Reprinted from

Control-Theory and Advanced Technology
Vol.6, No.3, pp.357-381, 1990 -

INTRINSIC NOTIONS OF REGULARITY
FOR LOCAL INVERSION, OUTPUT
NULLING AND DYNAMIC
EXTENSION OF NON-
SQUARE SYSTEMS

M. D. D1 BENEDETTO! AND J. W. GRIZZLE?

! Istituto Universitario Navale, Istituto di Matematica, Via Acton, 38, 80133 Napoli, Italy;
Dipartimento di Informatica e Sistemistica, Universita di Roma, “La Sapienza”; work performed
while visiting the Department of Electrical Engineering and Computer Science, University of
Michigan at Ann Arbor.
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor,
MI 48109-2122, U.S.A.

it

PUBLISHED BY MITA PRESS
TOKYO, JAPAN

[IEORO0



CONTROL-THEORY AND ADVANCED TECHNOLOGY C89046RR
Vol.6, No.3, pp.357-381, September, 1990 ©MITA PRESS

INTRINSIC NOTIONS OF REGULARITY
FOR LOCAL INVERSION, OUTPUT
NULLING AND DYNAMIC
EXTENSION OF NON-
SQUARE SYSTEMS®

M. D. D1 BENEDETTO! AND J. W. GRIZZLE?

Abstract. We introduce a formalism, based upon the canonical map from initial
conditions and inputs, to outputs, for analyzing the regularity conditions used in
previous works on system inversion, output nulling and dynamic decoupling. A
notion of strong regularity is introduced, and under it, an alternate characterization
of the zero-dynamics is given in terms of the canonical map. Relations are estab-
lished between properties of the zero dynamics and the notions of right- and
left-invertibility coming from differential algebraic techniques. The preservation of
the proposed regularity condition under dynamic compensation is investigated.

Key Words—Dynamic decoupling, inversion, regularity, output nulling, zero dy-
namics.

1. Introduction

It is well-known that, when trying to extend the analyses of finite zeros,
right- and left-invertibility, and dynamic input-output decoupling from the class
of linear systems to nonlinear systems, singularities may occur. For this reason,
whenever systematic procedures have been developed for analyzing any of
these properties, certain constant rank conditions have been imposed to ensure
smoothness of various functions computed at each step of the procedure and/or
finiteness of the number of computations. In this context, our work will build
upon the important contributions of Byrnes and Isidori (1984; 1988 a; b), Isidori
(1989 a), Isidori and Moog (1988) and van der Schaft (1988) on the zero-
dynamics of a nonlinear system. Fliess (1986), Nijmeijer (1986), Respondek
(1987), Respondek and Nijmeijer (1988) and Di Benedetto et al. (1989) on right-
and left-invertibility, Descusse and Moog (1987), Nijmeijer and Respondek
(1986; 1988), Hauser et al. (1988) and Xia (1989) on dynamic input-output
decoupling, and Hirschorn (1979), Singh (1981) and Xia and Gao (1988) on
system inversion.

In this paper, we introduce a framework, closely related to that of Di
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358 M. D. D1 BENEDETTO AND J. W. GRIZZLE

Benedetto et al. (1989), in which one may unify many of the constant
dimensional/rank conditions used in the previously cited works. In Sec. 2, we
propose a definition of regularity based upon the canonical map from initial state
and inputs to outputs, and independent of any particular algorithm. This
regularity condition will turn out to be the union of the conditions previously
used in zero-dynamics and dynamic extension, as is detailed in Sec. 5. In Sec. 3,
we characterize the proposed notion of regularity in terms of two algorithms for
inversion and dynamic extension, thereby showing that their constant rank
conditions are identical. Building upon this analysis, in Sec. 4, we take the
opportunity to give an alternate characterization of the zero-dynamics in terms
of the canonical map introduced in Sec. 2. As a corollary, we relate the notions of
left- and right-invertibility, as introduced by Fliess (1986), to properties of the
zero-dynamics. Finally, we show, constructively, the existence of dynamic
compensators that preserve the regularity property and simultaneously linear-
ize and decouple the input-output map. In Sec. 5, we compare our proposed
notion of regularity with those used in Singh (1981), Byrnes and Isidori
(1988 b), Isidori (1989 a), Descusse and Moog (1987), Di Benedetto et al.
(1989) and Xia (1989).

2. A Notion of Regularity

Consider an affine nonlinear control system

i = f(x) + gx)u
2 } (28

"y = h(x)

where z(£)EX, a simply connected open subset of R", u()eU =R",
y(H)€Y=MR* and f(-), the columns of g(-)=[g,(*),--+,g,(-)] and the rows
of h(:)=col(hy(+), -+, h,(+)) are analytic functions of x. Define &(x)
=span{g,(x),-*+,g,,(x) } and suppose that dim&(x) =m for every xEX.

In the usual way, one defines, by differentiating along trajectories of (2.1),

yD = Ay, u) = _%ﬁ—[f(x)+g(x)u],

(k+1) — (k+1 k
ye+D - y*FD(x g, e u®)

ay®
0x

k=1 (k)
9y G+1).
[f(x)+g(x)u] + EO—T—au S ultY;

whenever convenient, we let ¥ (x)=y(x)=h(x). At this point, we may view
y® ag an analytic function y®: X x T*'U— R* where T*1U is the (k—1)st
order tangent bundle of U (Golubitsky and Guillemin, 1973), or as a rational
function of the components of u, -, u®* 1 with coefficients analytic in x.
Adopting this latter point of view for the moment, define, following Di
Benedetto et al. (1989), K, to be the field of rational functions of (the
components of) #,---, #Y~1 with meromorphic coefficients in x and set K: =K,,.
Let & denote the vector space over K spanned by {dx,,---,dx,,du,,- -,
du,, -, du{"V,---,du"1)}. From now on, we will abuse notation and write
{dx} for {dxi,---,dx,}, {du} for {duy,---,du,}, {dy} for {dyl,-“,dyu},
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etc.; in other words, the differential of a vector valued quantity means the
differential of each of its components. Define the nested sequence of subspaces
of & by &,=span{dx}, &,=span{dx,dyV,---,dy®}, for k=1,---,n; and %,
=span{dy,---,dy®}, k=0,---,n. In Di Benedetto et al. (1989), it is shown
that

dimé, — dimé,_; = dim%, — dim%,_; =: o*,

where o*, the rank of the system (2.1) (Fliess, 1985), is a limiting value
in the sense that, if one extends & and K in the obvious way, o*
=dimé”n+k—dimé"n+k_1=dimgn+k—-dim.0]n+k_1 for k=0.

The above framework was very convenient for proving the conceptual
equivalence of several algorithms, which compute system inverses, decoupling
compensators and ranks associated with left- and right-invertibility, without
specifically addressing the issue of singular points; indeed, they were effectively
incorporated into the field K. However, when actually constructing a compensa-
tor or an inverse, one must work over the field of reals and thus one requires a
notion of regularity guaranteeing the existence of an open set in which the
necessary operations are well-defined. This motivates the following construc-
tions.

