
 

  

Abstract— Two feedback controllers that induce stable 
running gaits on a three-degree-of-freedom asymmetric 
hopper, termed the Asymmetric Spring Loaded Inverted 
Pendulum (ASLIP), see Fig. 1, are compared in terms of their 
steady-state and transient behaviors. In each case, feedback is 
used to create a lower-dimensional hybrid subsystem that 
determines the existence and stability properties of periodic 
motions of the full-dimensional closed-loop system. The first 
controller creates a one degree-of-freedom subsystem through 
imposing two suitably selected (virtual) holonomic constraints 
on the configuration variables of the ASLIP. The second 
controller asymptotically imposes a single (virtual) holonomic 
constraint to create a two-degree-of-freedom subsystem that is 
diffeomorphic to a standard Spring Loaded Inverted Pendulum 
(SLIP). The two controllers induce identical steady-state 
behaviors. Under transient conditions, however, the underlying 
compliant nature of the SLIP allows significantly larger 
disturbances to be accommodated, with less actuator effort, 
and without violation of the unilateral constraints between the 
leg end and the ground. 

I. INTRODUCTION 
he Spring Loaded Inverted Pendulum (SLIP) has proven 
useful in (qualitatively) explaining various aspects of 

running in animals [5], and in designing empirical 
controllers for dynamic legged robots [9], [1]. The success 
of the SLIP in predicting essential features of sagittal plane 
running has prompted a further study aimed at understanding 
whether the SLIP truly represents a dynamic model of 
running, and thus would be an interesting target model for 
legged robots, [5], [11]. These research efforts have 
produced a large variety of controllers for the SLIP; see [11] 
and references therein, and more recently [12] and [2]. 
Moreover, these controllers have been employed 
successfully in the control of multi-legged running [10]. 

The hybrid dynamics and underactuation inherent in 
legged locomotion have stymied the formal extension of 
SLIP controllers to more elaborate models that enjoy a more 
faithful correspondence to a typical locomotor’s structure 
and morphology. Only a few results are available, including 
[1] (where experimental results are also provided), and [3], 
in which controllers for running models that include torso 
dynamics, energy dissipation and leg inertia exploit results 
known for the SLIP. However, in all these models the hip 
joint coincides with the torso center-of -mass (COM), an 
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assumption which is relaxed in this paper. 
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Fig. 1.  (Left) A preliminary design of a leg for a bipedal robot that is 
currently under construction; for the design philosophy and details see [6]. 
The knee has a revolute series compliant actuator. (Right) The Asymmetric 
Spring Loaded Inverted Pendulum (ASLIP). The leg force 1u  will be 
modeled as a spring in parallel with a prismatic force source. The ASLIP is 
a more faithful representation of the robot on the left than a SLIP model. 

A quite different paradigm for control law design has been 
followed in [13], [4], [7], where geometric nonlinear control 
methods have been developed that deal directly with the 
underactuation and hybrid dynamics present in bipedal 
locomotion. This work has produced feedback controllers 
that induce provably, asymptotically stable, dynamic 
walking and running motions in a class of planar bipedal 
robots. In particular, it has been shown that planar walking 
and running gaits can be “embedded” in the dynamics of a 
closed-loop system through the creation of a reduced-order 
hybrid subsystem, called the Hybrid Zero Dynamics (HZD). 

A drawback of [13] and [4] was that compliance, such as 
that present in a SLIP model, could not be easily 
accommodated. This has been overcome in [8], where a 
more complete SLIP-like model that includes nontrivial 
pitch dynamics, called the Asymmetric Spring Loaded 
Inverted Pendulum (ASLIP) (see Fig. 1), was successfully 
controlled by embedding the SLIP as its HZD. 

In this paper, the performance benefits of embedding the 
SLIP as the HZD of the ASLIP are evaluated by comparing 
it to a controller design that achieves a one degree-of-
freedom (DOF), non-compliant HZD. The two controllers 
induce identical steady-state behaviors. Under transient 
conditions, however, the underlying compliant nature of the 
SLIP allows significantly larger disturbances to be 
accommodated, with less actuator effort, and without 
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violation of the unilateral toe-ground constraints. 
The results presented in this paper provide the first step 

toward a general framework for the design of control laws 
that induce elegant, provably stable, running motions in 
legged robots, by combining the practical advantages of the 
compliant SLIP with the analytical tractability offered by the 
HZD method introduced in [13]. 

