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A LINEAR ALGEBRAIC FRAMEWORK FOR THE ANALYSIS OF
DISCRETE-TIME NONLINEAR SYSTEMS*

J. W. GRIZZLE!

Abstract. A linear algebraic framework for the analysis of synthesis-type problems for discrete-
time nonlinear systems is introduced. This is an extension of a similar tool for continuous-time
systems that established important connections between many algorithms associated with right-
invertibility, left-invertibility and dynamic decoupling, as well as between these algorithms and an
approach based upon differential algebra. A similar payoff is seen to be possible in the discrete-time
setting.
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1. Introduction. This paper extends to the class of discrete-time nonlinear sys-
tems the linear algebraic framework of [4], which has proven useful in the analysis
of several synthesis problems for the class of continuous-time nonlinear systems [1]-
(3], (13}, [16], [32]. Recall that [4], through the introduction of a chain of subspaces
naturally associated with the output of a system, provided a high-level interpretation
of the inversion and dynamic decoupling algorithms that are built around the recur-
sive computation of certain ranks associated with left-invertibility, right-invertibility,
and noninteracting control. In addition, it established relationships between these
algorithms and the differential algebraic approach. This same linear algebraic set-
ting has been used in [3] to formulate in an intrinsic way the regularity (constant
rank) conditions common to several procedures for synthesizing nonlinear dynamic
compensators.

The reader is reminded that the importance of algebraic techniques and reasoning
for analyzing many aspects of discrete-time nonlinear systems has been firmly estab-
lished in [8]-[12], [25], [28], [29], and the references therein. The techniques employed
here are most closely related to those of [10] and [28].

When studying continuous-time nonlinear systems, the class of affine systems
(so-called because the dynamics is affinely parametrized by the control variables)
has received the bulk of the attention of the nonlinear community. This is true for
several reasons, the most important of which is that the class of affine systems is
general enough to encompass many models arising in practice. However, it is also
specific enough to admit reasonably simple analyses from at least two perspectives:
geometrically, we are working with a finite number of vector fields, a drift term, and m
control vector fields, as opposed to some arbitrarily, smoothly parametrized family of
vector fields; algebraically, the various derivatives of the outputs depend polynomially
on the inputs and their derivatives (with coefficients depending on the state, and the
highest order derivative of the input appearing affinely), as opposed to some more
general nonlinear dependence on the input. However, if we acoept as an axiom that
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any interesting class of discrete-time systems should include time-sampled (digital)
versions of the class of continuous-time affine systems, then we are obliged to consider
systems of the form

zlk +1] = £ (z[k], u[k]),
ylk] = h (z{k], ulk]),

where f and h are sufficiently smooth functions, but otherwise arbitrary (consider
sampling a continuous-time bilinear system). Consequently, it is not possible to as-
sume that the dynamics is affine in the control variable (and hence, finitely para-
metrized); and even if it were, this would not entail that the iterates of the output
depend polynomially on the inputs, with the highest-order delayed input appearing
affinely. Consequently, the proof techniques of 4], based upon “global” interpreta-
tions of the inversion and dynamic extension algorithms, cannot be easily extended to
discrete-time systems; a more intrinsic, “algorithm-free” analysis will be performed.

In §2 of this paper, the linear algebraic framework of [4] is developed for analytic
discrete-time systems, thereby extending the notion of the rank of a system introduced
in (10]. This includes the definition of a chain of subspaces constructed from the
outputs of the system and their iterates and an analysis of the convergence properties
of the chain of subspaces. It is noted that when the function f describing the dynamics
is not a submersion, certain new phenomena can occur, requiring a slightly different
analysis involving a combination of geometric and algebraic reasoning. Section 3
collects a few results that are useful for establishing relations between some existing
work involving rank computations in an “algorithmic” form and the linear algebraic
setting proposed here. Section 4 relates the abstract notion of rank, introduced in §2,
to the injectivity and surjectivity properties of certain maps strongly connected with
left- and right-invertibility. Finally, §5 points out the links between the approach used
in this paper and that of [10]; §6 shows the affinity with the work of [28].

2. Rank and structure at inflnity. The notion of the rank of a nonlinear sys-
tem was introduced by Fliess in [8] and yielded fundamental results on right- and
left-invertibility and noninteracting control of continuous-time systems. Extensions
to a class of rational discrete-time systems have been given in [10], using difference
algebra in place of differential algebra. Here, using elementary vector space tech-
niques as in [4], the rank of a discrete-time system will be generalized to analytic
systems admitting a global state space representation on R". This may be a strong
assumption.

2.1. Linear algebraic framework. Consider a discrete-time system

zlk + 1) f (z[k], ulk]),
ylk] h(z{k], ulk]) ,

where z[k] € X = R", ulk] € U = R™, y[k] € Y = R", f and h are analytic functions
of their arguments, and z[0] = zo. It is convenient to let f*(z) := f(z,u) so that we
may write:

(2.1) T

z[1] = fU%(zo),
z[2] = f(z(1)) = Y o 20 (z,)

zlk] = felk=1l o ... o fulol (o),
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where o denotes composition. Then, since y[k] = h*¥(z[k]), where h*(z) := h(z, u),

ylk} = ylk] (o, u[0), .. ., u[k])

(2.2) = pulkl o pulk=1) 5. . o ful0)(z).

Because (2.1) is time-invariant,
ylk + 1] = y(k] (=[1], u{1], ..., u[k +1])
= y[k] (f (mOsu[O]) s'u'[l]t oo )u[k + ll)s

which will be important later when establishing a certain finiteness property.