Let F, denote the map Fy: X—Y by x—y=h(x) and let Ey: X—X be the
identity map. For all k=1, let F, denote the map F,: XXT*1U—T*Y by
(x, -, u* )= (y,yP,---,y*®) and let E, denote the map E,: XX T*1U
—SXXT*Y by (x,u,---, u* )>(x,y,---,5®). In the obvious way, for 0<k=<n,
F, and E, can be viewed as functions on XX T"'U. Let F and E denote F, and
E,, respectively, and let 7: XX T""1U—X be the canonical projection.

Definition 2.1.
(a) The output y=0 is strongly regular for the system (2.1) if F~1(0)# @ and for
every point bEF1(0),

(1) rankpF,(b) = dimg%,, 0=~k

IA
]

, (2.2)

(i1) rankpE,(b) = dimgé&,, 1=k

IA

(2.3)

IA
3

(b) (xy, y=0) is a strongly regular pair if y=0 is a strongly regular output
function and x,Ex(F1(0)).

(c) (%o, y=0) is a locally strongly regular pair if xo€ n(F~'(0)) and there exists
an open neighborhood @ of x, such that (2.2) and (2.3) hold for every
beF1(0)Nx ().

Some comments are in order. Firstly, the fact that working locally in the
states, but globally in the inputs, is the correct way to localize the notion of y=0
being strongly regular will be born out in the next section when local strong
regularity is characterized in terms of two algorithms associated with left-
inverses and dynamic decoupling; this is also clear from the work of Respondek
(1987). Secondly, it is perhaps not immediately clear why we focus on F~1(0).
This is partly for simplicity, but mostly because we wish to make contact with
the zero dynamics algorithm; it is also important when considering output
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reproducibility about the null output. One could consider an arbitrary point
p=(y,yP,---,y™)ET"Y and define regularity with respect to F~1(p). With
regard to right-invertibility, this would lead one to studying the reproducibility
of output trajectories about a reference output with the first »+1 terms of its
Taylor expansion given by p. Since this does not change the subsequent
analysis, but complicates the notation, we focus on p=(0,---, 0). Thirdly, for a
linear system, the output y=0 is always strongly regular; indeed, the output is
strongly regular for any p€T"Y such that F ~1(p)# ¢. Finally, we have adopted
the terminology of strong regularity because (2.2) and (2.3) turn out to be
precisely the constant rank conditions required to calculate a reduced order
left-inverse by Singh (1981); in Sec. 5, these conditions will be shown to be
stronger than those associated with output nulling and dynamic input-output
decoupling.

We return now to the interpretation of %) as an analytic function on
XXxT 1U. For 0<k=<mn, y® can also be viewed as an analytic function on
XxT*1U. We may then introduce analytic codistributions on X X T U by, at
each point b,

Q,(b) = spang{dy(b), ---, dy®¥(b)}, (2.4)
A,(b) = spang{dx, dy(b), -+, dy®(b)}. (2.5)

Then at every point bEXXT" U,
rankpF,(b) = dimpQ,(b), (2.6)
rank,E,(b) = dimgpA.(b), 2.7
because £, and A, represent the row span of the Jacobians of F, and E,

respectively.

From (2.6) and (2.7), it follows easily that the proposed notion of regularity
is invariant under invertible static state variable feedback = a(x)+B(x)v, B(x)
an invertible matrix for every *€X. However, it is in general not invariant

under the addition of integrators on the input channels. Indeed, consider the
system,

.9'61 = XUy + Uy

2 = X3 o (2.8a)
i3 = Uy
¥y =1

Lyt ith (2.8b)
¥, =Xz |

which is square, globally feedback linearizable and globally statically input-
output decouplable; the output y=0 is strongly regular (see Proposition 2.2).
Nevertheless, if one dynamically extends the system by adding an integrator on
the second input channel, viz
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Uy = Vg, (2.8¢c)

the output y=0 is no longer strongly regular with respect to the extended
system (2.8a, b, c). If one now adds a second integrator, #; =v;, then the output
y=0 is once again strongly regular. In Sec. 4.3, it will be shown that there do
exist useful dynamic compensators that preserve the strong regularity proper-
ty.

The following preliminary result is useful. Let 7; denote the relative degree
(p. 235 of Isidori, 1989 a) of the ith output of the system (2.1); that is 7; is the
smallest integer such that for some ¥€X, and 1<j=<m, ngL}'-lh,-(f)?&O. If for
some output %; no such integer exists, then the relative degree is undefined and
the ith output is not affected by any of the inputs. Assume then that all of the
relative degrees are defined and let A(x) be the decoupling matrix (p. 235 of
Isidori, 1989 a); that is, the matrix whose i-entry a;;(x) is

a;j(x) = Ly L™ hi(x). (2.9)

Proposition 2.2.  Consider the system (2.1) and let x,€X be given. Then

(x0, y=0) is a locally strongly regular pair if,

(a) rank A(xy)=u (the rank of the decoupling matrix equals the number of
outputs); and,

(b) for each 1=i=<p, 0=h;(xp)=---=L} "hy(xo).

Proof. Just use the fact that strong regularity is invariant under invertible
static state variable feedback and carry out the relevant computations on the
normal form of the decoupled system (p. 261 of Isidori, 1989 a), for which the
map from inputs to outputs is linear.

3. Characterization of Strong Regularity by the Inversion
and Dynamic Extension Algorithms

The goal of this Section is to characterize the notion of regularity, introduced
in Sec. 2, in terms of two algorithms, thereby providing computational proce-
dures for checking this property and at the same time showing that the
regularity conditions associated with the two algorithms are identical.

To begin, we suppose that x, is a given point satisfying xo€ x(F~(0)) and
there exists an open neighborhood @ of x, such that for every bEF~1(0)
Nx~1(0), and for each 1<k=mn,

rank,E,(b) = dimg &, =: @,. 3.1)

Note that this is part (ii) of the local definition of strong regularity. We now carry
out the inversion algorithm (Singh, 1981) using the version presented in Di
Benedetto et al. (1989).

Step 1:  Calculate y¥=a,(x)+b;(x)u and define B;(x):=b,(x). By (3.1),
rankg B, (x) =rankgB;(x,). Hence, there exists a permutation of the outputs,
and a partition, such that upon writing y=col(y;, #,), where y, has o,—n
components and §, has n+u—g, components, then



362 M. D. D1 BENEDETTO AND J. W. GRIZZLE

ke 5"?’ _ [ @@ +bi(x)u
e a1 (x)+b1(x)u

satisfies rankpb; (xo) = oM. Since rankpB;(xy) = 0,— 7, there ezcists a matrix
M, (%), analytic in a neighborhood of x¢, such that b,(x)=M;(x)b;(x). There-
fore, §{"’ can be expressed as

P = a1(x) + My(2) (7P -1 (x))
=: @,(x, 3V); (3.2)
that is " (x, u)=g,(x, 3 (x, u)). It follows that
§Px, u, w) = oM, 3, 32, u)
=47 909, 2 2
P, + 57V 317 + Lyop,u. (3.3)
1
Step 2:  Differentiate §". From (3.3), this can be written as
IP(x, u, &) = az(x, T, 7P + ba(x, 5.
Define Ba(x, 7)=col(b1(x), bs(x, 7)) and evaluate for bEF'(0)

nﬂ_l(xo),

dx
rankpE,(b) = ranky| dy

0, =
. ay Il
1 0 0
= rankg s T G L U
* N by (x¢)

* ba(x, 0) 0
= n + rankgb,(xy) + rank, B, (%o, 0).