II. THE ASYMMETRIC SPRING LOADED INVERTED 
PENDULUM 

A schematic for the Asymmetric Spring Loaded Inverted 
Pendulum (ASLIP) is presented in Fig. 1. The hip joint 
(point at which the leg is attached to the torso) does not 
coincide with the COM of the torso, which is modeled as a 
rigid body with mass m  and moment of inertia about the 
COM J . The leg is assumed to be massless. The ASLIP is 
actuated with two inputs: a force 1u  acting along the leg, 
and a torque 2u  applied at the hip. In Section VI, the leg 
force 1u  will be modeled as a spring in parallel with a 
prismatic force source. In what follows, the subscripts “f” 
and “s” denote the flight and stance phases respectively. 

A. Flight Phase Dynamics 
The flight phase dynamics corresponds to a point mass 

undergoing ballistic motion in a gravitational field together 
with a double integrator governing the pitch motion. The 
configuration space fQ  of the flight phase is parameterized 
by the Cartesian coordinates cx  and cy  of the COM, 
together with the pitch angle θ , i.e. f c c f( , , )q x y Qθ ′= ∈ . 
The flight phase dynamics can be easily written in state-
space form 
 ( )f f fx f x=� . (1) 

The flight phase terminates when the vertical distance of 
the toe from the ground becomes zero. To realize this 
condition, the flight state vector is augmented with the 
touchdown leg length tdl  and angle tdϕ , td td

f ( , )lα ϕ ′= . 
Since the leg is assumed massless, during flight it obtains the 
desired length and orientation instantaneously, hence 

f 0α =� . The threshold function f sH → , whose zero crossing 
signifies the touchdown event, is given by 

 ( ) ( )td td
f s f f c, cos sinH x y l Lα ϕ θ θ→ = − + − , (2) 

Note that in (2), the parameter fα  is available for control 
and will eventually be chosen according to an event-based 
feedback law. 

B. Stance Phase Dynamics 
The configuration space sQ  of the ASLIP during stance is 

parameterized by s s( , , )q l Qϕ θ ′= ∈ . Using the method of 
Lagrange and then bringing the equations in standard state-
space form, the ASLIP stance dynamics is described by 

 ( ) ( )s s s s sx f x g x u= +� , (3) 

where s s s( , )x q q′ ′ ′= �  is the state vector, and 1 2( , )u u u ′=  is 
the input vector during stance. The threshold function, 
specifying the liftoff event at its zero crossing, is given by  

 ( ) ( ) ( ) ( )s f s 1 2, cos sinH x u u u lϕ θ ϕ θ→ = + − + , (4) 

which describes the fact that liftoff occurs when the vertical 
component of the ground force becomes zero. Define 

 ( ) ( ){ }s f s s s f s, , 0S x u TQ U H x u→ →= ∈ × = . (5) 

C. Open-Loop Hybrid Dynamics 
The ASLIP hybrid dynamics, combining the stance and 

flight phases with the discrete transitions among them, can 
be compactly written in the form of a system with impulse 
effects [8]. If ∆  is the map taking the state sx−  just prior to 

liftoff to the state sx+  just after touchdown, then the ASLIP 
takes the form 

 
( ) ( ) ( )

( ) ( )
s s s s s s s f

ASLIP

s s f s s f

, ,
:

, , , ,

x f x g x u x u S

x x u x u Sα

−
→

+ − −
→

 = + ∉Σ 
= ∆ ∈

�
. (6) 

The map ∆  “compresses” the flight phase into an 
“event,” and can be obtained numerically. Equation (6) 
shows that ASLIPΣ  is defined on a single chart sTQ , where 
the states evolve continuously, together with the map ∆ , 
which reinitializes the differential equation at liftoff. 

III. CONTROL LAWS: GENERAL DEVELOPMENT 
In this section, the general framework, within which the 

ASLIP controllers are designed, is outlined. In this paper, 
rather than concentrating on the theoretical development of 
the control laws, we turn our attention to design and 
implementation issues including a comparison of two 
controllers for the ASLIP constructed along the same 
general guidelines, which are briefly discussed in this 
section. Details regarding analytical stability proofs not 
included in this paper can be found in [13], [7] and [8]. 

A. Overview of the Control Method 
The feedback law exploits the hybrid nature of the system 

by introducing control action in two levels; see Fig. 2. At the 
first level, a continuous-time feedback law cΓ  is employed 
in the stance phase with the purpose of creating an invariant 
and attractive surface Z  in the stance state space, on which 
the dynamics of the ALIP is restricted. At the second level, 
event-based updates of controller parameters are performed 
at transitions from stance to flight. Generally, the event-
based parameter update law is organized in an inner/outer-
loop architecture, with the inner-loop controller sΓ  intended 
to render the surface Z  invariant under the reset map ∆ . 
This condition is referred to as hybrid invariance, and it 
leads to the creation of a reduced-order hybrid subsystem 
governing the stability properties of the full-order ASLIP 



 

model, called the Hybrid Zero Dynamics (HZD). In cases 
where the in-stride (continuous) controller achieves hybrid 
invariance, sΓ  is not needed and may be excluded from the 
controller design; see Section V for one such example. 
Finally, the outer-loop controller fΓ  completes the control 
design by ensuring that the resulting HZD is exponentially 
stable. 