Let Ry, denote the ring of real analytic functions of the components of (z, u[0], ...,
ulk]), and let ki be the associated field of fractions, that is, the field of meromorphic
functions in the variables (z,u[0],...,u[k]). A typical element of K would have the
form 7(v) = w(v)/6(v), where 7 and 6 are elements of Ry, 8 is not the zero function,

(2.3)

and v = (v,...,v;) denotes the various components of (z,u[0],...,u[k]). Recall that
8/0v; acting on 7 is formally defined by the usual quotient rule of calculus,
0 n(v) 8 0 2
(2.4) o e = (800) ) - 7)) /67,
and the formal differential of 7 is
v

(25) dn(v) := Z 2 g,

Let € denote the vector space over K := K, spanned by {dz,...,dz,, du[0],...,
du,[0), dug[n],. .., dum[n] }. Note that £ is a finite-dimensional vector space; indeed,
its dimension is n + (n + 1)m. For notational convenience, {dzy,...,dz,} will simply

be written as dz, {du,[0],...,du,[0]} as du[0], etc., so that £ = spany{dz, du[0),...,
duln]}.
Observe now, for all 0 < k < nand 1 < j < p, that dy;[k] € €, since

By,lk Oy;k
(2.6) dy; (K] = \; il ]d +ZZ ”’” du;[8).
i=1 £=0 i=1
Define a chain of subspaces & C --+ C &, of £ by [4] (see also [7])
2.7) & = spang{dz,dy[0],...,dy[k]}

and the associated list of dimensions pp < p; < --- < p, by
(2.8) pr = dimgE.

We emphasize that dy[k] denotes {dy, [k],...,dy.[k]} and that this abuse of notation
will be used quite often to keep the notation compact.
It will turn out for generically submersive systems,! that is, for systems where

(2.9) n = rankg [% (z, ©[0]) % (z, u[O])] ,

1 The mathematical importance of this assumption will be seen in the next subsection; in terms
of control systems, it means that with a feedback, the drift dynamics could be made (generically)
invertible, creating a kind of group action.
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that
(2.10) P” = pn — Pn-1

is a limiting value of the chain (2.7) in the sense that if we were to extend the chain
in the obvious manner, then p,4, = p, + rp*, for all integers » > 0. Many system
models of the form (2.1) would satisfy (2.9), since it is equivalent to f(IR", R™) having
nonempty interior in IR", and this is a necessary condition for accessibility [17]. It
is always satisfied for & time-sampled representation of a continuous-time system.
Moreover, it has just been established in [11] that, in a certain sense, rational input-
output systems admit local state space representations satisfying condition (2.9). To
avoid passing to a local representation, the following construction is used here in the
general case where (2.9) is not satisfied.

Let Kt := Kap,, and define £ := spany4 {dz, du[0),...,du[2n]}. Define a chain
of subspaces €5 C -+ C EF of £ by

(2.11) EF = spang, {dz,du0),...,du[n - 1),dy[n],...,dy[n + k}

and the associated list of dimensions pf < --- < pt by

(2.12) pi i=dim&}.
Then, even without condition (2.9), it will turn out that
(2.13) P = pr —pi_y

is a limiting value in the sense discussed earlier for p*. Whenever the system (2.1) is
generically submersive, it will be established that

(2.14) Py =pt+nm, k>0,

so that p** = p*.

Anticipating these technical results, p** is defined to be the rank [10] of the
system (2.1).

Remarks. (a) In [6], it is shown (for continuous-time systems) that the chain of
subspaces (2.7) is closely related to classical objects in algebra, namely filtrations,
and consequently, Hilbert polynomials; a similar result is true in discrete-time (7].
One of the main points of the analysis presented in this paper is the establishment
of a priori bounds on the number of steps required to compute the limiting ranks of
the filtrations whenever the system has a standard state-space representation; such
bounds are not provided by the classical results of algebra, which, on the other hand,
apply to more general situations.

(b) In analogy with [4], [22], the list of integers {oq,...,0n} defined by

(2.15) oi=pi—pi-1, 0<i<n

with the convention that p_; = n, could be called the transient structure at infinity,
while the list of integers {of,...,o}} '}, defined by

(2.16) of =pf-pf, 0<i<gn,

with the convention that p*; = n + nm could be called the persistent structure at
infinity. For generically submersive systems the two lists coincide, and we can speak
simply of the structure at infinity; this is also the case for systems satisfying certain
constant rank hypotheses in the neighborhood of an equilibrium point, as can be seen
from the results of [18], [24], including (constant-coefficient) linear systems.
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2.2. Convergence of the chain & C --- C £,. The goal of this subsection is
to justify terminating the chain (2.7) at n, the dimension of the state space of (2.1),
whenever the system is generically submersive. For a linear system, this would follow
as an easy consequence of the Cayley-Hamilton theorem; in the case of nonlinear
systems, more work is required.

Let k > 0 be any nonnegative finite integer, and recall that Ky is the field of
meromorphic functions of (z,u[0],...,u[k]). Before, when defining £, (0 < k < n),
the span was taken with respect to K ;= K,,. It is easily seen that the dimension of
&), does not change if instead the span is taken with respect to K. For k > n, define
& in the obvious way, following (2.7), taking the span with respect to .

THEOREM 2.1. Suppose that (2.1) is generically submersive. Then, for all inte-
gersk 2 n, dim&; —dim &y =dim &, —dim&,,_y; that is, pr — pr—1 = pn — Pr—1-

The proof of the theorem will be divided into several parts, each establishing a
particular property of the chain (2.7) arising from the recursive manner in which the
functions y[k| are constructed from the system. Define 6 : Kr_; — Ky by

(2'17) (577)(37, u[0]1 v )u[k]) = ﬂ(f(z,“[O]),u[I], ceey u[k]);

it is important that f be generically submersive, for otherwise, 67 may not be a
meromorphic function (see (2.20) below). This induces an IR-linear mapping? A:
spany, _ {dn|n € Kx—1} — spanyg, {dA|A € K} by

A(dn) := d(bn),

(2.18)
Aoy dny + agdng) == 6(a1)A(dm) + 6(az)A(dns)

for n,m,m2, 01,2 € Ki_;. It should be noted that (2.18) is consistent with the chain
rule for differentiation, and that, for instance,

dy;[k + 1) = d (8(y;[k]))
(2.19) = A (dy;[k])

_ x4 [ Oyslk]
—-;5( Bx,-

The following two (equivalent) properties are easily established whenever the
system (2.1) is generically submersive:

P1. For all k > 1, dimg, _, {dz[k]} = n.