From Di Benedetto et al. (1989), it is known that ranky&,=n+rank,b;(x)
+rankgBy(x, 7). Hence rankgpB,(xy, 0)=rankyB(x, 7{"). Therefore
there exists a permutation of the components of §,, and a subsequent partition,
such that §, =col(7,, §,), where ¥, has ¢,— ¢, components, and, upon writing
i 62 + b:gu

a2 i bzu [ é2+b2u j|’

then ranchol(El (x0), b2(x9, 0))= 0,—0,- Moreover, since rankgpBj(xy,
0)=0,—0,, there exists a matrix M,(x, 7{"), analytic on an open neighborhood
of (%9, 0)in @ X IR %" such that b,(x, 7{) = My (x, V) -col(b1 (x), ba(x, 7V)).
It follows that §{’ can be expressed as
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1) _~
5D = 5.(x) + May(x, 7V N -a1~(x) .
Y, 2(x) 2( N ) 5;;2)_(12(% yil)’ ygz)

=5 ¢2(x, yil)y 3752), 5";2))- (3.4)
Proceeding in this manner and then reversing the above arguments, one
obtains the following result.

Lemma 3.1.  Suppose that x,€ #(F~1(0)). Then there exist permutations of
the outputs for the inversion algorithm such that, for 1=k=mn,

rankKBk(x9 yil), EE Y 5’-212_—11)) = rankRBk(xO’ 07 ey 0))

if and only if, there exists an open neighborhood @ of x, such that for every
bEF1(0)Na (@), rankpE ,(b) =ranki&,.

Using this result, we can now characterize a strongly regular pair by using
the functions defined by the inversion algorithm.

Theorem 3.2. The pair (xy, y=0) is locally strongly regular, if and only if,
there exists a permutation of the outputs for the inversion algorithm such that,
for each 1=<k=<n,

(i) rankgB(x, 7|1 =i < k-1, i =j < k—1)=rankgB,(x, 0, -+, 0),

T oh i oh
(i) rankK[ _67(x) ] = rankn[ W(x) ]
and
h ] oh
T ax )
a‘pl(x F0) 99, (xo, 0)
rankg PR s = ranky 0x ,
9 ' 9 ;
| 2%, 50, o, 5 | | 2% 4y, 0, -, 0) |
(lil) h(x()) = Oy (pl(x()r 0) . 0’ gy (pk(x()y 0, ey, 0) = 0-

Proof. (Necessity) Lemma 3.1 establishes (i). Using (i), it follows that

span{dy, dy, ---, dy®}
span{dy, d¥”, 1 <i<k, i<j<k, di0", 1 =m =<k}

= span{g—fdx, P, 1 =ik i =45k

m

a(pm 3 a(pm () <
edr + 2 % a5 I l<=m=<k

= span{dy”, 1 < i<k, i<j <k}

oh 99,
@ span{wdx, Ep dx, 1 =m =< k}, (3.5)
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where the spans in (3.5) are all either with respect to K, or, with respect to R
and everything is evaluated at bEF1(0)Na~"(x,). Hence (ii) holds. Part (iii)
follows from x,E x(F1(0)).

(Sufficiency): If the inversion algorithm can be carried out and (i) holds, then
(2.3) of Definition 2.1 follows from Lemma 3.1. Reasoning once again as in (3.5),
one establishes (2.2). Finally, (iii) allows one to conclude that x,€ x(F~(0)).

We now take up characterizing strong regularity in terms of the dynamic
extension algorithm of Grizzle et al. (1987) and Di Benedetto et al. (1989). To
begin, we suppose once again that (3.1) holds.

Step 1:  Let 3, denote the system (2.1). Calculate y* and write it as
¥ = a1(®) + bi(x)u. (3.6)
By the hypothesis (3.1),
O rankg b;(x) = rankgpb;(xg). 3.7)

Hence, there exists a permutation of the outputs and a partition y=col(y,, ¥,)
such that y, has o, —» components and

(1Y) o 1
08} ks 37 _ [ &) +bi(x)u
Yk [ [ ] 3 ( 81(2) + by (D ) (59

satisfies Ql—n=rank,251(x0)=rank,( b1(x). Hence there exists a static state
variable feedback #=a;(x)+ B1(x)v; such that

(i) Bi(xo)is invertible over the reals (and therefore B, (x) is invertible over K)
(3.9a)

(i) iil)=z71 where 7, is the first o, —# components of v;. (3.9b)
For the resulting closed-loop system, yP(x, ai(x)+B1(x)v;) only depends on
71, for otherwise, by (3.9), the rank of 9y"’/dv, would exceed o, —n, which is
impossible by the chain rule. So one can define
¥, (x, 71) = d1(x) + bi(x) (a1 (x) +Br(x)7), (3.10)

where B, (x)=[f1(x), B1(x)]. Now, introduce integrators by

0 = Uy, (3.11a)
and rename the remaining components of v,

b = ;. (3.11b)

Finally, let X, denote the system consisting of X, the static state feedback
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u=a(x)+p(x)v; and the dynamic extension (3.11). Its state is given by
x,=col(x, 7;), its input is #,=col(#%, #;), and the output remains y=h(x).
Denote the extended system as

(3.12)

15

%1 = f1(x) + gl(xl)ul}
y = h(x) '

To carry out the k+1 step of the algorithm, one differentiates the output
k+1 times and repeats the procedure (3.6)—(3.12) to construct the dynamically
extended system, X, ;. Proceeding in this manner, one obtains the following
result.

Lemma 3.3.  Suppose that x,€x(F~1(0)). There exist permutations of the
outputs for the dynamic extension algorithm such that, for each 1=k=<mn,

rankak(x, 51, sy Ek_l) = ranknbk(x()y 07 T 0)!

if and only if, there exists an open set @ about x, such that rankié&,
=rankgE ,(b) for every bEF1(0)Na~1(O).

Using this, one can characterize local strong regularity in terms of the
functions defined by the dynamic extension algorithm.