 
Fig. 2. Feedback diagram presenting the basic structure of the controllers. 

In Sections IV and V we particularize these ideas through 
explicit constructions of two sets of feedback laws cΓ , sΓ  
and fΓ  that achieve the control objectives. In the first case, 
the control objective during the stance phase is to impose 
virtual holonomic constraints on the ASLIP dynamics, so 
that the resulting HZD is a one DOF mechanical system; 
because the resulting HZD is not compliant, we refer to this 
controller as the rigid target model controller. In the second 
case, the objective is to achieve a compliant HZD. Based on 
the extensive literature available on the Spring Loaded 
Inverted Pendulum (SLIP), see for instance [2], [5], [11], 
[12], the compliant SLIP is selected as the target model, and 
a controller is designed that imposes its dynamics as the 
HZD of the ASLIP; this controller is referred to as the SLIP 
embedding controller, [8]. Fundamental differences in the 
two control designs will be highlighted in Section VI. 

B. In-Stride Continuous Control 
To the continuous part of (6), associate the output 

 ( )s s,y h q α= , (7) 

which depends on the configuration variables sq , and on a 
set of parameters s sAα ∈ . These parameters can be the 
coefficients of polynomials representing a set of virtual 
constraints, or the mechanical properties of a target model, 
and they remain constant during stance i.e. s 0α =� . 

Given a set of values for the parameters sα , 
differentiating (7) twice with respect to time results in 

 ( ) ( )
s s s

2
2

s s s s2 , ,f g f
d y L h x L L h q u
dt

α α= + , (8) 

where ( )
s s s s,g fL L h q α  is the decoupling matrix. Under the 

condition that ( )
s s s s,g fL L h q α  is invertible, 

 ( ) ( )( ) ( )
s s s

1* 2
s s s s s s, , ,g f fu x L L h q L h xα α α

−
= −  (9) 

is the unique control input that renders the surface 

 ( ) ( ){ }s ss s s s s, 0, , 0fZ x TQ h q L h xα α α= ∈ = =s  (10) 

invariant under the flow of the continuous part of the ASLIP 
dynamics (6); that is, for every 

s
x Zα∈ , 

 ( ) ( ) ( ) ( )
s

* *
s s s s, , xf x f x g x u x T Zαα α= + ∈ . (11) 

Following standard terminology, the surface 
s

Zα  is the 
stance phase zero dynamics manifold, and 

 ( )
s

*
s| ,Zz f z

α
α=�  (12) 

is the stance phase zero dynamics. To establish attractivity 
of 

s
Zα , the input (9) is modified as 

 
( )( ) ( ) ( )

s s s

c s s

1 2
s s s s

( , )

 , , , , ,g f f

u x

L L h q y y L h x

α

α υ ε α
−

= Γ

 = − �
 (13) 

where 

 ( ) 2

1 1, , y y
P Vy y K y K yυ ε

εε
= − −� � , (14) 

and y
PK , y

VK  are appropriately chosen gain matrices, and 
0ε > . Under the feedback law cΓ , the hybrid system (6) 

takes the form 

 
( )

( )
s s,cl s s s s fcl

ASLIP
s s f s s f

, ,
:

, ,

x f x x S

x x x S

α
α

−
→

+ − −
→

 = ∉Σ  = ∆ ∈

�
, (15) 

where 
 s,cl s s s s s s c s s( , ) ( ) ( ) ( , )f x f x g x xα α= + Γ . (16) 

C.  Event-Based Control 
A key implication of the hybrid nature of (15) combined 

with the (trivial) dynamics s 0α =�  and f 0α =�  governing the 
parameters in (15), is the possibility of updating sα  and fα  
in an event-based manner. More specifically, at each 
crossing of the surface s fS → , sα  and fα  can be updated 

based on feedback of the liftoff state s s fx S−
→∈ , i.e. 

 ( )f f sxα −= Γ , (17) 

 ( ) ( )( )+
s s s f s s f s, ,x x xα α− − −= Γ = Γ Γ , (18) 

with the purpose of the feedback laws sΓ  and fΓ  being to 
extend the notion of invariance in the hybrid setting, and to 
ensure stability of the resulting HZD. Loosely speaking, (17) 
introduces control authority over the initial conditions of the 
continuous part of (15). On the other hand, (18) allows for 
“real-time” motion planning in stance via updating sα . 