P2. For all k > 0 and VY € Ry, if n # 0, then 6(n) £ 0.

As a consequence, if 7 € Ky, then §(n) is well defined. To see the peculiarities a
nonsubmersive system may exhibit, consider the example

) da;[1] + Zk:fja (%[[’;]]) du;[€ +1).

=0 i=1

zlk+1) =0,

(220) ylk] = olkJulk],

where z,y, and u are in R. The function 1/z is meromorphic, but §(1/z) is not
defined because §(z) = 0.

The main ingredients of a proof of Theorem 2.1 are now presented. In the follow-
ing, if S is a set, then |S| denotes its cardinality.

2 The fact that A is well defined follows easily from A(0) = 0.
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LEMMA 2.2. Suppose that (2.1) is generically submersive and that for some k > 0,
hchc---clyc{l,...,p} are indes sets such that £ = spany, {dz,dy;,[0],...,
dy; [klli; € I;; 0<j <k}, and dim& = n+ |Ip| + ... + [Ix=1| + |Ix|. Then,
dimspany, {dz, dy;,[0], ..., dyi, (k] dyi [k +1)li; € I;, 0<j <k} =n+ || +... +
|Ix—1| + 2|/Ix|. In other words, once an output component becomes independent, it
remains independent.

Proof. For the proof, see Appendix A. 0

It immediately follows from the above that there exists a basis of a special form
for the chain &g C & C ---.

LEMMA 2.3. Suppose that (2.1) is generically submersive. Then, there exist indez
sets I C Iy C --- C {1,...,p} such that, for all k > 1, {dz,dy;,[0],...,dy:, [K]|¢; €
I;, 0 < j <k} is a basis for &.

Lemma 2.3 establishes that {ox} = {pr—pr—1} is a nondecreasing sequence. Since
ox < min{m, p}, it follows that {0} converges in a finite number of steps. However,
this does not allow us to terminate the calculations at the nth step unless the upper
bound has already been attained. Considering once again (2.20), we calculate that
(o0) = 1, but (1) = 0; that is, the sequence {o}} of “zeros at infinity of order less
than or equal to &” is not nondecreasing, as is always the case for linear systems and
continuous-time nonlinear systems.

LEMMA 2.4. Suppose that (2.1) is generically submersive, and let Iy, ..., I, be as
in Lemma 2.3. Then, for each 1 < j < p, there exists an integer N, 1 < N < n, such
that

(221)
dy;[N] € span, {dy;[0],...,dy;[N — 1],dy;,[0),...,dyiy [N]|ik € Iy, 0< k< N}

Proof. For the proof, see Appendix A. 0

The previous and the following lemmas combine to replace the Cayley-Hamilton
theorem, which, in the case of a linear system, proves that the chain (2.7) converges
in at most n steps.

LEMMA 2.5. Suppose that (2.1) is generically submersive, and let Iy, ..., I, be as
in Lemma 2.3. Suppose that 1 < j < p, and let N be as in Lemma 2.4. Then, for all
k>N,

dy.‘i [k] € Spanlc., {dyj [0]’ sy dyj [N - 1]7 dyl'o [0]1 (X ,dlm [k”

(2.22)
Jor 1 <8< N,i, € I,, and for 8 > N,i, € In}.

Proof. The proof is immediate from (2.18) and Lemma 2.4. 0

The proof of Theorem 2.1 is now given easily. Let {I;} be the collection of index
sets determined by Lemma 2.2. By Lemma 2.5, I, = I, for all » > 1. Hence,
the components of the output either become independent by the nth iteration of the
dynamics, or they remain dependent for all iterations. Consequently, for all r > 1,
dimgn-l-f_ dim8n+,_1 = dim&,— dimE,._l = p".

2.3. Convergence of the chain £ C £ C ---. This section addresses the
convergence properties of the chain £ C £ C - .. for systems that are not necessarily
submersive. The idea behind the analysis is that the effect of the nilpotent part of
the system on the output sequence is short lived and can be eliminated from the
analysis by “ignoring” the first n time instances of the output; this is essentially what
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is accomplished by including {du[0),...,du[n—1]} in the definition of £ C £} C ---.
The analytical aspects of the proof are based on the following construction.
Let My := R" and define for & > 1

(2.23) My, = z[k] (R" x (R™)F).
Observe that My D M; D - since

(2.24) Mgy = f(My, R™).

Define dp ;= n and for k > 1,

(2.25) dy, :=rankg, _, z[k] := dim spany, _ {dz[k]}.

LEMMA 2.6. The sequence of integers {d} is nonincreasing, and if di = dy_
then diy) = di. Consequently, since d; can decrease at most n-times, d; = dy, for all
j=>n

The proof is given in Appendix B. Very roughly speaking, Lemma 2.6 says that
“f : M x R™ — M4, behaves like a ‘submersion’ for £ > n since the ‘dimension’ of
M, is di.” Of course, M, in general, does not have the structure of a manifold, hence,
the imprecision of such a statement. Nevertheless, if we pursue this line of thought
for a moment and supposes that My D M; D - is a nested sequence of embedded
analytic submanifolds, it is clear that, if dim M = dim Mj_,, then dim M, =
dim M., because the condition dim M} = dim M;._, implies that f : M;_; x R™ —
M. is a submersion. This combined with M} being open in Mj_; gives the result.
The proof in Appendix B makes this line of reasoning rigorous with a local analysis,
which also establishes the following result: For k£ > 2, j > 0 define 6* : R; — R
by,ifa €eR;,and 0<i<k—1

(2.26) 6 (@) = 6(6*(e)).