Theorem 3.4. The pair (xy, y=0) is locally strongly regular if and only if,
there exist permutations of the outputs for the dynamic extension algorithm
such that, for all 1=k=mn,

(i) rankxbk(xy 1711 sty 17/@—1) = rankkbk(xOr 0: bl 0))
1l oh o oh
(i1) rankx[ m—(x) ] = rankp[w(xo)]
and
h ] [ oh
W(x) W(x(’)
By e oy
—2(x, 91) L (xo, 0)
rankg O X i = rankp GEFE 3 ,
] - i 0
alll;k (xr UA T OO vk—l) i (:;I;k (xOy 0’ S 5 O) ]
(ii1) h(xp) = 0, (%0, 0), %, ¥, (%0, 0, -+, 0) = 0.

Proof. The proof is almost identical to Theorem 3.2 and is skipped.

By combining the extension algorithm with the rule from Descusse and Moog
(1987) for adding integrators, Xia (1989) obtains a minimal order decoupling
compensator. We remark, without proof, that the algorithm by Xia (1989) leads
to precisely the same regularity conditions.
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4. Consequences of Strong Regularity

This section shows that the strong regularity condition of Sec. 2 leads to
many interesting conclusions for some important synthesis problems, such as
output nulling, left- and right-invertibility and dynamic input-output lineariza-
tion. This development will allow us to establish, in Sec. 5, precise relations
between the proposed conditions of regularity and those of previous works.

4.1 Output nulling The concept of the zero-dynamics, introduced by
Byrnes and Isidori (1984), and analyzed in a sequence of papers (Byrnes and
Isidori, 1988 a; b; Isidori, 1989 a; Isidori and Moog, 1988; van der Schaft, 1988)
has proven to be important through its applications to local stabilization
problems (Byrnes and Isidori, 1988 a; b, 1989; see also Aeyels, 1985; Marino,
1988), model matching (Byrnes et al., 1988; Di Benedetto, 1988), output
reproducibility (Byrnes and Isidori, 1988 b; Di Benedetto and Slotine, 1988),
exact and approximate linearization via dynamic feedback (Isidori et al., 1986;
Hauser et al., 1989) and asymptotic disturbance rejection (Byrnes and Isidori,
1988 ¢). This section develops an alternate characterization of the zero-
dynamics in terms of the maps introduced earlier.
Let the maps F), be defined as in Sec. 2 and define Ny: =n(F;'d(0)).

Lemma 4.1.  Suppose that y=0 is a strongly regular output function. Then
for each k=1, N, is an embedded C ® submanifold of X. In particular, for each
xoEn(F(0)) there exists an open neighborhood & of x, such that, for each
1<k=mn,
(@) N,NO={x€0|h(x)=0, @, (x, 0)=0,-++,¢,(x,0,--,0)=0}, where @, are
the functions computed by the inversion algorithm,
(b) N,NO={xE0|h(x)=0, wi(x,0)=0,~~~,1pk(x,0,'--,0)=0}, where y, are
the functions computed by the dynamic extension algorithm.
Moreover, the sequence of manifolds N, converges in a finite number of
steps; precisely,
(c) for all k=n+1, N,=N,,.

Proof. See the Appendix.

From now on, we let N:=N,. For completeness, we remark that N is not
necessarily connected (Isidori, 1989 a); indeed, for the following system:

x.l = U,
x'z = X1 + Xg,
= sin(x;+x2),

one can check that y=0 is a strongly regular output function and that N
has a countably infinite number of components given by U e1=0 { (%1,
x2) | 21 +x2=k7}.

Next, we define a dynamical system on N, using the language of affine
distributions introduced by Nijmeijer (1981); an affine distribution is the
specification, at each point of the tangent space, of an affine set, that is, the
translate of a subspace.

o s
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Theorem 4.2. Suppose that y=0 is a strongly regular output function for
(2.1). Let N=n(F~(0)), and define, for each xEN,

A(x) = {f(x) + gx)u|u € U satisfies f(x) + g(x)u € T,N}.

Then, if the dimension of N is nonzero, A is a non-empty C “-affine distribution
on N. Moreover, the distribution A, defined at each point xEN by
Ao(x):=A(x)—A(x):={Z,(x)—Z2(x) | Z;(x)E A(x)}, is constant dimensional.

Proof. Fix x,€Emx(F~1(0)). Then from Lemma 4.1 there exists an open
neighborhood @ of x, such that for t&«NNE@, T,N is isomorphic to
oh(x) ¢

3% v =50, %00 ox (x40, ---,O)v=0}.

{v e T.X|
Hence,
A(x) = {f(x)+g(x)u|Lf+guh(x) = 07 5 h) Lf+gu(pn(x, O’ e =) 0) = 0}1

which by construction of the inversion algorithm gives, A(x)={f(x)+gx)u|u
satisfies (4.1)}:

0 @y (x)+ by (x)u
= G ; (4.1)
0 a,(x, 0, -, 0)+b,(x, 0, ---, 0)u

Thus, in view of part (i) of Theorem 3.2, and the fact that &(x) is constant
dimensional, A and A, are both analytic distributions on N and Ay is constant
dimensional. Finally, A(x) is nonempty since f*(x)=f(x)+g(x)a(x)EA(x)
where a(-) is as in the proof of Lemma 4.1 (when k=n).

Remark 4.3:  From the proofs of Lemma 4.1 and Theorem 4.2 one sees that A
can also be characterized as, vXEN,

A(x) = {f(x) + gx)u|3u, @, ---, u»P

satisfying F(x, u, %, ---, «*P) = 0}.

Let M,, 1<k<mn, be the sequence of submanifolds defined at each step of
the zero dynamics algorithm (Isidori, 1989 a, p. 290) and let M*: =M, be the
zero-dynamics manifold. Suppose that TM*N&={0}, and define f* to be the
zero-dynamics vector field (see Byrnes and Isidori, 1988 a; b, for the original
reference). For the case of square systems, the local characterization of N given
in Lemma 4.1 in conjunction with the analysis of Isidori and Moog (1988) shows
that the pair (N, A) corresponds to (M*, f*). More precisely, if (xy, y=0) is a
strongly regular pair, there exists an open neighborhood & of x, such that

Nkﬂﬁ=Mk00
and

Alx) = f*(x), vxE€NNO.
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In a similar way, one can establish the equivalence between (N, A) and the
output nulling dynamics as defined by Van der Schaft (1988) for nonsquare
systems. For this reason, (N, A) will be referred to as the output nulling
dynamics and N as the output nulling manifold, thereby using the same
terminology introduced by Anderson (1975; 1976) for linear systems.

Finally, the output nulling manifold can also be characterized in terms of
smooth input functions yielding a zero output.

Proposition 4.4. (see also Byrnes and Isidori, 1988 b, Lemma 2.1; or p. 292 of
Isidori, 1989 a, for the case of square invertible systems)  Suppose that y=0
is a strongly regular output function. Then

N = {xy € h"}(0)|3¢ > 0 and a C* input function
u: (0, £)—JR™ such that V¢ € (0, &), ®% () € K1 (D)},

where @ (t) denotes the solution of (2.1) corresponding to the input # and
x(0)=x.

