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Abstract

This paper presents a systematic approach for the desigmmtihaous-time controllers to robustly and exponentially
stabilize periodic orbits of hybrid dynamical systemsiaggrom bipedal walking. A parameterized family of contous-
time controllers is assumed so that (1) a periodic orbit daiged for the hybrid system, and (2) the orbit is invariant
under the choice of controller parameters. PropertiesePtiincaré map and its first- and second-order derivatiees ar
used to translate the problem of exponential stabilizaticthe periodic orbit into a set of Bilinear Matrix Inequais
(BMIs). A BMI optimization problem is then set up to tune therameters of the continuous-time controller so that the
Jacobian of the Poincaré map has its eigenvalues in theitoié.dt is also shown how robustness against uncertainty i
the switching condition of the hybrid system can be incoaped into the design problem. The power of this approach
is illustrated by finding robust and stabilizing continudime feedback laws for walking gaits of two underactuated 3
bipedal robots.
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1. Introduction

This paper addresses the problem of designing continumesebntrollers to robustly and exponentially stabilizepdic
orbits of hybrid dynamical systems. Hybrid systems extgh#racteristics of both continuous-time and discretetim
dynamical systems and are used to model a large range ofgsex@Bainov and Simeonov, 1989; Ye et al., 1998; Haddad
et al., 2006; Goebel et al., 2012) including power systeniskighs and Pai, 2000) and mechanical systems subject to
impacts (Grizzle et al., 2001; Westervelt et al., 2007; Araeal., 2009, 2007; Spong and Bullo, 2005; Manchester
etal., 2011; Gregg et al., 2012; Gregg and Spong, 2008; Hoah,2007; Dai and Tedrake, 2012; Tedrake et al., 2004;
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AkbariHamed et al., 2012; Chevallereau et al., 2009; Sttheatal., 2013; Grizzle et al., 2014; Hurmuzlu and Marghitu,
1994; Martin and Schmiedeler, 2014). Our motivation is tsigle robust stabilizing continuous-time controllers fér 3
bipedal robots with high degrees of underactuation, butrdisalts we present apply to non-hybrid as well as hybrid
systems (Arnold, 1996; Haddad and Chellaboina, 2008; ParitChua, 1989).

The most basic tool to investigate the stability of hybridipgic orbits is the method of Poincaré sections (Arnold,
1996; Parker and Chua, 1989; Haddad and Chellaboina, 2G@Rtiad et al., 2006; Grizzle et al., 2001). In this approach,
the evolution of the system on the Poincaré section, a hygfaxe transversal to the periodic orbit, is described by a
discrete-time system referred to as the Poincaré returnimgpneral, there is no closed-form expression for thedzoin
map, and this complicates the design of continuous-timérotkers. Hence, stabilization of periodic orbits for hidr
systems is often achieved with multi-level feedback cdrdrohitectures, in which continuous-time feedback laves ar
employed at the lower levels of the control scheme to créegeriodic orbit. As the lower-level controllers may not
ensure exponential stability of the orbit, a set of adjustplrameters is introduced to the continuous-time cdetl
These parameters are then updated by higher-level eveattmantrollers when state trajectories cross the Poincaré
section (Grizzle, 2006; Chevallereau et al., 2009; Gre@d, £2012; Ramezani et al., 2013; Akbari Hamed and Grizzle,
2014; Sreenath et al., 2013). The event-based controtedesigned to render the Jacobian of the Poincaré map around
the fixed point a Hurwitz matrix.