LEMMA 2.7. Letk > 0, a € Ri. If 6"(a)#0 (i.e., is not the identically zero
function), then §"t3(a)#0 for all j > 1.
Let R{" be the set of real analytic functions

(2.27) Ry := {6"(a)|a € Ry}

R{" C Rutk 8s a subring, and thus, the associated set of fractions, denoted X{ , is a

field; indeed, it is a subfield of K, +,. Note that ICi"“ C Kli’;l.
By Lemma 2.7, for each k > 0, the two mappings

(2.28) §: K8 - K™ c Kl
and
(2.29)

A : spanysn {dA|X € ki'} — spanycen+1 {dnln € lCﬁn“} C spanygn {dvly € K1}

can be defined as in (2.17) and (2.18), respectively.
The final step of the analysis is to reduce the study of the chain £ C £} C --- to
that of a related chain to which the proof technique of §2.2, that is, Lemmas 2.2-2.5,
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can be applied with only minor modifications. As in §2.2, it is necessary to slightly
modify the definition of 8,':' without changing its dimension:

(2.30) & :=spany_, {dz,dul0],...,dun — 1}, dy[nl,...,dy[n + K|},
for all £ > 0, and
(2.31) &Y, :=spanyg__ {dz,du[0],...,du[n - 1]}.

Note that {dz[n]} C £F,. Let L C {1,...,n} be such that {dz;[n]|i € L} is a basis
for spang, _, {dz[n]}, and let W be such that

(2.32) £X, = span{dz;[n||i € L} ® W.

Introduce
S 1= spang.,,, {dasln), dyln), .., dyln + K]l € L},
(2.33) S_1 :=spang,_ {dzi[n]|i € L}.

Since y[n + jl(z,u[0],...,u[r + j]) = y[j)(z[n),u[n],.. . u[n + 7]) for j > 0, it follows
that

(2.34) Er=8&eoew, k21
Hence, for k£ > 0,
(2.35) of = dimS, — dimS;—; .

The reason for doing all of this is that the generators of Sk, for k > 1, are elements
of {dA|A € K§"}. Hence, letting

S := spangs» {dz;[n], dyn], ..., dy[n + k]l € L},
(2.36) S_y :=spany _ {dx;[n]|i € L},

it follows that, for £ > 0,

(2.37) of = dimS; — dimSj—;.
Moreover, even though Si C Sk41 is not a subspace of Sk41,
(2.38) dim spanysn 1{8"} = dimS;,

and therefore, the proofs of the obvious modifications of Lemmas 2.2-2.5 for the chain
So C 81 C +-- go through with only minor changes, which will not be repeated here.

THEOREM 2.8. For all integers k > n, dim&F —dim €& | = dimEF —dimEF_;
that is, pf — pf_, = pf — pt_,. Moreover, whenever (2.1) is generically submersive,
the ordered lists {00, 01,...,0,} and {of,...,0}} are equal.

The last part of the theorem follows from the fact that when (2.1) is gener-
ically submersive, the index set L in (2.32) is equal to {1,...,n}. Then, since
y[n + j)(z,u[0],...,u[n + j]) can be expressed as y[j](z[n), u[n],...,u[rn + j]), & and
S are naturally isomorphic under z — z[n], u[0] — u[n),...,u[k] — u[n + k.
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3. Further characterizations of the rank and structure at infinity. This
section and the rest of the paper will concentrate on generically submersive systems.
Similar results, as per the development of §2.3, can be stated for the general case.

8.1. Jacobian matrices. The goal here is to provide a computationally con-
venient means of evaluating the rank p*. The same result is also useful for showing
the invariance of p* under the action of invertible (static or dynamic) state variable
feedback.

Following [14], which, in turn, was based upon (23], consider the Jacobian matrices

aw[0], . .., y[k])

(31) T (w0 ulkD = F 5 R

for 0 < k < n, and their associated ranks
(3.2) Rk = rank;ch.

Note that the matrices Ji can be evaluated symbolically; their ranks can be evaluated
numerically since the rank over K is the same as the generic rank considered in [23].

Applying arguments identical to those used in [4, §2.1] results in the following
relation between the integers px and Ry.

PROPOSITION 3.1. Foreach0 < k < n, pp = n+R;.. Hence, if (2.1) is generically
submersive, then p* = R, — R,_1.

A quite different way of obtaining a result similar to the first part of Proposition
3.1 is given in [6].

Consider now a discrete-time linear system

(3.3) z[k + 1] = Az[k] + Bulk],
y[k] = Cz[k] + Dulk].

Then the Jacobian matrix Ji is given by the usual Toeplitz matrix

D 0 0 7

CB D

(3.4) Jo=| CAB CB
: 0
| CA*-'B CA*-?B ... D |

The results of [21] and [26] in conjunction with Proposition 3.1 justify the terminology
adopted in §2.2 concerning the rank and structure at infinity of a nonlinear system.

The following is the analogue of 10, II1.B.2. Proposition].

COROLLARY 3.2. In the case of a linear system, the rank p* defined by (2.10)
agrees with the classical rank of the transfer matriz. Moreover, the list of integers
{00,...,00} defined in (2.15) is precisely the structure at infinity as it is normally
defined on the basis of the transfer matriz [21), [26].

REMARK 3.3. For a linear system, it is easy to verify that the lists {o;} and
{ok} coincide, whether or not the system is generically submersive.

3.2. A related chain of subspaces. Related to the chain & C & C --- is the
chain Hp C H; C - - - defined solely in terms of the output [4]:

(3.5) Hy = spang, {dy(0],...,dy(k]} .
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It also can be used to determine the rank of the system, and this will be important
for making contact with the fundamental work of (10].

THEOREM 3.4. Suppose that (2.1) is generically submersive. For all integers
k2>n, p* =dimH; — dimH;_;.

Proof. By Lemma 2.5, for k > n p* > dimH; — dimM;—;. On the other hand,
for 1 < j, H; = H;_1 + span{dy[j]}, £ = €;—1 + span{dy[j]} and Hy C &. Thus,
dim'H,- - dim’Hj_l > dlmé’, —dim 8_-,‘_1. 0.