Proof. If such an input function exists, then Ve=1, (d*/dt*)y(®)|=0=0;
therefore (xo,#(0),---,u®P(0))EF1(0), which shows that 1o En(F1(0))
=N. Conversely, suppose xoEN. Let a(x) be the feedback function con-
structed in the proof of Lemma 4.1, for k=n. Then for every x€EN,
f*(x)=f(x)+g(x)a(x)ET,N. Let W(t) be the flow of f* corresponding to xo;
i.e., W(0)=x,. Then the input u(f): = a(W(t))is C and satisfies, for £>0, but
sufficiently small, ®%(t)€NCh™(0).

4.2 Left- and right-invertibility  Since the work of Hirschorn (1979) and
Singh (1981), a great deal of effort has been devoted to understanding left-
and right-invertibility of nonlinear systems, and their relation to decoupling
(Descusse and Moog, 1937; Nijmeijer and Respondek, 1936; 1988) and output
reproducibility (Respondek and Nijmeijer, 1988). Recent work by Respondek
(1987) treats this subject in detail, with the emphasis being on conditions that
hold on an open dense subset of the state space. Fliess (1985; 1986) achieved a
synthesis of left-invertibility, right-invertibility and dynamic decoupling through
the use of differential algebra. Following his terminology, we say that the
system (2.1) is left-invertible if its rank, o*, equals m, the number of input
components, and it is right-invertible if its rank equals u, the number of output
components.

It is known (Di Benedetto et al., 1989) that the integer o* coincides with the
differential output rank, whenever both are defined. Moreover, if (x9, y=0)isa
strongly regular pair, it follows easily from Di Benedetto et al. (1989) and Sec. 3
that

(i) Q* B rankRBn(xOv Oy ) 0)1 (402)
where B, (x, ¥,, ", §-1) is calculated from the inversion algorithm,
(ii) o* = rankgh,(xo, 0, -+, 0), (4.3)

where b, (x,71,*,Up_1) 1S calculated from the dynamic extension algorithm. In
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Di Benedetto et al. (1989), it was also established that o* coincides with the
ranks of the Jacobian matrices introduced by Nijmeijer (1986),

o GlEtagnsi ) X e )
o* = ranky 3, . %y — rankg 3(u, . uDy
It then follows from Sec. 3 that
see el a(.}.’y ) y(n)) 6(5,9 $0 20 J’(n—l))
(iii) ~ o* = rankg G s | rankp au, -, u D) |, (4.4)

for any bEF1(0)Nna~1(@), O a sufficiently small open neighborhood of x,.

The above are relationships between algebraic quantities. The following
result is of interest because it establishes the equivalence between an algebraic
quantity and a geometric quantity. It is the analogue of p*=dim(ImB)
—dim(ImBNV*), for a linear system, where V* is the maximal controlled-
invariant subspace contained in the kernel of the output map. Recall that
& (x)=span{g,(x),---,g,,(x)} and is assumed to be m-dimensional throughout
X. :

Theorem 4.5. Suppose that (xy, y=0) is a strongly regular pair for (2.1) and
let (N, A) be the output nulling dynamics. Then o* =dim& (x¢) —dim (& (x)
NT, N).

(1) ~(k-1)

Proof. Let @,(x,37",--+,¥,7;"’) be the functions produced by the inversion
algorithm. Then by construction,

rank,B,(xy, 0, ---, 0)

rankpB, +1(xo, -+, 0)

8 (x)-8x0)

rankp

0
o1 (x0, 0, -, 0)g(xo)

Therefore, rankgB,,(%9,0, - -,0)=dim& (xy) —dim{vEZ (x¢) | (0h/0x) (x0)v=0,
-+, (09,/0x) (x0,0,--+,0)v=0} =dim& (x¢) — dim& (x) N T, N. In view of (4.2),
this completes the proof.

Hence, under the strong regularity condition, a system is right-invertible if
and only if, dim&(xy)—dim& (xy)NT, N=pu, the number of outputs, and left-
invertible if and only if, dim&(x¢)—dim&(xo)NT, N=m, the number of
inputs. When a system in square (m=p), these conditions reduce to
dim& (%) N T, N=0, which is how invertibility was used in Byrnes and Isidori
(1988 a; b).

It is interesting to observe that Byrnes and Isidori (1988 a; b), Descusse and
Moog (1987), Di Benedetto et al. (1989), Fliess (1985; 1986), Nijmeijer and
Respondek (1986; 1988), Respondek (1987), Respondek and Nijmeijer (1988)
and Singh (1981) are thus all consistent on their use of the term “invertible”.
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4.3 Dynamic extension = We will show next that a dynamic compensator can
be constructed that simultaneously preserves strong regularity, decouples the
system, and does not modify the output nulling dynamics. (Recall the example of
Sec. 2.)

Theorem 4.6. Suppose that (2.1) is right-invertible and that (x,, y=0) is a
strongly regular pair. Then there exists an open neighborhood @, of x,, an
integer ¢=0, and a dynamic state variable feedback

i = y(x, 2) + 8(x, 2)v }
; (4.5)

u= ax, z) + B(x, 2)v

where v(t) € JR™, z(t) E0, an open neighborhood of the origin of JR?, such that:

(a) the closed-loop system (2.1)-(4.5) is decoupled on @, X @ and the rank of
the decoupling matrix (over JR ) equals the number of outputs (Descusse and
Moog, 1987; Nijmeijer and Respondek, 1986; 1988),

(b) y=0 is a strongly regular output function for the closed-loop system
(2.1)-(4.5) restricted to @, X0,

(c) the output nulling dynamics of the system (2.1) restricted to @, is
isomorphic to the output nulling dynamics of the closed-loop system
(2.1)-(4.5) on O1X0O,, ! N

(d) there exist coordinates (§,,---,§ ) on 01 X0, &, possibly vector valued,
in which the closed-loop systems (2.1)-(4.5) has the form (see Isidori,
1987; Nijmeijer and Respondek, 1988),

§i=Ai§,'+bivi9 i=lr"'r“

-_— — — —_— —_— m —_— — —
EM"’I = (§1 Gy g#' §“+1) + zglgi(gl’ ) EM’ €y+l)vi Z (4.6)
y, = Cigl'v 1= 1; , U
where each pair (4;, b;) is in Brunovsky canonical form, C;=[1,---,0] and
R m
0=, =+, 0, m) + 2 Z(0, -+, 0, my; 4.7

represents the output nulling dynamics.
Proof. See the Appendix.

It is remarked that part (c) of Theorem 4.6 proves that by judiciously
appending integrators, the possibility of an integrator introducing a singularity
can be avoided. In Isidori (1989 a, p. 389-390), it has been established that no
matter how an integrator is appended, the extended system will always possess
a zero-dynamics diffeomorphic to that of the original system.