One drawback of achieving stability via event-based cdietr®is the potentially large delay between the occurrence
of a disturbance and the event-based control effort. Adtiva approaches attempt to achieve stability at the fivst le
Chevallereau et al. (2009) made use of a nonlinear optimizatoblem to minimize the spectral radius of the Jacobian
of the Poincaré map for simultaneous design of periodict®rond continuous-time controllers. Diehl et al. (2009)
introduced a smoothed version of the spectral radius andlimear optimization problem to generate maximally stable
periodic orbits. This approach was employed to design pat@armand optimal control inputs of a fully actuated bipedal
robot with 2 degrees of freedom (DOF). Both methods require recomputati the Jacobian matrix at each iteration
of the optimization. For mechanical systems with many degod freedom and underactuation (such as the 3D bipedal
robot ATRIAS (Ramezani et al., 2013), which hes DOF and6 actuators), the cost of numerically computing the
Poincaré map and its Jacobian makes these methods impta€tther approaches make use of the moving Poincaré
section analysis and transverse linearization technimgpugessign model-based and time (phase) varying LQR coatsoll
for orbital stability of periodic orbits (Shiriaev et al.020; Manchester et al., 2011). These approaches have not bee
extensively evaluated on legged robots.

The contribution of this paper is to present a method basesknsitivity analysis and bilinear matrix inequalities
(BMls) to design continuous-time controllers that providbust exponential stability of a given periodic orbit vath
relying on event-based controllers. The approach assumaés ttamily of parameterized continuous-time controllers
has been designed so that (1) the periodic orbit is an integree of the closed-loop system and (2) the orbit is invaria
under the choice of parameters in the controllers. By ingathg the properties of the Poincaré map and its first- and
second-order derivatives, a sensitivity analysis is priegsk On the basis of the sensitivity analysis, the problefms
robust and exponential stability are translated into asBMis. A BMI optimization problem is then set up to tune the
parameters of the continuous-time controllers. Finatlig approach is illustrated to design continuous-time raliers
for two underactuated 3D bipedal robots witland13 DOF, respectively.

Hobbelen and Wisse (2007) introduced the gait sensitivitymfor the study of disturbance rejection in limit-
cycle walkers. They calculated the Jacobian matrices oRdfirecaré section based on typical perturbation analysis. |
particular, for all initial conditions and disturbancese tapproach runs the full-state model to calculate the Jagob
matrices. Their approach was demonstrated @rD@F bipedal robot. The current paper provides additionsilte.
First, a more systematic numerical approach is given tatate the relevant Jacobian matrices. In particular, wateel
the sensitivity matrices on the Poincaré section to noalimeodel using the variational equation (Parker and Chua,
1989, Appendix D). Second, we present a closed-form exjoress calculate the sensitivity with respect to the ground
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height during stepping down. Finally, in regards to feedtdesign, a systematic approach based on BMIs is presented
to reduce the sensitivity of a bipedal robot to step-dowrtep-aip disturbances.

Some of the results in this paper (namely, those illustgagkponential stabilization of periodic orbits for t®OF
bipedal robot) were already presented without mathematrcaf in (Akbari Hamed et al., 2014). This paper extends
the analysis to a broader class of systems and illustratesdsimultaneously optimize the continuous-time conéoll
for robustness and exponential stability. In particulantisated by the problem of stable walking on uneven ground,
the sensitivity analysis is extended to model robustnetiseodrbit against uncertainty in the switching conditiorttod
hybrid system. Furthermore, the approach is extended tadhghstems with multiple continuous-time phases. Proofs
of the key theorems are provided. Finally, the paper extémalsarlier results for full-state stability as well as dtgb
modulo yaw for 3D bipedal robots.

This paper is organized as follows. Section 2 presents thradodefinitions related to hybrid systems and the
Poincaré map. Required conditions on the periodic orbitfamidly of parameterized continuous-time controllers are
presented to set up the sensitivity analysis. Two familie®otinuous-time controllers satisfying the requiredditions
are presented. Section 3 presents the BMI conditions touftat@ an optimization problem to guarantee exponential
stability. Section 4 extends the sensitivity analysis torféhe modified BMI optimization problem for robust stalilit
Section 5 presents effective numerical approaches forahsitdvity analysis. Section 6 extends the analytical ltesu
to the hybrid models of bipedal walking and illustrates thetimod to design robust and stabilizing continuous-time
controllers for two underactuated bipedal robots. Sectionntains concluding remarks.