3.3. Remarks on the inversion algorithm. The importance of the inversion
algorithm of Singh [27], which is an extension to nonlinear continuous-time systems
of the well-known algorithm of Silverman [26], need not be underlined here. The
algorithm has also been used in the study of discrete-time nonlinear systems (18] and
[19], but always expressed in a form involving the implicit function theorem. Conse-
quently, the results of the algorithm can be difficult to interpret unless one remains
in a neighborhood of an equilibrium point. This problem can be removed by working
at the level of the differentials of the outputs, which linearizes the computations and
allows the analysis of [4] to be carried through to the discrete-time setting. Since
the algorithm in the form we will use it has already appeared in several publications
for continuous-time systems (3], [4], [16], the basic idea will only be sketched here
by giving the first steps of the algorithm. Establishing the validity and convergence
properties of the algorithm is quite easy using the analysis of §2.2.

It is assumed that (2.1) is generically submersive; an extension to general systems
can be envisioned along the lines of §2.3.

Step 0. Calculate dy[0] and write it as

(3:6) dy[0] = ao(z, u[0])dz + bo(z, u[0])du[0] .
Define
(3.7) 8g := rankg, by .

Permute, if necessary, the components of y so that the first so rows of by are linearly
independent. Decompose y so that

-

(3.8) dy[0] = [ Zgg{g} ] = [ g‘; ]d:v-!— [ :z ]du[o],

where 7 has s rows. Since the rows of b are Ko-dependent on the rows of by, there
exists a matrix Mp(z,u[0]) with entries in Xy such that

(3.9) bo = Mbo,

and thus,

(3.10) djjo[0] = dodz + Mo{dfjo(0] — Godz}
=: Godz + Bodﬂo[()]

End of Step 0.
Step 1. Compute

(3.11) djol1] = (6a0) da1] + (8Bo) 1]
=: a; (z, u[0], u[1]) dz + b; (z, u[0], u[1]) du[0] + ¢ (z, (0], u(1}) dfo[1].
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Define

(3.12) 81 := rankg, { Z‘l’ ]
and repeat the basic operations of Step 1; see [3], (4], and [16], for example.

The validation of the steps in the algorithm is achieved by noting that it produces
a basis for & C &€, C ---, and thus, by Lemma 2.2, since {dz,d#[0]} is a linearly
independent set, so is {dz, d{jo[0], dfjo[1]}, etc. Its convergence in no more than n steps
follows from Theorem 2.1.

A similar connection with the interesting work of [24] on dynamic feedback so-
lutions to the noninteracting control problem could be pursued also along the lines
already clearly established in [4].

4. Invertibility. A linear system is usually said to be right-invertible if the rank
of its transfer matrix is equal to the number of output components, and left-invertible
if its rank equals the number of input components. Systemically, right-invertibility
means that by a proper choice of the initial condition end input sequence, any output
sequence can be generated; that is, the map from initial conditions and inputs is onto
Y® =Y xY x---, the space of all output sequences. Left-invertibility is equivalent
to injectivity of the map from inputs to outputs, for a fixed initial condition.

In the case of nonlinear systems, though such global notions of invertibility are
attractive, simple examples show the difficulty of trying to say anything intelligent
about them; hence, we are led to localizing the concepts. Following [3], for k£ > 0, let
Hi : X x Ukl — Y*+1 be the map that sends (x,u[0],...,ulk]) to (y[0],...,y[k]),
and let By : X x U — X x Y*+! by (2, 0], ..., ulk]) — (z,y[0],...,y[k]).

DEFINITION 4.1. The system (2.1) is almost everywhere locally surjective, if,
for every k > 0, the image of Hy has nonempty interior. The system is almost
everywhere locally injective, if, for every k > 0, there exists an open and dense subset
O of X x U**1 with the property that, for each point p = (z,u[0],..., u[k]) € O
there exists an open neighborhood of p, Ox(p), and an analytic insertion® iy, : Ok (p)
— X x U**! x U™ such that if py, p2 € Or(p) and Epyx(ix(p1)) = En+x(ix(p2)), then
P1 = pa.

These properties can be characterized as follows.

THEOREM 4.2. Assume that the nonlinear system (2.1) is generically submersive.
Then the system is almost everywhere locally surjective if and only if any one of the
following equivalent conditions is satisfied:

(a) for all k > 0,dimspan{dy(0],...,dy[k]} = (k+ 1)u;

(b) dimspan{dy[0],...,dy[n]} = (n+ 1)y;

(c) p* = u; i.e., the rank of the system equals the number of output components.
The system is almost everywhere locally injective if, and only if, any one of the fol-
lowing equivalent conditions is satisfied:

(d) for all k > 0, {du[0],...,du[k]} C span{dz,dy[0],...,dy[k + n}]}

(e) du[0] C span{dz,dy[0],...,dy[n]};

(f) p* = m; i.e., the rank of the system equals the number of input components.

Proof. (a) => (b) is immediate. (b) = (c) is given by Theorem 3.4. (c) = (a)
follows from the same kind of reasoning employed in proving Lemmas 2.4 and 2.5 and
is not repeated here. It suffices to show that (a) is equivalent to almost everywhere

3 That is, if 7 represents that natural projection of X x U*+! x U™ onto X x Uk+1, then
T © i |Ok(p) is the identity.
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local surjectivity. The image of Hj, has nonempty interior if, and only if, there exists
an open set of points where the rank of Hj, over the reals equals (k + 1)u. This is
equivalent to Hy having rank (k + 1)p over Ky, which is equivalent to (a). Turning
to almost everywhere local injectivity, (d) = (e) is evident. (e) <= (f) is Corollary
A.2 in Appendix A. It is now shown that (¢) = (d): Applying A to both sides of
(e) yields

dul1] C span{dzi1], dy(1], .., dyfn + 1]} -
Hence, adding span{dz, du[0], dy[0]} to the right-hand side,

du[1] C {dz, du[0],dy[0], dy(1], .. .,dy[n + 1]}
C span{dz,dy[0],...,dy[n +1]},

where (e) has been used in the last step. The remainder of a proof by induction is
clear. To finish up, it suffices now to show that (d) is equivalent to almost everywhere
local injectivity. Without loss of generality, it can be assumed that the neighborhood
O, is such that Eptkotr : Op = X x ynt+k+l hag constant rank. Then almost
everywhere local injectivity means that this rank equals n + (k + 1) -m. This is
equivalent to ranky,,, (8([0),...,y[n+k])/0(u[0),...,ulk])) = (k + 1)m, which is
equivalent to (d). o

Remark. A quite different approach to invertibility is taken in [10]; the results
of the next section show that, in the case of polynomial systems, the two approaches
coincide.