4.4 Minimum-phase property Inthe case of a general nonsquare nonlinear
system, the output nulling dynamics (N, A) is an affine control system and not a
single vector field; following van der Schaft (1988), to obtain an analogue of the
transmission zeros of a linear system, we must calculate the strong accessability
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distribution Z* of (N, A) and form the quotient, whenever it is well-defined.
Assume R* is constant dimensional. Then, the quotient M*: =N/&* defines
the zero-dynamics manifold. Let t: N—N/R* denote the canonical projection
and define the affine distribution, A: =7,(A), to be the zero dynamics (van der
Schaft, 1988).

In the case of a linear system, it is easy to verify that M* is the vector space
V*/R*, where V* is the maximal controlled invariant subspace contained in the
kernel of the output and & * is the maximal controllability subspace contained in
V*; A is a linear map on V*/®* whose spectrum corresponds to the transmis-
sion zeros (whenever the original system is minimal) (Wonham, 1979). One then
says that a system is minimum-phase if the transmission zeros are in the open
left-half plane. Since the induced dynamics of V* restricted to Z* is controll-
able, and therefore stabilizable, the minimum-phase property is equivalent to
the stabilizability of the induced dynamics on V*. Since for nonlinear systems
strong accessability does not imply stabilizability, we do not choose to define a
minimum-phase property in terms of A but instead in terms of A, which in
addition obviates the need to assume Z* constant dimensional.

The following definition of a minimum-phase system extends to nonsquare
systems, the one introduced by Byrnes and Isidori (1984) for square systems.

Definition 4.7. (Based on Byrnes and Isidori, 1984; 1988 a). = Suppose that
y=0 is a strongly regular output function for (2.1) and that x,€x(F~(0)) is an
equilibrium point. Then the system (2.1) is said to be minimum phase at x, if,
denoting by N°¢ the connected component of N passing through x,, (N, A) is
smoothly asymptotically stabilizable about x,; i.e., there exists an analytic
feedback »= a(x) defined locally about x, on N° such that f(x) +g(x)a(x)ET,N°¢
(for x in the domain of a(x)) and x, is an asymptotically stable equilibrium point
of the vector field f(x)+g(x)a(x) | N°.

The minimum phase property has been shown to be a sufficient condition for
the stabilization of square nonlinear systems via static state variable feedback
(Byrnes and Isidori, 1988 a). The following result reduces this problem for
nonsquare systems to the well understood case of square systems.

Theorem 4.8.  Suppose that (2.1) is right invertible, m>pu, y=0 is a strongly
regular output function and o€ £(F~(0)). Then there exists an open neighbor-
hood @ of x, upon which is defined an analytic singular feedback u=a(x)
+ B(x)v, vEIRY, such that the closed-loop system

%i="f(x

flx) + g(x)v}, o
y = h(x)

where f(x)=f(x)+g(x)a(x) and g(x)=g(x)B(x), satisfies
(i) rank of (2.1) = rank of (4.8),
(ii) the output nulling dynamics of (4.8) can be taken as the drift term of the
output nulling dynamics of (2.1) restricted to &,
(i) if (2.1) is minimum phase at x,, so in particular x, is an equilibrium point of
(2.1), then (4.8) is also minimum phase at x.

Proof. See the Appendix.
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5. A Comparison of Regularity Conditions

The goal of this section is to compare the notion of regularity proposed in
Sec. 2 with the regularity conditions introduced in previous works on system
inversion (Singh, 1981; Isidori and Moog, 1988), output nulling (Byrnes and
Isidori, 1988 a; b; Isidori, 1989 a), and input-output dynamic decoupling
(Descusse and Moog, 1987; Di Benedetto et al., 1989; Xia, 1989). We will see
that the conditions associated with dynamic extension, as well as those
associated with output nulling, are weaker than the strong regularity of y=0.
However, in the case of square systems, the two conditions taken together
precisely correspond to strong regularity of y=0 and the latter coincides with
the requirement for constructing a reduced-order left-inverse by Singh (1981).

5.1 System inversion Isidori and Moog (1988) show that, in general, the
notion of the zeros of a linear system may be extended to nonlinear systems in
three distinct ways: (1) the dynamics associated with y=0 (i.e., the zero or
output nulling dynamics), (2) the dynamics of a left-inverse system, and (3) the
dynamics associated to a maximal loss of observability. Under the hypotheses
that the system is square and invertible and the output y=0 is strongly regular,
the first two notions always coincide (Isidori and Moog, 1988). To construct a
“full-order” inverse, let u=1y(x, 5)?") |1<i<n, i<j<n) be the solution of the
system of equations

B = Ay, yj.">|1 <i<k i<j<k-1)

+ by(x, y](.")ll <i<k-1,i<j<k-1lu

for 1=k=<n. Compare this to (4.1). The matrix multiplying « will have full rank
for jlf.“ sufficiently small if and only if (2.3) of the definition of strong regularity
holds. Define the vector field f,,,=f+gy. Then, by the standard existence and
uniqueness theorems,

C'=f,~V(C,y~§”|15i$"’isfs")} (5.1)

u=y( 30| l<i<ni<i<n

with £(0)=x(0), is a local left-inverse of (2.1). Still following Isidori and Moog
(1988), a reduced-order inverse is obtained by solving the set of equations

y<kk>=(pk(x,y;f)usisk,isjsk), 1<k<n,

for 6=n—dim(N) components of x and substituting these into (5.1). A smooth
solution will exist whenever (2.2) of the definition of strong regularity holds.
The reduced-order inverse then has dim(/N) state variables. Whenever
ten(F10)), fi(E, 0)ET:N; therefore, whenever x(0)Ea(F~(0)), the
restriction of (5.1) to N is isomorphic to the zero dynamics of the system. In
summary, the regularity conditions of a reduced-order left-inverse by Singh
(1981) are the following:

a) rankpF(0) = dimg%F,, 0 <k <n,
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b) rankpE,(b) = dimg&,, 1 =<k < n,

where bEF1(0)Nz~1(@) and O is an open neighborhood of x,.

5.2 Zero-dynamics algorithm Consider now the zerc-dynamics algorithm
of Byrnes and Isidori (1988 b), Isidori and Moog (1988) and Isidori (1989 a). For
the purpose of comparing the regularity conditions used in the above cited works
with those given in Definition 2.1, we rewrite the zero-dynamics algorithm using
the formalism of Sec. 2.

Let xy be a given point of X such that f(x4)=0 and h(x,)=0. Set
My={x€X|h(x)=0}. Assume that there exists an open neighborhood U, of
such that 84/dx has constant rank on MyNU|. Let M§ be the connected
component of MyNU| which contains the point x.