To ensure hybrid invariance, the inner-loop controller sΓ  

is designed to provide updated values +
sα  of the stance 

parameters so that the following conditions are satisfied: 



 

(i) the surface 
ss fS Zα→ ∩ , corresponding to those states of 

s
Zα  resulting at liftoff, is the same as +

s
s fS Zα→ ∩ ; 

denote 
ss fS Zα→ ∩  by s fS Z→ ♦∩ , and 

(ii) s fS Z→ ♦∩  is invariant under the reset map ∆  i.e. 
( ) +

s
s f f( )S Z A Zα→ ♦∆ × ⊂∩ . 

In words, (i) means that liftoff occurs where it would have 
occurred without updating sα . Enforcing (i) and (ii) through 
the update law sΓ  results in the creation of a lower-
dimensional hybrid subsystem, the HZD, which has the form 

 

( )

( )
( )

s

s f

s f

*
s

s f
s

HZD
f

s f+
s s f

,
,

0
:

,
,

,

Z

S Z

S Z

f zz
z S Z

zz
z S Z

z

α
α

α

α

α α
→ ♦

→ ♦

−
→ ♦

−+
−

→ ♦−

     = ∉       Σ   ∆   = ∈   Γ   

∩

∩

�
∩

�

∩

. (19) 

In the general case, inclusion of the inner-loop controller sΓ  
is necessary for enforcing conditions (i) and (ii). An example 
of this situation is the rigid target model controller of 
Section IV. However, for the SLIP embedding controller of 
Section V, hybrid invariance can be achieved trivially 
without the inclusion of the inner-loop controller sΓ .  

A critical aspect of the HZD (19) is its dependence on fα , 
which can be selected according to the outer-loop feedback 
law fΓ  of Fig. 2, intended to exponentially stabilize (19). 
One way of designing fΓ  is by using discrete LQR 
techniques. An alternative is to use a modification of 
Raibert’s forward speed controller. Both methods are 
explored in the following sections. 

IV. ONE DOF HYBRID ZERO DYNAMICS: THE RIGID 
TARGET MODEL CONTROLLER 

This section describes the first of the controllers presented 
in this paper. The design procedure provides the feedback 
laws cΓ , sΓ  and fΓ , whose function was described in 
Section III. In this case the procedure results in a one DOF 
HZD determining the stability of the ASLIP. 

A.  In-Stride Continuous Control 
During the stance phase, the ASLIP exhibits one degree of 

underactuation. The two inputs 1 2( , )u u u ′=  will be used to 
asymptotically impose two virtual holonomic constraints to 
two DOF, which are chosen to be the leg length and the 
pitch angle i.e. ( , )aq l θ ′= . Other choices are possible; 
however, this particular one allows for the direct comparison 
with the SLIP embedding controller of Section V. Here, the 
virtual constraints are chosen to be polynomials 
parameterized by the monotonic quantity 2uq π ϕ θ= − − , 
representing the angle of the leg with respect to the ground, 
as shown in Fig. 1. The virtual constraints are imposed 
through zeroing the output 

 ( ) ( )s s s, ,a d uy h q q h qα α= = − , (20) 

where dh  are the polynomial functions of uq  describing the 
desired evolution of aq , and sα  includes the corresponding 
polynomial coefficients. Details regarding the polynomial 
functions are included in the Appendix. 

Following the procedure that was outlined in Section III, 
the continuous feedback controller cΓ  is designed according 
to (13)-(14), and it renders the surface 

s
Zα  defined by (10) 

invariant under the flow of the stance dynamics, and 
attractive. It is emphasized here that two virtual holonomic 
constraints are imposed by zeroing (20), thus resulting in a 
one DOF HZD evolving on a two-dimensional surface 

s
Zα . 

This procedure results in the closed-loop hybrid system (15), 
where, the surface s fS →  is selected to be 

 { }s f s s 0| 0, 0S x TQ l l l→ = ∈ − = >� . (21) 

To explain (21) note that, when the feedback controller cΓ  
is introduced, the liftoff condition becomes a control 
decision, and is assumed to occur when the leg length 
obtains a particular value, namely 0l , see also [4]. 

B. Event-Based Control 
The development of the event-based control law closely 

follows the structure outlined in Section III C. In this case, to 
achieve the boundary conditions (i) and (ii), it is necessary to 
include the inner-loop controller sΓ  in the feedback design. 
Details on how to construct sΓ  are given in the Appendix. 