5. Difference algebra and the transformal transcedence degree. The
purpose of this section is to prove that the rank p* defined in (2.10), when spe-
cialized to systems whose right-hand side depends polynomially on z and u (more
precisely, on their components), corresponds to the transformal transcendence degree
used in [10}.

Consider a system

zlk + 1] = P(z[k], u[k
(6.1) Zrg ™ y[’tLQ%ﬁ’ﬁ%m%kB,

where P : R® x R™ — R"™ and Q : R" x R™ — IR" are such that each of their
components is a polynomial of = and u, with coefficients in R. This system is clearly
analytic, so the analysis of §2 applies. For the purpose of clarity in presenting the
results, it will be assumed that (5.1) is generically submersive. An extension to
rational systems could also be undertaken.

The following definition, adapted from [10], should actually be derived by con-
structing the difference field associated to £p,g and then applying the definition used
in [10].

DEFINITION 5.1. The transformal transcendence degree of X p,g, denoted d®(ZpQ)
equals the maximal number of components of y, say {y;,,...,%i,}, such that for any
k > 0 there does not exist any nontrivial polynomial = with coefficients in IR such
that

w (y,-,[O],...,y;p[O],...,y,-l[k],. . .,yiﬂ[k]) =0.

In other words, for any k > 0, %;,[0),...,%;,[0]-..,%;[K],--.,¥i,[k] viewed as poly-
nomials of z,u[0],...,u[k] are algebraically independent.
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For those readers familiar with Kéhler differentials, the equality p* = d°(Zp,g)
is immediate from Theorem 3.4. For the benefit of other readers, an independent,
straightforward proof is given. Lemma 5.2, which follows, is well-known, though hard
to find in the form presented (cf. [28]).

Let v = (v1,...,v,) be an r-tuple of indeterminants, let IR[v] denote the ring of
polynomials of (vy,...,v,) with coefficients in IR and let R(v) be the corresponding
field of rational functions. Define a vector space over R(v) by V' := span{dv,, ...,dv.}
and define the mapping d : R(v) — V by

(52) 4(55) = (q(v))?z(ap(v)( P0) G ))

j=1

in the usual way; see [30, Chap. 5, §10.5] for how to define a differential calculus of
rational functions without taking limits.

LEMMA 5.2. A collection of polynomials {Py,...,Pr} C R[v] is algebraically
independent if, and only if, the set {dP,...dP} is linearly independent in (V, R(v)).

Proof. Suppose that {Py,...,Ps} is algebraically independent; then k < r.
Assume first that k = r. {P,... P} is then a basis for R[v], and consequently,
for each 1 < i < r, there is a nontrivial polynomial Q;()1,...,Ar4+1) such that
Qi(thl)"')PT) =0.

PROPOSITION 5.3. For each 1 < i <r, the polynomial 8Q;/0)\, is nontrivial.

Proof. Suppose it is trivial. Then Q;(v, Py,...,P) = @Qi(0,P,,...,P.) =:
Q;(Py,...,P;). Thus, @; must be a trivial polynomial because {P,...,P,} is al-
gebraically independent. It follows that @Q; is a trivial polynomial, which contradicts
its definition. a

Continuing with the proof of Lemma 5.2, since 0 = Q;(v;, Py,..., P),

(5.3)
aQ; 0Q;
0=d(Q,~(v.~,P1,...P,)) = Q (’U,,Pl, P)dv;"'z Q 'U,,Pl,...,Pr)de;

see (30, Chap. 5] for the chain rule. By Proposition 5.3, 8Q;/8A, is nontrivial, and
thus,

(5.4) dv; =Y kyydP;,
i=1

where

iy = (GQ’(v,,Pl, p,)) ( aaQ' (03, Py, . P,)) € R(v).

Thus, span{dv,, ...,dv.} C span{dP,,...,dP,}, proving the linear independence of
{dPy,...,dP}.

If k < r, then there exist Pgyy,..., P, such that {Py,..., P} is a basis for R(v).
From the above, {dP;,...,dP,} is linearly independent, and therefore, so must be
{dP,...,dP:}.

To prove the other direction of the lemma, suppose that {Py,..., P} is alge-
braically dependent. Then there exists a nontrivial polynomial Q(\y, ..., Ax) with co-
efficients in IR such that Q(Pi,...,Px) = 0. Hence, 0 = E;f:l 0Q/0);(Py,... P:)dP;,
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proving that {dP,,...,dP;} is a linearly dependent set in (V,R(v)). This completes
the proof of Lemma 5.2. 0

The constructions and results of §2 hold clearly for polynomial systems (5.1) with
the field K replaced* by R[z, u[0],...,u[n]|. This observation, combined with Lemma
5.2 and Theorem 3.4, yields the following result.

THEOREM 5.4. For the polynomial system (5.1), p* = d°(Zp,q).

Remark. Lemma 5.2 can be equivalently stated as: The following two conditions
are equivalent:

(2) There exists a nontrivial polynomial = such that «(P;,...,P,) =0

(b) The set {dP,,...dP,} is linearly dependent in (V, R(v))
The implication (a) = (b) remains true with w, Py,..., P, replaced by analytic
functions. However, the converse is then true only locally, and even then only on
subsets where certain constant dimensional conditions are met; indeed, this is the
well-known Rank Theorem.