Step 1:  Calculate yP=c¢,(x)+d;(x)u and define D,(x):=d,(x). Suppose
there exists an open neighborhood U, of xy, contained in Uy, such that D,(x)
has constant rank, denoted r;, on M{N U,. Hence, there exists a permutation of
the outputs, and a partition, such that upon writing y=col(y,, §,), where 7, has
71 components and §, has u—r; components, then

b, [ W ] A [ e1(x) +di(x)u ]

P & () +dy(x)u

satisfies ranknal(xo)=r1. Since rankRDl(xo)A=rl, there gxists an analytic
matrix R,(x), defined on M{NU,, such that d,(x)=R,(x)d,(x) on M{NU,.
Therefore, 5" can be expressed as

J?il) = é(x) + Rl(x)(jl“il)—i’l(x))
= el(x’ yil));

that is (" (x, u)=0,(x, 1" (x, u)). It follows that

A o 1 1 ~(2
UG TL=ROE oS ey )

00,
= Lfel P W})yiz) + Lgelu. (52)
1

Note that as M§N U is an embedded submanifold of X, after possibly shrinking
Uy, R, can be extended to an analytic function on all of U,
Define M;={xEM{NU,| 6,(x, 0)=0}. Assume that there exists an open
neighborhood Uj of xy such that [ (6k/31) (x)
L 4 (80;,(x, 0))/0x
M,NUji; let M{ be the connected component of M;NU; containing x.

] has constant rank on

Step 2:  Differentiate (V. From (5.2), this can be written as
G LG R oo (X9 Y Q)i (e 1 !
Define D(x, 7{)=col(d1(x), d»(x, 7{")). Suppose there exists an open

neighborhood U, of x4, contained in Uy, such that D,(x, 0) has constant rank,
denoted 7, on M{NU;. For beF1(0)Na~*(MsNUT,),
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[ dx
rankpE,(b) = rankp | dy

L dy 11y

[ oo 0 0
*

=rpankg-f Lonii: di(xa) . . Ot

% ¥ dy(x0)

\. e dz(x(), 0) 0

=n + rank,ﬁl(xo) + rankgpDy(x9, 0) = n + 71 + 7.

Therefore there exists a permutation of the components of ¥, and a subsequent
partition, such that }?1=col(572, 9,), where ¥, has 7, —r, components, and, upon
writing
Fe Eg+&:2u
c2+d2u-[62+d2u],
then rankgcol(d;(xo), d,(xy, 0))=7,. Therefore, there exists an analytic
matrix R, (x, yi” ), defined on (M§NU,)XV,, where Vyis a sufficiently small
open neighborhood of the origin in R", such that d(x, 7)) =R, (x,
) col(d,(x), da(x, 7). It follows that #$ can be expressed as

(2)
Yo

(1) _ = (x)
éo(x) + Rox, 7V iy TS
2(x) 2(x, 377) FO -By(x, 3, 7®)

D 0x(x, 717, 512, 75,

etc.
The regularity conditions of Byrnes and Isidori (1989 b) for the zero-
dynamics algorithm can therefore be restated as, for 1<=k=mn,

a) rankgD,(x, 0, ---, 0) constant on M;_NU,, (5.3)
oh
-gx—(x)
9%, 0)
b) rank, 0x ) constant on M{ N Uy, (5.4)

aek ' ..
L ax (x, 0, ’ 0) ]

c) rankgD, (%o, 0, -+, 0) = m (5.5)

for a sequence of nested open neighborhoods UyD--- DU, of x¢; superscript ¢
denotes the connected component containing x.
By construction,

M N U, = (F(0)° N U,.
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Then, proceeding as in the proof of Theorem 3.2, conditions (5.3), (5.4) and
(5.5) are equivalent to

a') rank,E, is constant on F311(0)Nz~(U,_1), (5.6)
b") rankpF, is constant on F'(0)Na~(U,), 5.7)
c’) rankpE, (b) — rankgE, (b)) = m, b € F;1L(0)Na " (U,_,), (5.8)

for a sequence of nested open neighborhoods UyD--- DU, of x,. Moreover, in
Di Benedetto and Grizzle (1990), it is shown that for square systems, a’) and c¢’)
imply i

b") rankp,F, = (k+1)p, (5.9)

on an open neighborhood @ of XX T* U, x,En(O).

As a consequence of the above, we deduce that condition (5.3) is weaker
than (2.3), and condition (5.9) is equivalent to (2.2). Moreover, condition (5.5)
is equivalent to left-invertibility under the regularity conditions (5.3) and (5.4).
Indeed, (5.5) is equivalent to (5.8) which, in turn, implies that the linearization
of (2.1) at the equilibrium x, is left-invertible. Since the rank of the linearized
system is always less than or equal to the rank of the original nonlinear system,
the assertion follows. This latter point settles a question posed to the authors by
Isidori (1989 b).

5.3 Input-output dynamic decoupling algorithm Let us first consider
the dynamic extension algorithm of Sec. 3. At each step of the algorithm, a static
state variable feedback is constructed to maximally decouple the outputs. In
order that it be smooth, the regularity condition,

rankak(xO, O, Ry 0) = rankak(x’ 171, =) ik-l)y
is imposed. This is equivalent, by Lemma 3.3, to
rankpE,(b) = dimg&,, 1 =<k <n,

for b€ F1(0)Na~1(@), @ an open neighborhood of x,.

Until now, all of the regularity conditions presented have involved evaluat-
ing, in a sequential manner, conditions on the differentials of the output and its
derivatives; moreover, each output component was differentiated up to the
same order. This simple pattern no longer holds for the algorithms of Descusse
and Moog (1987) and Nijmeijer and Respondek (1986; 1988), where, when
evaluating the constant rank conditions, (i) each component of the output may be
differentiated a different number of times and (ii) certain lower order derivatives
may be excluded. This situation is analyzed in Di Benedetto and Grizzle (1990).
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Appendix

Proof of Lemma 4.1.
Part(a): Fix k. Let P,={x€X|h(x)=0, ¢,(x,0)=0,-,¢,(x,0,::-,0)
=0}. The goal is to produce an open neighborhood @ of x, such that
a(Fz1(0))N@=P,NoO.

Since xo€w(F~1(0)), (%o, y=0) is a strongly regular pair. Therefore part (i)
of Theorem 3.2 and the implicit function theorem establish the existence of an
open neighborhood @ of x, and a C“-function #=a(x), defined on @, solving
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0 @ (x)+by(x)u
= : . (A.1)
0 @p(x, 0, -+, 0)+by(x, 0, -+, O)u
Define f*(x)=f(x)+g(x)a(x) on @ and set, for :=0,
u®(x) = Li-a(x). (A.2)