The outer-loop control law fΓ  updates td td
f ( , )lα ϕ ′=  to 

exponentially stabilize the HZD. In the rigid target model 
controller, we do not explore the possibility of updating the 
touchdown leg length tdl ; tdl  is assumed to be always equal 
to its nominal value 0l . This leaves the touchdown angle tdϕ  
as the only parameter available for control. The Poincaré 
map P  associated with (15) under the feedback law sΓ , 
gives rise to the discrete-time control system, 

 ( ) ( ) ( ) ( )( ) ( )( )s s s s1 , , ,td tdx k P x k x k k kϕ ϕ− − −+ = Γ , (22) 

where s ( )x k−  is the state just prior k-th liftoff. Linearizing 
(22) and implementing a discrete LQR controller results in 

 ( ) ( )( ) ( )f s s s
td tdk x k K x k xϕ ϕ− − − = Γ = + −  , (23) 

where sx −  is the nominal value of the state just prior k-th 
liftoff. The feedback controller (23) guarantees that all the 
eigenvalues of the linearization of (22) are within the unit 
circle, and completes the control design. Note that instead of 
the full model Poincaré map (22), the one-dimensional 
Poincaré map associated with the HZD (19) could have been 
used, affording a reduced-order stability test; [13], [4], [7]. 

V. TWO DOF HYBRID ZERO DYNAMICS: THE SLIP 
EMBEDDING CONTROLLER 

This section describes the second of the controllers 



 

presented in this paper. This controller is fundamentally 
different from the rigid target model controller of Section IV 
in that the HZD is designed to be a physically compliant 
dynamic system. As will be shown in Section VI, this has 
significant implications for perturbation rejection, since it 
ensures that the closed-loop ASLIP behaves like a spring, 
even when it is not on the nominal orbit. This behavior is 
achieved by designing the HZD to be a “copy” of (i.e. 
diffeomorphic to) the SLIP hybrid dynamics. 

A. In-Stride Continuous Control 
In view of the underactuated nature of the stance phase, 

the control objectives of keeping the torso at a desired 
constant angle and of the COM evolving according to the 
SLIP dynamics, will be achieved in different time scales. 
Since the requirement for the torso being upright throughout 
the motion is more stringent, high-gain control will be 
imposed on the pitch rotational motion. 

To the continuous part of (6), append the output 

 ( )s ,y h q θ θ θ= = − , (24) 

with θ  a desired pitch angle. The requirement of θ  being 
constant is a necessary condition for matching the ASLIP 
translational dynamics with the SLIP. The proof of this 
statement will not be presented here for reasons of space. 

Differentiating the output twice results in 

 
2

1 22

cos sind y L L lu u
J Jldt

ϕ ϕ −= − + . (25) 

Equation (25) shows that two inputs are available for zeroing 
the (single) output (24). In what follows, the hip torque 2u  is 
solely devoted to pitch control, while the leg input 1u  is 
reserved for controlling the zero dynamics. This is different 
from the rigid target model controller, where no input was 
available in the zero dynamics. Since sinl L ϕ≠  for all the 
reasonable configurations of the ASLIP, selecting 

 ( )2 1
cos, ,

sin
Jl Lu u

L l J
ϕυ θ θ ε

ϕ
 = + −  

�  (26) 

with 

 ( ) ( )2

1 1, , P VK Kθ θυ θ θ ε θ θ θ
εε

= − − −� � , (27) 

where PKθ , VKθ  are positive constants and 0ε > , renders 
the zero dynamics surface (10) invariant and attractive. It 
should be pointed out that, contrary to the rigid target model 
controller, the zero dynamics surface is a four-dimensional 
embedded submanifold of the state space sTQ . This 
complicates stability analysis of the resulting HZD, which is 
no longer a one DOF system as was in Section IV. 

However, the presence of 1u  in the zero dynamics allows 
for control action. A feedback law can be devised for 1u  so 
that the zero dynamics associated with the output (24) 
matches exactly the differential equations of the SLIP 
dynamics. Intuitively, if the torso is kept at a constant pitch 

angle, 1u  can be selected so that the motion of the ASLIP 
COM is governed by the SLIP dynamics. Formally, this can 
be achieved by studying (15) under the feedback law (26)-
(27) as a singularly perturbed model, with ε  being the 
perturbation parameter. The details of this analysis have 
been presented in [8], and will not be included here. It is 
only mentioned that the resulting control law is given by 

 1 SLIP
sinl Lu F
r

ϕ−= , (28) 

where 

 2 2 2 sinr L l Ll ϕ= + − , (29) 

is the distance between the COM and the toe, Fig. 1, and 

 ( )SLIP 0 EF k r r r F= + ∆ − + . (30) 

The last expression (30) can be recognized as the spring 
force acting along a SLIP leg with stiffness k  and 
uncompressed length 0r r+ ∆  ( 0r  is the nominal leg length 
determining touchdown and r∆  is a pretension). The term 

EF  not present in the classical SLIP corresponds to a 
corrective force intended to stabilize the total energy of the 
SLIP at a nominal value E , and it is given by  

 ( )sin cosE
E P

l L LlF K l E E
r r

ϕ ϕ ϕ− = − − − 
 

� � , (31) 

where 0E
PK > , and E  is the total energy 

 
( ) ( )( )
( )

2 2 2

2
0

1 cos sin
2
1      .
2

E m l l mg l L

k r r r

ϕ ϕ θ θ= + + + + +

+ ∆ −

� �
 (32) 

This modification is necessary since, in the classical SLIP, 
perturbations away from the nominal energy cannot be 
corrected due to the conservative nature of the system. 