6. Relation to generic observation fields. The chain of subspaces & C --- C
&, C --- is measuring how the input components are appearing in the outputs, as-
suming that the initial state is known. In a similar manner, one could study how the
initial state components appear in the outputs, assuming that the inputs are known.
This is called observability [15], and in the context of the formalism of this paper,
could be studied via the chain Og C--- C Ok C - - -, where

(6.1) Oy, := spany, {du[0],...,du[k],dy[0],...,dylk]} .

Then, as in [4] and this paper, a connection could be established between the ranks
of certain Jacobian matrices, the dimensions of the subspaces O and/or the tran-
scendence degree of a certain (differential) field. This (plus a whole lot more, such as
the construction of a realization theory for polynomial input-ouput maps) was done
by Sontag (28] in 1979 for a very general class of discrete-time polynomial systems
(cf. his generic observation fields, @%). An extension to analytic systems would fol-
low along the lines of [31). More recent work on the analysis of the observability of
continuous-time systems by algebraic means can be found in [5] and the references
therein.

Appendix A.

Proof of Lemma 2.2. For the sake of the study of invertibility in §3, it is useful to
prove a little more than is required by the lemma. The following notation is used only
in Appendix A; it will help to keep the formulas concise. If M is a subset of £, then
[M] denotes its span (see 20, p. 16)). If {vy,...,v,} is a set of linearly independent
elements in £, this will be denoted by {vy,...,v,}*. For example, let Iy C {1,...,u}
be such that {dz, dy;,[0]|io € Io} is a basis for £. Then, this can be succinctly stated
as [{dx,dyio[O]lio € Io}'] = 80.

Suppose that for some 0 < k, index sets Iy C I; C --- C I}, C {1,...,u} and
{1,...,m} > Jo D J1 D -+ D Ji have been selected so that for each 0 <t < k,

(A.1) & = {dz,dy; [P0 < r < t, i€ L}
(A.2) [dz, du[0], ..., duft] = [{dz, dys, [r], du;,__[r]l0 < 7 < t,ir € Ly, jr € J}).

4 So that the proof of Lemma 2.4, which used the Rank Theorem, can be carried over, one must
note that (2.21) holds for (5.1) over K if, and only if, it holds over R[z, u[0],...,u[n]].
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and
(A.3) dul0) C & @ [{du;[0]lj € Je}].

That this is possible for k = 0 is obvious. It will first be shown that I+ O Ii, can
be chosen so that (A.1) holds for 0 <t < k+ 1.
CrLamMm A.1. The set

{do,du, bl i+ 1),y O, s, [+ 0 < < by € I, G €

is linearly independent.
Proof. To see how the arguments go, consider first (A.2) for ¢ = 0 and apply A
to both sides to obtain

[dz1], du(1]] = [{d=(1], dys, [1], dus, [1lli0 € Lo, o € Jo})-
Adding [dz, du[0]] to both sides yields
[dz, du[0}, du(1]] = [{dz, du[0], dy;, [1], duj,[1]li0 € o, Jo € Jo}).
Applying (A.2) for t = 0 results in
[d, du[0], du(1]] = [{dz, dys, [0], dujo [0], dyiq [1], duso 1] 140 € Io, Jo € Jo}].

The independence of the vectors on the left-hand side implies the independence of
those on the right-hand side by counting the number of elements. In particular, the
vectors {dz, dy;, [0}, dyi,[1], lio € Io,} are linearly independent, and thus, one can
choose I D I such that (A.1) holds for 0 <¢ < 1.
In general, consider (A.2) for ¢t = k and apply A to both sides to obtain
[dz([1], du[1], ..., du[k + 1]]

= [{dz[l],dy;r[r +1],duj,_ [r+1)I0 <7 < ki, € I, jr € Jr}]-
Add [dz, du|0]] to both sides to obtain

[dz, dul0), ..., dulk + 1]]
= [{dz, dul0], dyi, [r + 1], duj,_, [r + 1]|0 < v < k,ir € I, jr € I} 7]

(A4)

The independence of the vectors on the left-hand side implies the independence of
those on the right-hand side by counting the number of elements. Applying (A.2)
first for £ = 0, and then successively for ¢ = 1,...,t = k results in
(dz, du[0],...,dulk + 1]]
= [{dz, dy;, [0], duj, [0], dys, [r + 1), duj,_ [r+1)|0 <7 < k,ir € I, jr € J-}']
= [{da:, dyso[0], dys, (1], du;, [0), dys, [s + 1), duy,_ [r + 1]/0
<r<k1<8< ki €4 €Jr}).
(A.5) = [{dx, dyio [0), dyi, [1], dyi, (2], duj, [0), dys, [s + 1, duj,_ [r + 1]|0
<r<k2<s<kip € I, jr € 1}
=foreach0<t<k
= {{dms dyio [0]’ AR dyic [t]! dujt [O}adyi. [3 + 1]’ dujk-r [T + 1”0
= <r<kt<s<kir€l,jred}] O
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Hence, we can choose I41 D I 8o that (A.1) holds for each 0 < ¢ < k+1. It
is next shown that Ji41 C Ji can be chosen such that (A.2) and (A.3) hold. From
(A.3) for t =k, since €k C Ek41, We deduce

(A.6) duf0] C Ex41 + {du;[0]lj € Ji}.

By the definition of Ix4i,

(A7) Esr = & ® ({dys, [k + 1lik € I }'] @ [{dyelk + 1]I€ € I\ }).
For each £ € Ixy1\Ik, dyelk] € £k, and thus,

dye[k + 1] € [{d=(1], dy;, [,...,dy; [k +1]|ir € I;,0<7 < k}
C (& @ [{dys, [k + Ulix € I }"]) + [duf0]]
(A.8) C (Ex ® [{dy [k + 1lix € Ik}°]) + [du(0]l € Jl,
where the last inclusion is from (A.3) for ¢t = k. Thus, (k41| — |Ix|) elements of

{du;[0]|j € Ji} are not independent of £41. One can therefore choose Jx41 C Jk
such that

(A9) du[0) C Ex41 ® [{du;[0]lj € Je11}’]
and
(A.10) |Tkt1] = 1kl = (Hiaa] = M)

To finish up, from (A.5) and (A.9) it follows that

[dm,du[O], ves du[k + 1]] C [{dx,dng[O], . ,dng, [k + 1],du,-k+1 [0], ceey
(A.11)
dujy [k + 1)lix € Iy jrgr1—¢ € J, 0 St <k +1})-

Since the reverse inclusion is obviously true, one has equality. By counting the number
of vectors on the right-hand side of (A.11), we obtain (A.2) fort=k+1. O
From (A.1) and (A.2), respectively, it follows that

k

(A12) pe=n+ ||

i=1
and

k k

(A.13) n+(k+Dm=n+d LI+ 1%l

i=1 i=1
yielding
(A.14) Pk — Pe—1 = m — |J|.