2. Sensitivity Analysis for Stabilization of Hybrid Periodic Orbits

The objective of this section is to present the sensitiviglgsis for exponential stabilization of periodic orbibs hybrid
systems arising from bipedal walking. The results of thigtise will be utilized in Sections 3 and 4 to set up the BMI
optimization problems. We consider a hybrid system with corinuous-time phase as follows

E:{:i?f(lr)+g(lr)U, = ¢S (1)

xt = Az7), z~ €S,

inwhichz € X andX c R™*! denote theector of state variablesndn + 1-dimensionastate manifolgdrespectively.
The continuous-time control input is represented:by U/, wherel/ C R™ is an operset of admissible control values
In addition, f : X — TX and columns ofy are smooth (i.e{°°) vector fields, in which & represents theangent
bundleof the state manifoldr. Theswitching hypersurfacé§ is then-dimensional manifold

S:={x e X|s(x) =0}, (2)

on which the state solutions undergo a sudden jump accotlthgre-initialization rulez™ = A(z~).Here,s : X — R

is a real-valued an@*° switching functiorwhich satisfie% (x) # 0forallz € S. MoreoverA : X — X denotes the
C*> resetmapz ™ (t) := lim, ~ z(7) andz™(¢) := lim,, 2(7) represent the left and right limits of the state trajectory
x(t), respectively.

2.1. Closed-Loop Hybrid Model

In this subsection, we assume that the continuous-timer@iert can be expressed as the followipgrameterized
feedback law

u=1T(z,), 3)
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inwhich¢ := (&,--+,&,) " € Zand= C R? represent the finite-dimensionzdrameter vectoandset of admissible
parametersrespectively, for some positive integerMoreover,I’ : X x = — U is aC* map and T" denotes the
matrix transpose. By employing the continuous-time feelliaw (3), the closed-loop hybrid model is parameterized
as follows

(4)

go. | #=1@O, e ¢S
Cl 2t =AET,E, 2 €S,

where the superscript “cl” stands for the closed-loop dyiearandf® (z, ¢) := f(z) + g(z) T'(z, £) is the closed-loop
vector field. For later purposes, the unique solution of theed-loop ordinary differential equation (ODE)= f°(z, ¢)
with the initial conditionz(0) = =z, is represented by(t, zo, &), wheret > 0 belongs to the maximal interval of
existence. Next, theme-to-reset functioff’ : X’ x = — R is defined as the first time at which the solutioft, z, &)
intersects the switching manifoli, i.e.,

T (x0,&) :=inf {t > 0] p(t,x0,&) € S}. (5)

Remark 1 (Parameterized Reset Maph the closed-loop hybrid model of (4), the reset map is alm@meterized by

&. Our motivation for this is to extend the sensitivity appriodor hybrid systems with multiple continuous-time phases
of bipedal walking in Section 6. In particular, hybrid systewith multiple continuous-time phases can be expressed
as hybrid systems with one continuous-time phase as inr(4yhich the reset map represents the composition of
the flows for the remaining continuous-time and discrateetphases. Consequently,includes the parameters of the
controllers employed during other phases (see Sectionitidoe details).

2.2. Periodic Orbit Assumptions

Throughout this paper, we shall assume that the followisgmptions are satisfied.

Assumption 1 (Invariant Periodic Orbit) There exists geriod-one orbitO for the parameterized closed-loop hybrid
model (4) which ignvariantunder the choice of the parameter ve@orhis assumption can be expressed precisely as
follows:

1. There exists aominalinitial conditionz, € X'\ S such that the solution of the ODE= f°(z, ¢) with 2(0) =

is independent of, i.e., %ﬂg(t,x;;,g) = 0forallt > 0andall¢ € =, where \" represents the set difference. For

later purposes, thisivariant andnominal solutioris denoted by

@*(t) = (P(t;$87§), t>0. (6)

2. The time-to-reset function, evaluated at the nomingkihtonditionz = zfj, is boundedthat is,

T(x5,6) =T <oo, VE€E.