Combining (26)-(27) and (28)-(32), a feedback controller 
of the form ( )c s s,u x α= Γ  is obtained. The vector 

s 0( , , , )k r rα θ ′= ∆  corresponds to parameters that have been 
introduced by the control law, and includes the mechanical 
properties of the target model. These parameters will be 
selected in Section VI via an optimization procedure. The 
resulting closed-loop system has the form of (15) with 

 { }2 2
s f s s 0 2 sin 0S x TQ r L l Ll ϕ→ = ∈ − + − = . (33) 

Intuitively, (33) means that liftoff in the closed-loop ASLIP 
occurs when the distance between the foot and the COM 
becomes equal to 0r . This assumption is based on the fact 
that, in the closed-loop system, transition into flight is a 
control decision, as is explained in [4]. 

B. Event-Based Control 
In deriving an event-based feedback law sΓ  and fΓ , it is 

useful to observe that the pitch angle during flight is 



 

governed by trivial dynamics i.e. 0θ =�� . Hence, if liftoff 
occurs on the zero dynamics i.e. when θ θ− =  and 0θ − =� , 
then at touchdown we have θ θ+ =  and 0θ + =� , i.e. landing 
occurs on the zero dynamics. Thus, the requirement for 
hybrid invariance is trivially satisfied. This observation 
removes the need for an inner-loop controller sΓ . 

Next, the outer-loop controller fΓ  is designed to 
exponentially stabilize the ASLIP HZD (19) through the use 
of available SLIP event-based (touchdown angle) 
controllers. This is achieved in two levels. 

In the first level, conditions ensuring that the reset map of 
the ASLIP HZD (19) is equal to the SLIP reset map are 
imposed. Since the translational dynamics of the ASLIP and 
the SLIP coincide in flight, fΓ  is designed so that the flight 
phase is interrupted at identical conditions in both systems. 
Hence, if 0r  is the nominal (touchdown) length of the SLIP 
leg and ψ  its touchdown angle, see Fig. 1, the conditions 

 ( ) ( )td 2 2
0 02 sinl L r Lrψ ψ θ= + + − , (34) 

 
( )2td 2 2

0td
tdarcsin

2

l L r

Ll
ϕ

 + −
 =
 
 

, (35) 

ensure that the SLIP touchdown condition is identical to the 
corresponding one for the ASLIP (2). 

In the second level, the angle ψ , see Fig. 1, is updated 
according to the feedback law, 

 ( ) ( )c c cxx K x xψ ψ− −= + −�
�� � ; (36) 

cx�  and ψ  are the nominal forward speed and touchdown 
angle of the SLIP with nominal energy E , respectively, and 

cx−�  is the actual speed of the ASLIP at liftoff. It can be 
recognized that (36) corresponds to a variation of Raibert’s 
control law, [9]. Control laws similar to (36) exist in the 
literature, e.g. [2], [11], [12], and they all are equally valid 
candidates for updating ψ ; this particular one has been 
chosen for illustrative purposes. It is remarked that while the 
event-based controller (34)-(36) achieves exponential 
stability of the ASLIP, letting the pitch angle in (34) be 
equal to its actual value (via continuous feedback during the 
flight phase), instead of its nominal value θ , enlarges the 
domain of attraction of the controller. This modification will 
be included in the simulations of Section VI. 

VI. CONTROLLER EVALUATION VIA SIMULATION 

A. Nominal Orbit Design Through Optimization 
The mechanical properties of the ASLIP used in the 

simulations correspond to a biped robot currently under 
construction (see [6] for design details), and are presented in 
Table I (see also Fig. 1). To implement the rigid target 
model controller, a sixth order polynomial was used for the 

desired leg length, and a constant polynomial for the desired 
pitch angle; see Appendix. Generally, the rigid target model 
controller allows for the desired θ  being any suitably 
parameterized function of uq , thus allowing for nontrivial 
motions of the torso. However, this is not possible in the 
SLIP embedding controller, due to constant pitch throughout 
the nominal motion being a necessary condition for its 
implementation. 