From (A.1), ~(”(x u(x), -, u% P (x))=0, for 1<i<k and x€0. This yields
FO(x,u(x), -, uV P (x))= 0 1<i<k, i<j because, for z<]y~(”—L(’ zH’)—O
on 0. Fmally, for all x€0, 1=<i<k, ”(’)(x u(x), -, uP(x))= (p(x 0,:---,0).
Therefore, if x€P,NO, then xEn(Fki(O))ﬂﬁ
Now suppose that x€mx(F;'(0)). Then h(x)=0 and there exist (u,-

u*7Y) such that y(x,u,---,u“")=0, 1<i<k. Therefore, 5'”’=0, 1<z<k
i<j<k and then 0= y("(x -, u" V)= (x,0,---,0). In other words,
#(F51(0))CP, and therefore, n(Fkl(O))ﬂﬁcPkﬂﬁ completing a double
inclusion.
Part (b):  The proof is almost identical to Part (a) and is therefore omitted.
Part (c): We will show that if x€EN,,, then xEN,,, ;. Fix xyEN,,. We must
produce #(xo), -+, u"™ (%) such that F,,1(xo,u(x0), -, 4™ (x4))=0; that is,
YD (%, u(x0), -+, #(x0))=0, 1<i<n+1. Let k=n in the proof of Part (a)
and let »® (x) be defined on an open neighborhood @ of x, as in (A.2). Then,
5O, u(x), -, u" V(0))=0, for x€0, 1=<i=n, 1<j<n+1 and §¥(x,
u(x) e ul 1’(J\:)) 0, for x€0NN,, 1<i<n. It remains only to show that

oD (%o, ulxo), -+, u™(x0)) = 0. (A.3)
Note that, by definition,
Fr P, u(x), -+, 4P @) = (AP (x, ulx), -, u” (1)), f*(x)), (A.4)
and for each 1=k=<#n and xE€0,
FE(x, u(x), -+, u*P(x)) = @, (x, 0, -+, 0). (A.5)
To simplify the notation, let @,(x)=¢,(x,0,---,0) and @, (x)=h(x). By the
construction of the inversion algorithm, for 1<z<n @,(x)= col[Lf*hQ awi(x),

Lf*h (x)]. By part (ii) of Theorem 3.2, the codistributions WoC---CW,
defmed by

Wi(x) = spang{dp,(x), ---, dp,(x)} (A.6)

are constant dimensional on @. Therefore, since T*@ is n dimensional, there
exists k<n—1 such that W;=W, for all 1=k. In particular, each row of g, is
contained in W,_;. We will now show that for xEN,NO, f*(x)eEWS l(x)
thereby establishing (A.3). If x€N, N0, then ¢, (x)=0 for 0<k=n. But this
yields the result because, for 0<k=<#n—1, and xEN,,ﬁ@,
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~(k+1) (k)
e = yk+l (xy u(x)y Sriet) u (x))
ZE e [ﬁ?f“’(x, u(x), -+, u""(x))]

B [@ﬁm]:[ 3 ]

This completes the proof that xyEN, implies xoEN, ;. Since the reverse
inclusion is immediate, we conclude that N,,=N,, . ;. Repeating the above steps,
one completes the proof of the theorem.

Proof of Theorem 4.6. We use the dynamic compensator constructed by
the dynamic extension algorithm. The integer ¢ then equals dimv;+---
+dim®w,,_;. The decoupling matrix of the closed-loop system is equal to b,,(x, v,
-++,7,_1). By (i) of Theorem 3.4, there exists an open neighborhood @, of x, and
0, of the origin of JR? such that at each point of @, X@,, the rank of b, equals
the number of outputs, u. (Recall that right-invertibility implies that
rankyb,(%,0,---,0)=p*=u). Hence, we can assume without loss of generality
that the dynamically extended system is already decoupled. Thus (a) is
established, and Proposition 2.2 then yields (b). It follows from Lemma 4.1
(Part (b)) that the output nulling manifold V of (2.1) can be locally represented,
in terms of the functions computed in the dynamic extension algorithm, as

NNO,={x€ O,|hx) =0, 5 ) S eve 1 (63 U coo ) (T

after possibly shrinking &,; moreover, vy _ is the empty vector because (2.1) is
right-invertible. Applying the dynamic extension algorithm to the closed-loop
system consisting of (2.1) and (4.5) yields that its output nulling manifold, N,
equals

{(x, 171, OO, 17,,_1) = @1X02|h(x) = O, y_il) = 0,
wl(x, v)=20, -, 3_’(’:1) = 0, wn_l(x’ U1, ***y Upi) = 0}’

n

that is,
NCI= {(xy 0) Eglxﬁzlh(x) = 0) wl(x’ 0) = 01 Yy wn—l(x’ 0, Tty 0) = 0}.

Therefore NN@, and N, are diffeomorphic. Showing that A is isomorphic to
A, is then straightforward, using Remark 4.3 for example. The “normal form”
(4.6) is standard and can be found in many references (see Isidori, 1989 a;
Nijmeijer and Respondek, 1988, for example). That (4.7) represents the output
nulling dynamics is easily seen by setting the output y identically equal to zero
and calculating 7 (F~(0)).

Proof of Theorem 4.8. Let by,---,b, be as calculated by the inversion
algorithm. Without loss of generality, it can be assumed that there exists an
open neighborhood @ of x, such that

Bl(x) 0, 0
: o o] : (A.7)
s (a0 L 0
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where I, is the (m—p) X (m— u) identity matrix and O, is a u X (m — u) matrix of
zeros. Indeed, if (A.7) is not satisfied, part (i) of Theorem 3.2 and the Implicit
Function Theorem guarantee the existence of an open neighborhood @ of %, and
an m X (m— p) matrix of analytic function, f,(x), such that

b.(x, 0) 0
: Ba(x) = | - (A.8)
ba(x, 0, --+, 0) 0

and rank B5(x9) =m— pu. Then choose an m X p matrix of analytic functions S, (x)
such that B(x)=[f;(x):B2(x)] has rank m; this is always possible, after
shrinking @, if necessary. An easy calculation gives, for the closed loop system
corresponding to # = f(x)v, that (A.7) is then satisfied. Hence, (A.7) is assumed
to hold. Let a(x) be as in the proof of Lemma 4.1, part (a), for k=#. Then the
output nulling dynamics of (2.1) restricted to @ is

m

AW = {f*) + 2 g(xu;|x € N n o), (A.9)

=p+1

where f*(x)=f(x)+g(x)a(x). Consider the singular feedback,
11 Uy
u=ax) + | - -, (A.10)
01 UM

where I, is the puXx p identity matrix and @, is an (m— pu) X u matrix of zeros,
resulting in the closed loop system,

u
%= f*x) + Zlg,-(x)vi

= , (A.11)
y = h(x)

which is square, and by (A.7), it is right-invertible and strongly regular; indeed,
(A.7) implies that the controls #,,,,--,u%, do not contribute to the rank
calculations in the inversion algorithm. Moreover, its output nulling dynamics is
given by

Ay(x) = {f*(x)|x € N n 0}, (A.12)

which is the output nulling dynamics of (2.1) with #,.;="--=u,,=0. It is now
claimed that whenever (2.1) is minimum phase at x,, f* can be assumed to be
asymptotically stable. This is easy, because the minimum phase property
assures, after possibly shrinking @, the existence of an analytic feedback (),
defined on NN@, such that x, is an asymptotically stable equilibrium point of
f*(x)+ [gy +1®),--, 8, ,,16(x). Since N is an embedded submanifold of X, after
possibly shrinking @ again, we can extend § to an analytic function on .
Therefore, by replacing a(x) by a(x)+d(x), we arrive at an asymptotically
stable f*(x).
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