3. The reset map satisfies theeset invarianceondition

Az}, §) = x5, VEEE, (7)

oA

ie., 6—E(x},§) =0forall ¢ € Z, where

x} =" (T7) € S. (8)
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The invariant periodic orbi® is then given by
O:={x=p")|0<t<T"} 9)

for whichT™ is thefundamental periodAssumption 1 states thét is a periodic orbit of the parameterized closed-loop
hybrid model (4) for alk € =.

Assumption 2 (Transversality Condition) The period-one orbi®) in (9) is transversalo the switching manifold in
the sense that 5
S * *
52 @) 15, €) # 0. (10)
From Assumption 2, it can be concluded that the periodictafbis not tangent to the switching manifolf at
the pointz = z7%. In the next subsection, we will present two examples oficos-time feedback laws satisfying
Assumption 1.

2.3. Two Families of Parameterized and Continuous-TimelBaek Laws Satisfying the Invariance
Assumption

This subsection presents two families of parameterizedcantinuous-time feedback laws satisfying the invariance
condition in Assumption 1 for a given periodic oridh If the hybrid system includes just one continuous-timesgha
the reset map\ in (4) is not parameterized kyand Item 3 of Assumption 1 is immediately satisfied. For treeaa
multiple continuous-time phases, Section 6 will presemiditions under which Item 3 is met. Here, we check ltem 1
for the examples and we assume that Item 3 is satfsffeat this goal, we first present the following lemma.

Lemma 1 (Invariant Solution of the ODE)Consider the solution of the ODE = f%(z, &) with 2(0) = z,. Then,
%g(t,xo,g) = 0forall t > 0 if and only if

8fCI
o€

Proof.See Appendix A. |

(z,€) =0, Vt>0.

e=p(tao€)

From Lemma 1, one can immediately conclude that Item 1 of Awggion 1 is equivalent to

o 9

5—§($’§) o5 OE (f(x) +g(z) (,§)) <D
_ or " (11)
=g(x) 55( 3] D

:0,
where
O:={zx=¢"t)|0<t<T*}=0U{xz}}

denotes the set closure 6f. Next to present the families of controllers, we assume ttherte is aC>° feedback law
I'*(x), referred to as théeedforward termwhich generates the nominal trajectgr¥/(¢) in the sense that*(¢) is the
unique solution oft = f(z) + g(x) I'*(x). Suppose further that the following assumption is satisfied

I Here, we assume that the solutions of the hybrid system éjigint continuous.
2 Since the orbit is given here, Item 2 is satisfied in the semasethe fundamental period of the orbit is bounded.
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Assumption 3 (Phasing Variable) Corresponding to the periodic orlg, there exists a real-valued agé° function
0 : X — R, referred to as thphasing variablewhich is strictly monotonic (i.e., strictly increasing @ecreasing) on
the orbitO, that is,

. 0 —
i) = (@) (2, 6) £0, V2D
Under Assumption 3, the desired evolution of the state fé@&on the orbitD can be expressed in terms of the
phasing variabl@ rather than the time variabte The phasing variable replaces time, which is a key to obitgitime-
invariant controllers that realize exponential orbitakslity of O. In particular, let9(t) represent the time evolution of
the phasing variable aft. Then, one can define tldesired evolution of the state variables© in terms ofd as follows

zd(0) == @*(t) (12)

t=0-1(8)’
in whicht = ©~1(9) denotes the inverse of the strictly monotonic functioa ©(t).

Example 1(Feedforward and Linear State Feedback Lai¥)e first family of parameterized continuous-time contr|
can be expressed as
I(z,§) :=T"(z) — K (z — z4(0)) (13)

whereK e R™*("+1) represents aontroller gain matrixto be determined. Here, one can assume that the parameter
vector¢ includes the elements of the gain matkixi.e.,£ := veq K) € R?, inwhich vecg.) is thevectorization operator
acting on matrices ang:= m (n + 1). It can be easily shown th%(x, ¢) =0forallz € O and¢ € =. Hence, from

(11), the feedback law (13) preserves the otbior all £ € =.