TABLE I 
SIMULATION PARAMETERS 

 Parameter Value Units 

 Torso Mass ( m ) 27 kg 

 Torso Inertia ( J ) 1 kg m2 

 Hip to COM Spacing ( L ) 0.25 m 

 Nominal Leg Length ( 0l ) 0.9 m 

 Uncompressed Spring Length ( natl ) 0.91 m 

 ASLIP Spring Constant ( Ak ) 7578 N/m 

Both controllers introduced a set of parameters sα , whose 
values along the nominal orbit can be selected using the 
optimization technique developed in [13]. Consider the 
closed-loop hybrid system (15) with cost function 

 ( )
[ ]

( ){ }s

s

22
s 2 1 A nat0,

s 0

1ˆ ( ) max ( ) ( )
T

t T
J u t dt u t k l l t

T
α

∈
= + − −  ∫ , (37) 

where sT  is the duration of the stance phase, Ak  is the 
stiffness of the ASLIP leg, and natl  its natural length, see 
Table I. Append to (37) the constraint 

 ( )s s s f, , 0x P x α α− −− = , (38) 

so that the nominal orbit is periodic. One can also include 
constraints that correspond to requirements such as the 
desired nominal forward speed, or the normal ground force 
component be non-negative etc. Then, the problem of 
finding the nominal values of the coefficients sα  and fα  
reduces to a constrained minimization problem, which can 
be (numerically) solved using MATLAB’s fmincon. It 
worth mentioning here that this choice of performance index 
reflects our desire to find a nominal orbit for the ASLIP, on 
which the amount of work produced by the hip actuator and 
the peak force developed by the leg actuator 
 ( )1 1 A nat

au u k l l= − − , (39) 
are minimized. 

B. Steady-State Behavior 
In order to compare the behavior of the two controllers 

under perturbations, it would be ideal to have identical 
nominal orbits. Using relatively low degree polynomials in 
the rigid target model controller, an almost exact match in 
the resulting nominal orbits was obtained, as Fig. 3 presents. 
Fig. 3 also shows that both controllers take advantage of the 
leg spring on the nominal (steady-state) motion, since the leg 
actuator force 1

au  given by (39) is below 6N  in both cases. 
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Fig. 3. Nominal orbits and corresponding inputs for the rigid target model 
controller (dashed lines) and the SLIP embedding controller (solid lines). 

C. Transient Behavior and Performance Evaluation 
The gains used in the rigid target model controller are 

 ( )diag 100,100y
PK = , 2y y

V PK K= , 1ε = , and 

 ( )0.1839,0.4555, 0.0048,0.0887,0.1902K = − , 
while the gains for the SLIP embedding controller are  

300PKθ = , 2V PK Kθ θ= , 1.2ε = , 2E
PK = , and 0.2xK =� . 

Note that K  was selected using MATLAB’s dlqr on the 
discrete system (22) evolving on the Poincaré section (21). 

Both controllers have been simulated in MATLAB. It was 
observed that the rigid target model controller tends to 
violate the unilateral ground force constraint by developing 
control forces which “pull” the ground, even at small 
perturbations. To enlarge the domain of attraction, it was 
necessary to include saturation on the control forces so that 
all the ground constraints are respected. The SLIP 
embedding controller did not violate these constraints, 
except at very large perturbations, and hence no input 
saturation was necessary. 

Fig. 4 presents pitch angle and forward velocity as the 
ASLIP recovers from a perturbation 6degδθ = −  using both 
controllers. The response of the pitch angle is similar; 
however, larger excursions from the nominal forward speed 
are observed in the rigid target model controller. 

Fig. 5 presents the total leg forces and the leg actuator 
forces corresponding to Fig. 4. It is seen that, in the SLIP 
embedding controller, the profile of the leg actuator forces 

1
au  computed by (39) remains close to that of a spring force, 

even during transients. On the contrary, in the rigid target 
model controller, the profile of the total leg force 1u  
significantly differs from that of the spring force, resulting in 
excessively large actuator forces 1

au . This means that the 
rigid target model controller in closed loop with the ASLIP 
effectively “cancels” the compliance of the leg in the open-
loop ASLIP. It is emphasized that, on the nominal orbit, both 
controllers exploit the leg spring equally well, since as 

shown in Fig. 3, the leg actuator force never exceeds 6N , 
while the total forces are on the order of 1000N . 
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Fig. 4. Ten strides showing convergence from 6 degδθ = − , for the rigid 
target model controller (left), and the SLIP embedding controller (right). 
Dashed lines show desired values. 
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Fig. 5. Leg forces for the rigid target model controller (left) and SLIP 
embedding controller (right) for the three first steps of Fig. 4. Upper plots 
show total leg forces; bottom plots show leg actuator forces computed by 
(39). The dashed lines in the upper plots show spring forces. 

