSst

, q̇si+
mLSst

= 0
)

,
(

qsi−
mLSst

= qsc−
mLSst

, q̇si−
mLSst

= 0
)

specify the starting and
ending two parameters ofαsi

mLSst
with the rest being

free parameters to be chosen as part of control design.
In the stance-decompression phase, the motor leg-

shape position is given by a Bézier polynomial
parametrized byssd

mLSst
, with coefficientsαsd

mLSst
all

equal toqsc−
mLSst

, andθsd+
mLSst

= θsd+, θsd−
mLSst

= θs−.
Thus, parameters of onlyαsi

mLSst
are available to be

chosen as part of control design. For notation purposes,
we defineαmLSst

:= αsi
mLSst

.

C. Torso Virtual Constraint

The motor-compression, stance-compression, and
stance-injection phases, are combined into a single phase
by settingθmc+

Tor = θsc+
Tor = θsi+

Tor = θs+, θmc−
Tor = θsc−

Tor =
θsi−
Tor = θsi−, and αmc

Tor = αsc
Tor = αsi

Tor =: αTor.
Thus the torso evolution in this combined phase is
given by a B́ezier polynomial parametrized bysTor, with
coefficientsαTor.

The desired torso evolution in the stance-
decompression phase is given by a Bézier polynomial
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parametrized byssd
Tor, with coefficientsαsd

Tor all equal
to qs−Tor, andθsd+

Tor = θsd+, θsd−
Tor = θs−.

D. Swing Leg Virtual Constraints

For the swing virtual constraints, all subphases are
combined into one by settingθmc+

LAsw
= θsc+

LAsw
= θsi+

LAsw
=

θsd+
LAsw

= θs+, θmc−
LAsw

= θsc−
LAsw

= θsi−
LAsw

= θsd−
LAsw

= θs−,
and αmc

LAsw
= αsc

LAsw
= αsi

LAsw
= αsd

LAsw
=: αLAsw

.
Thus the evolution of the swing leg angle is given
by a B́ezier polynomial parametrized bysLAsw

, with
coefficientsαLAsw

. In a completely similar manner, the
swing motor leg shape is parameterized byαmLSsw

.
The B́ezier coefficients that are not specified above

are free parameters in the virtual constraints, and are
specified by control design. These parameters can be put
in a vector as,

αs =









αmLSst

αLAsw

αmLSsw

αTor









. (53)

APPENDIX B
OPTIMIZATION DETAILS

Equality and inequality constraints are used during
the optimization process to ensure that the closed-
loop system yields a desired behavior. These constraints
could be limits on peak actuator torques, joint space
constraints, unilateral ground contact forces, speed of
walking, ground clearance, etc. Further, the general
form of the virtual constraints chosen in Section III-A
is assumed to be satisfied on the periodic orbit. This
enables integrating the stance zero dynamics over the
reduced-order closed-loop system dynamics (established
in Section III-C) thereby reducing the computation time
significantly. The details of the optimization algorithm
are described below.

Algorithm
1) Selectθ−∗

s , q−∗

Bspst
, q−∗

LAsw
, q−∗

mLSsw
, q−∗

Tor. Determine
q−∗

LAst
using (25). Determineq−∗

mLSst
by a Newton-

Rhapson search to satisfypv−∗

toesw = 0 as this
ensures that the impact condition,q−∗ ∈ Ss→s,
is met.

2) Select θ̇−∗
s , q̇−∗

Bspst
, q̇−∗

LAsw
, q̇−∗

mLSsw
. Choose

q̇−∗

mLSst
= 0, q̇−∗

Tor = 0 to satisfy the virtual
constraints described in section III-A. Determine
q̇−∗

LAst
using (25).

3) Using the stance-to-stance transition function,
∆s→s, obtain x+∗

s = (q+∗
s ; q̇+∗

s ), the state corre-
sponding to the beginning of the subsequent stance
phase.

4) Calculate θ+∗
s , θ̇+∗

s using (25). Set θ−∗
mc =

θ+∗
s + 0.05 (θ−∗

s − θ+∗
s ), and θ−∗

si = θ+∗
s +

0.7 (θ−∗
s − θ+∗

s ) corresponding to5% and70% of
the stance phase respectively, and setqsc∗

mLSst
=

qs+∗

mLSst
+ sgn

(

q̇s+∗

mLSst

)

max
(

20◦, |q̇s+∗

mLSst
|
)

. This
facilitates the use of the first5% of the gait to drive

TABLE IV
THE LIST OF INDEPENDENT PARAMETERS TO BE DETERMINED BY

OPTIMIZATION . THE CHOICE OF THESE PARAMETERS IS

NON-UNIQUE, AND DEPENDS ON THE ALGORITHM AND

CONSTRAINTS EMPLOYED IN OPTIMIZATION.

Optimization Parameters

θ−∗

s , q−∗

Bspst
, q−∗

LAsw
, q−∗

mLSsw
, q−∗

Tor
∈ R

θ̇−∗

s , q̇−∗

Bspst
, q̇−∗

LAsw
, q̇−∗

mLSsw
∈ R

αs∗
2 , . . . , αs∗

M−2 ∈ R4

non-zero post-impact motor leg shape velocity to
zero, and the last30% of the gait to hold the torso
constant in preparation for impact.

5) Selectα∗
s,2, . . ., α∗

s,M−2. Calculateα∗
s,0, α∗

s,1 to
satisfy the post-impact conditions, and calculate
α∗

s,M−1, α∗

s,M to satisfy the pre-impact conditions.
Set αmc∗

mLSst,2
, . . ., αmc∗

mLSst,M−2 to get a smooth
transition betweenqs+∗

mLSst
andqsc∗

mLSst
.

6) Integrate the stance dynamics for the motor-
correction phase,Σmc, and the stance-compression
phase,Σsc, until the spring undergoes maximum
compression and reaches a decompressed value of
five degrees. Set this value ofθs asθsc−

s . Integrate
the stance dynamics through the stance-injection,
Σsi, and stance-decompression,Σsd, phases to
obtainx−

s .
7) Evaluate the cost functionJ, equality constraints

EQ, inequality constraintsINEQ.
8) Iterate the above steps untilJ is minimized and the

equality and inequality constraints are satisfied.

Equality constraints, EQ
• Error associated with finding a fixed point||x−

s −
x−∗
s || = 0.

• Toe position of the swing leg at the end of the step
pvtoesw = 0.

Inequality constraints, INEQ
• Magnitude of the minimum normal force at the

stance leg to be positive,min
(

FN
st

)

> 0.
• Maximum of magnitude of coefficient of friction

less than one,|max
(

FT
st/F

N
st

)

| < 0.6.
• Walking speed greater than0.7 m/s.
• Swing leg toe profile to be above the ground

throughout the stance phase.
• Swing leg angle not to exceed220◦.
• Stance leg angle not less than140◦.
• Range of travel of torso less than5◦.