Example 2 (Input-Output Linearizing Feedback Law}or the second family of continuous-time controllers, a
parameterized output functiarix, £) with the property diny) = dim(u) = m is defined as follows

y(x, &) := H (x — zq(0)), (14)

in which H € R™*(»*1) js the output matrixto be determined and parameterizedébgs¢ := ved H) € R?, and
p :=m (n+ 1). The output functiony(z, ¢) in (14) vanishes on the orbi® and we assume thatis defined as an open
subset ofR? such thaty(z, £) has uniform vector relative degreavith respect ta: on an open neighborhood 67 for
all ¢ € . The input-output linearizing controller takes the form

—1
F(m,f) = (L.(] L}_l y(l’7§)) L7f y(ac,f)
_1 r—1 ) (15)
— (L L5 y(@,0) Y ki Ly y(,€)
=0
wherek;,i = 0,1,--- ,r — 1 are constant scalars such that the polynoiial k,._; A"~ + - - - + kg = 0 is Hurwitz.
Employing the feedback law (15) results in the followingmuttdynamics
y kgD ko =0, (16)

for which the origin(y, g, --- ,5"~) = (0,0, - - , 0) is exponentially stable. Next, we show tHgt(z, ¢) = 0 for all
r € O and¢ € =. To do this, we define thearameterized zero dynamics manifaigiresponding to the outpytz, £)
as follows

Z(&) = {‘T € X|y($a€) Lf y(maE)

== L y(r,€) = 0}
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on which the output functiog(z, §) is identically zero. The decoupling matrix, L}*1 y(z,€) has full rank and is
square on an open neighborhood®fand hence, the control drivingx, £) to zero is unique on each zero dynamics
manifold (Isidori, 1995, pp. 226). Furthermore, the oBiis common to all of the various zero dynamics manifolds.
Hence, the control restricted to the orbit is independegt of

2.4. Poincaré Return Map and Sensitivity Analysis

The objective of this subsection is to present the Poineduém map and sensitivity analysis for exponential stzadiilon
of the periodic orbitD for the closed-loop hybrid model (4). Here, the Poincaréseds taken as the switching manifold
S and the Poincaré return map is defined?PasX’ x = — X by?

P(z,8) == ¢ (T(A(,£),£), Az, §),€) (17)
which results in the following discrete-time system (seg E)

The discrete-time system (18) maps the evolution of theithdystem’s state from a point @ back toS. According
to Assumption 1 and construction procedure (%7)js afixed pointof the Poincaré map for all ¢ € =, i.e.,

P(x},8) =2}, VE€E. (19)

One immediate consequence of the invariant fixed point ipi€lhat

or

8—5(17},5) =0, V§e&,

and hence, an event-based control action cannot be empioyeddify the stability property of the periodic orlgit
(Grizzle, 2006), (Westervelt et al., 2007, Chap. 4). Liestion of the discrete-time system (18) around the fixedpoi

:c} then results in

5z[k+1]:g—§(x},§)5z[k], k=0,1,---, (20)
inwhichéz[k] := x[k] — «7%. In order to exponentially stabilize the periodic orbitwe would like to tune the constant
parameter vecto¢ such that the Jacobian matr%§ (z%,€), when restricted to théangent spacd 23S, becomes
Hurwitz in the sense that all of its eigenvalues lie inside @it circle. However, in general there is no closed-form
expression for the Poincaré m&g«x, £) nor for its Jacobia@% (2}, €). Therefore the Poincaré map is usually obtained by
numerical integration of the closed-loop hybrid model (hjle the Jacobian matri%% (7, £) is obtained by numerical
differentiation. The situation is more critical in mecheadisystems with high degrees of freedom and high degrees of
underactuation. For these systems, the numerical calougasre time consuming. In particular, employing nonlmea
optimization algorithms to tune the parameter veétarould require extensive recomputation of the high dimemaio
Jacobian matrix at each iteration. To resolve this problMmturn our attention to theensitivity analysisFor this
purpose, let* € = represent aominal parameter vectoBy computing the Taylor series expansion%(m;,g)
around¢* for sufficiently small||€ — £*||, (20) becomes

opP ", 92p
dolk +1] = <%(z;,s*> +2_ agar @1 €) A@-) sefk), (21)
i=1 >

3 Here, the Poincaré map is considered frahto X', whereas in Section 3, a set of coordinates for the tangams];,? S will be presented.
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#(t) = [ (2(t),€)
2(0) = A (z[k], €) alk +1] = P (2[k], &)