These features have significant implications for the 
domain of attraction of the two controllers. This is 
demonstrated in Table II, which presents the number of 
strides until convergence within 5% of the steady-state value 
(strides), the peak actuator forces max

1 2( , )au u  in N , and the 

total work total
1 2( , )W W  in J , required to reject perturbations 

δθ  in the pitch angle and cxδ �  in the forward velocity using 
the Rigid Target Model controller (RTM) and the SLIP 
embedding controller (SLIP). The perturbations reported in 
Table II correspond to the maximum values that can be 
rejected with the RTM controller, with the leg actuator force 
satisfying 1 500au N≤ . Larger perturbations than those in 
Table II can be rejected by the SLIP embedding controller 
while respecting the constraint 1 500au N≤ . Indeed, as is 



 

shown in Table II, significantly lower peak leg forces and 
total work are required from the SLIP embedding controller 
to reject the same perturbations. These results demonstrate 
the necessity of designing the HZD of running to respect the 
compliance available in the open-loop system. Otherwise, 
the beneficial effects of the actual leg spring maybe 
cancelled by the control inputs during transients. 

TABLE II 
DOMAIN OF ATTRACTION 

Perturbation Control Stride ( )max

1 2,au u  ( )total
1 2,W W  

4oδθ = +  RTM 6  ( )442,15  ( )71, 24

 SLIP 4  ( )54, 28  ( )24,18

3oδθ = −  RTM 4  ( )382,21  ( )55,19

 SLIP 4  ( )50, 26  ( )16,19

m
s0.9cxδ = +�  RTM 12  ( )448,37  ( )242,76

 SLIP 6  ( )418,64  ( )110, 40

m
s1.4cxδ = −�  RTM 15  ( )486,15  ( )236, 47

 SLIP Cannot reject such a large perturbation 
without input saturation 

VII. CONCLUSION 
In this paper, two controllers, the rigid target model 

controller and the SLIP embedding controller, are presented 
for the ASLIP, an extension of the SLIP that includes 
nontrivial torso pitch dynamics. The control action creates a 
lower-dimensional hybrid subsystem determining the 
stability properties of periodic motions of the full model. 
The rigid target model controller results in a one-degree-of-
freedom non-compliant subsystem through imposing 
suitably parameterized (virtual) holonomic constraints on the 
ASLIP. The SLIP embedding controller affords a feedback 
law, under whose influence the SLIP emerges from the 
ASLIP dynamics, allowing the direct use of a large body of 
SLIP controllers available in the literature. It is seen through 
comparisons of the two controllers that the underlying 
compliant nature of the SLIP enhances performance through 
significantly improving the transient response. This paper 
should be viewed as a first step toward a general framework 
for controller design with compliant hybrid zero dynamics. 

APPENDIX 
This appendix complements Section IV, and provides 

details on how to design cΓ  and sΓ . To ease 
implementation, it is favorable to use Bézier polynomials. 
Let min

uq  and max
uq  be the (known) min and max values, 

respectively, of the angle uq  of the leg with respect to the 
ground during the nominal stance motion, and define 

min max min( ) ( ) [0,1]u u u us q q q q= − − ∈ . Then, the desired leg 
length parameterized by a Bézier polynomial is given by 

 ( ) ( ) ( )
0

! 1
! !

M
M jj

d j
j

Ml s s s
j M j

α−

=

 
= − −  
∑ , (40) 

where the coefficients jα  satisfy the following properties 

 ( ) 00dl α= , ( )1d Ml α= , (41) 

 ( ) ( )1 00d s
l s M α α

=
∂ ∂ = − , ( ) ( )11d M Ms

l s M α α −=
∂ ∂ = − . (42) 

The properties (41) and (42) are exactly those required to 
ensure conditions (i) and (ii) of Section III C. Suppose that 

ss s fx S Zα
−

→∈ ∩  and f ( , )td tdlα ϕ ′=  is given (specified by 
the outer-loop feedback law fΓ ). To ensure that the state at 
touchdown belongs in the zero dynamics surface i.e. 

+
s

+
s s f( , )x x Zαα−= ∆ ∈ , it is sufficient to update the two first 

coefficients 0α  and 1α  according to 

 0 lα + +=  and 1 0
l
Ms

α α
+

+ += +
�

�
. (43) 

Leaving the rest of the coefficients unchanged (i.e. equal to 
their nominal values), ensures that 

s s
s f s fS Z S Zα α+→ →=∩ ∩ . 

which is the surface s fS Z→ ♦∩  in Section III C. Equation 
(43) provides a rule for updating sα . The pitch angle 
polynomial need not be updated due to the trivial pitch 
dynamics in flight. 
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