This combined with (A.3) proves the following result.
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COROLLARY A.2. Suppose that (2.1) is generically submersive. Then

dim & — dim &y = m if and only if {duy[0],...,dun[0]} C & .

Proof of Lemma 2.4. We can view y[k], 0 < k < N as being an analytic function
on X x UNt!, Let O be an open subset of X x UN+!,
By the definition of Iy,...,I,, forany 0 < N < n,

(A.15) dyj[N] € Spa'nICN{dx:dyio[Olv s adyiN UV"ik € Ik) 0 S k S N} .
Due to analyticity, (A.15) is equivalent to
(A.lﬁ) dyj[N]| o€ spanR{d:v, dy.‘o[O],. .. ,dyiN[N]|ik €l, 0<k< N}| 0,

where the left-hand side is viewed as a one-form on @, the right-hand side is viewed
as an analytic codistribution on O, and the span is taken pointwise; without loss of
generality, it can be assumed that the codistribution has constant dimension. After
possibly shrinking O, the Rank theorem implies that on O, y;|N] can be expressed
as an analytic funtion of (,¥i,[0],...,¥ix [N]|ix € It, 0 <k < N ). Repeating the
above reasoning, (2.21) is equivalent to

(A.17) dy;[N]| o € spang,, {dy;[0],...,dy;[N — 1], dy;, [0},
vy @Yiy [N)lik € Iy, 0Kk < N}| -

Hence, from (A.16), (2.21) holds if

(A.18) Q%L—Nldx € spang, {aya;f] dz, ..., 33/:‘[2’;;— I]d:z:} .

Because the right-hand side of (A.18) can be at most n-dimensional, there must exist
an N, 1 < N < n, such that this is the case. o

Appendix B.

Proofs of Lemmas 2.6 and 2.7. The inclusion My, C M, implies dpy; <
dx Vk > 0. Since z[k] : R"® x (R™)* — R" is an analytic function, there exists
an open and dense subset V3, C R™ x (IR™)* on which z[k] has constant R-rank equal
to di; that is, for each point p € V4,

ozlk|
a(z,ul0),...,ufk — 1])] (p) =dx .

Let Ny := z[k](Vx). Then, N is an immersed submanifold of R", but since the
resulting topology may be different than the subset topology of IR", this property
is of little interest. More importantly, the implicit function theorem implies that,
for each point ¢ € Nj, there exists an open subset O C Vj such that z[k](Ok) is
a di-dimensional, embedded, analytic submanifold of IR" and ¢ is in the interior of
z[k](Ox). Since Vj is dense in R" x (IR™)*, N is dense in Mj, in the subset topology.

Let £, : z[k](Or) x R™ — R" denote f restricted to z[k](Ox) x R™ (the subscript
k is to note that f, depends on Ok). Whenever Oy C Vj is such that z[k](Oy)
is a dx-dimensional embedded submanifold of R", then f, is an analytic function.
Consequently, it will have constant R-rank on an open and dense subset of its domain

(B.1) rankp
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of definition, which is called its generic rank and is denoted as gen rank f,. From
(2.23) and (2.24) it follows that

(B.2) d4+1 = gen rankf, : z[k](Ox) x R™ — R"

since, if p € Oy and g := z[k|(p), then T,z[k](O%), the tangent space of z[k](O%) at
the point g, satisfies

Oz[k]

(B.3) Tqz(k](O) = Image 8(z, ul0], ..., uk — 1)) #)

With the above preliminaries completed, the proof of Lemma 2.6 can be given.
If d,, = 0, the result is obvious; suppose, therefore, that d, > 0. Then, there exists
0 < k < n—1 such that dy = di—-;. As before, choose O) to be .an open subset
of Vi such that z[k](Oy) is an embedded di-dimensional submanifold of IR". Since
M. C Mj._1, and Nj, and N, are dense in M), and M)._1, respectively, the condition
di = dy—; implies that x[k](O%) is an embedded (dx—; = d})-dimensional submanifold
of R" and z[k](O)) N z[k — 1](Ok-1) has nonempty interior. Therefore,

dx41 = gen rankf}, : z[k](Oy) x R™ — R"
(B.4) = gen rankf,_, : z[k — 1](O_,) x R™ —» R®
=d ,

where the fact that f), and f,_, are the restrictions of a common map f and have a
common nonempty open set in their domain of definition entails the second equality.
This completes the proof of Lemma 2.6.

Turning to Lemma 2.7, let d := dy,, which is then equal to dj for all & > n
by Lemmsa 2.6. If d = 0, then Lemma 2.7 is immediate, so in the following it is
supposed that d > 0. Let @ = a(z,u[0],...,u[k]) be an element of Ry. For any
r > 0, §"(a) = a(z]r],u[r],...,ulk + 7]). Let O, C V, be an open set such that
z[r](®,) is a d,-dimensional submanifold of R®. Then 6"(a)#0 if, and only if, a
restricted to (z[r](Or) x (R™)¥+1)0. When r > n, there exists O C V;, such that
z[n](Oyn) x (R™)**+! Nx[r}(O,) x (IR™)**! has nonempty interior. Thus, e restricted
to (z[r](8,) x (R™)¥+1)=£0 if, and only if, o restricted to (z[n](Oy) x (R™)*+1)0.
0
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