Fig. 1. lllustration of the Poincaré return magk + 1] = P(z[k], €) for the parameterized closed-loop hybrid model (4). Thel bol
and dashed curves correspond to the continuous-time aciedigime dynamics = fc'(a:, &) andxt = Az, €), respectively.

whereA¢ := (A&, ,AE) T =€ — ¢ and%(z},g*),i = 1,---,p aresensitivity matricesThe objective is
to tuneA¢ such that the originz = 0 becomes exponentially stable for (21). Section 3 will tfatesthe stabilization
problem into a BMI optimization problem. The robust stabilbroblem will be addressed in Section 4. In addition,

effective numerical approaches to calculate the sertyitiatrices will be presented in Section 5.

3. Translation of the Stabilization Problem into a Set of BMIs

The objective of this section is to translate the problemxpbaential stabilization of the origifw: = 0 for the linearized
discrete-time system (21) into a set of BMIs. To this end, w&t firesent a set of coordinates for the tangent sp@fc‘é.T

In (20) and (21), the Poincaré map is considered figrto X'. In order to study the exponential stability behavior of
the periodic orbitD, we need to pre and post multiply the Jacobian ma€§§>{m},§) by constantprojection and lift
matrices, respectively, to obtain a linear operator froemtidimensional tangent spacg;‘[S‘ to TI;S. In particular, let
Tproj € R™ (1) andmz € ROTD*" denoteprojectionandlift matrices respectively. Next, assume thiat € R !

is a small perturbation such th%;(z}) dx = 0 (this is to make sure that: belongs to the tangent spaC@;B, see (2))
and letdz € R™ be the corresponding coordinates fgr;ﬂo‘, ie.,

62 = 7Tpr0j 6$

0x = mjf 02.

Then, from (21), the evolution @¥z[k],k = 0,1, --- can be expressed as

p
ozlk+1] = <A0+ZAiA§i> oz[k], k=0,1,---, (22)
=1
where
oP
Ag = Tproj %(m},f*) mie € R™*"™

Ai = 7Tproj 8581‘ (‘r;?g*)ﬂ-"ﬁ € Rnxn, 1= 1) LD
i

Remark 2 (Properties of the Projection and Lift Matrice§)he projection and lift matrices have the following projest

(') Tproj it = Lnxn

(i) %(w})ﬂ'nﬁ =0.
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Next, we present the following theorem to translate thertgoif the constant perturbation vectd¢ for exponential
stabilization of6z = 0 into a set of BMIs.

Theorem 1 (BMis for Stabilizations of the Origin) The following statements are correct.

1. There exists an x np matrix B such that

p
Ao+ Ai NG = Ao + B (Inwn ® AY),

=1

in which “®" denotes the Kronecker product.

2. The originéz = 0 is exponentially stable fof22) if there exist?V = W € R"*" A¢ € RP, and a scalap > 0
such that the following BMI is satisfied

W Ao W + B (Inxn @ AE) W

> 0,
* 1=mw (24)
in which “x" denotes the transpose of the bldak2).
Proof.For Part 1, we claim there exists a matfixe R™*"? such that for allA¢ € R?,
p
> AiAG =B (Lixn @ AE). (25)
=1

To show this, let us partition thB matrix as

B= {Bl By - Bni|a
whereB; € R"*? for j = 1,--- ,n. From the definition of the Kronecker product,
A 0
o .- 0
B (Lixn © A8) = [B1 -+ B, .
0 A

Hence, thegj-th column ofB (I,,x, ® A&) is B; A for j =1,--- ,n. To satisfy (25), one can conclude that

p
B; AL =" Ai(:,5) A&, (26)
1=1

whereA; (:, j) represents thg-th column of4;. Next, differentiating both sides of (26) with respectt¢ together with
OAE T
one — Ci

,,i=1,--- pyields

szzAl(v.])ezTa ]:15
=1

(27)
which completes the proof of Part 1.
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For Part 2, from (24), it can be concluded thét > 0 and(1 — ) W > 0 which together with > 0 result in
w € [0,1). Let us consider the Lyapunov functidfik] := V (62[k]) := 6z[k] " W~ 6z[k]. Next, using Schur's Lemma,

W (Ao + B (Inxn © AE)) T WL (Ag + B (Inxn @ AE)) W

(28)
—-W<—puW.
Pre and post multiplying (28) witi’ —! yields AV [k] := V[k + 1] — V[k] < —u V[k], and hence,
Amax(W=1)
6z [K]|l2 < \/m(l — ¥ [162[0]]|2 (29)
fork=1,2,---,inwhich A\, (.) andAn.x(.) denote the minimum and maximum eigenvalues, respectively. O

In order to have a good approximation based on the Taylagserpansion in (21), we are interested in solutions of
(24) with minimum2-norm of A¢. Moreover, according to the upper bound for the discretetsolutions in (29), we
would like to maximize the convergence rate, or equivajentinimizel — u. Hence, to tune the constant perturbation
Ag, we set up the following BMI optimization problem

min —wu+ 30
wihin —wpty (30)
W AgW + B (I,xn @ AW
s.t. oWt B (Inxn © AL >0
* (1—p)Ww
A5 <~
p =0,

in whichw > 0 is a positive weighting factor asteadeoff between improving the convergence rate and minimizing
the2-norm of A¢. In addition, using Schur's Lemm3A£||3 < « can also be expressed as the following linear matrix
inequality (LMI)

Lpxp A8 > 0.
ATy
Finally, the optimization problem (30) becomes
in — + 31
wkin —wpty (31)
W Ay W + B (Iyxn @ AW
s.t. oW+ B (Inxn @ A%) >0
* (1—p)W
lpxp A >0
x
w2 0.

For later purposes, we remark thaand,/T — p represent an upper bound fh¢ |2 and an upper bound for the spectral
radius ofAg + B(I,xn ® AE), respectively.

4. Robust Stabilization of the Periodic Orbit as a BMI Optimization Problem

The objective of this section is to address the robust stakibn of the periodic orbitD against uncertainty in the
switching condition of (2) as a BMI optimization problem. Quotivation for this problem comes from stable bipedal
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walking over uneven ground (Manchester et al., 2011; Dai Bsdttake, 2012; Hobbelen and Wisse, 2007; Saglam
and Byl, 2013). To make this precise, we assume a generaldbthe switching manifold in (2) and denote it ISy,
parameterized by a scaléras follows

Si:={zx e X|s(x)=d}, (32)

in whichd € D andD := [—dmax, dmax] C R denotes a closed neighborhood of the origin for some pesitiyx.
One can assume thdtrepresents the height of the ground during stepping dowrteppsg up in bipedal walking.
In the new notationSy, = S, whereS was already defined in (2) as the nominal switching manifisidvhat follows,
we shall consideti as adisturbance Corresponding to the switching manifaftj, theextended time-to-reset function
T. : X x 2 x D — R>¢ is defined as the first time at which the solutipft, =, £) intersectsS,, i.e.,

Te(xo,&,d) :=inf {t > 0] p(t,x0,§) € Sa} . (33)

One immediate result of (33) is th@t(xo,&,0) = T(xo,§), in whichT'(zo, £) is the nominal time-to-reset function
givenin (5). For models of bipedal walking on rough grouhé,instantaneous impact map on the manifjdextracted
based on rigid body contacts (Hurmuzlu and Marghitu, 198d§snot depend explicitly on the ground heigtitand
hence, it can be given b (z, £). Now we are in a position to present tegended Poincaré map. : ¥ xExD — X
as follows

P€($’€7 d) = (ID (Te (A($’€)7£) d) ’A(‘r7 6))5) ) (34)

which results in thextendedliscrete-time system
$[l€+1]:Pe($U€],£,d[k}]), k:(),l, ’ (35)

in whichd[k] € D represents the disturbance input.

Remark 3 (Geometric Description oP,). For everyz € X, there existsl € R such thatr € S;. In particular, one
can definel := s(z) and from the definition (33)P, (z, ¢, d) € S;. One immediate result of this fact is that for a fixed
d € D, P.(.,£,d) mapsS, to S;, whereas the nominal Poincaré m@ag, &) in (17) mapsSy to Sp. Under Assumptions
1, 2% is an invariant fixed point of?, ford = 0 and all¢ € =, i.e.,

P.(a},€,0) =2}, VEE€E. (36)
Furthermore, the extended m&p(., £, 0) is equal toP(., £), that is
Pe(.,€,0) = P(,§), VEE€E. (37)

Consistent with our perspective thatepresents a disturbance, we will study the robustnesseafidiminal fixed
pointz’; of the undisturbed system (i.€l[k] = 0V k).* According to the invariance condition in (36), linearizatiof
(35) around}, &, 0) results it

a e * 8 € *
L (4,6,0) 6alk] + (25, €,0) dIH]. (39)

dxfk+1] = 54

4 Alternatively, one could study the behavior of (35) undeoastant disturbance (i.el[k] = d V k), assuming that a corresponding fixed point were
known.

5 We note that from (36),68’2e (@%,€,0) =0forall ¢ € =,
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Fig. 2. Geometric description of the robustness problem for bipedtking. Here,z[0] = 2} € So andd[0] € D is assumed to be

a nonzero and unknown disturbance. Furthermdlfe, = O for all &k = 1,2, - - -. In this caseg[1] = P.(x[0], &, d[0]) € Sy and

z[2] = P.(z[1],&,0) € So. The evolution ofz[k] for k = 3,4, --- can then be described by the Poincaré return map in (18). The
objective is to findA¢ to minimize || F' §z[2]||- for all possibled[0] € D.

In this latter equationjz[k] := x[k] — 2} belongs to the: + 1-dimensional tangent space;l¥ = R™*1. Using the
Taylor series expansion % (z%,€,0) and 861} (z%,&,0) aroundS™, (38) becomes

8P x
5:c[k+1]<a +Za§a m,omg) Sz [k]
(39)
oP, .
+<8d +Z<’9§8d :cf,g,O)Agl> d[k].
Effective numerical approaches to calculate ¢éix¢ended sensitivity matrice%% (x;,g*, 0),i =1,---,p will be

presented in Section 5. Section 5 will also present theioglatmong the sensitivity matrices and extended ones. In
addition we will show that thelisturbance sensitivity matri%(:c},g,o) in (38) isindependenbf ¢ and hence,
65 ad( .€%,0) = 0. Consequently, using an analysis similar to Part 1 of Thadke(39) can be rewritten as follows

5$[k + 1] = (AO,e + Be (I(n+1)><(n+1) o2y A&)) 51'[k] + Ce d[k]a (40)

in which the subscript¢” stands for the extended map and

0P,

Ao 31@(96},5*70) c R(v+1)x(n+1) (41)
82P€ * * n n -
e =g ge e e RN i1 p (42)
OP.
Co =5t(@p€'0)  eROTDA (43)
Be i=[Bie oo Bugi.| e ROFDXOED (44)
p
Bj,e :ZAZ@(,‘])G;F, jil, ,TL+1 (45)



Akbari Hamed, Buss, and Grizzle 13

Now we turn our attention to the robustness problem. Forghipose, we assume th#] # 0 is anunknown
disturbance and[k] = 0 for £ = 1,2, ---. The initial condition is also assumed to coincide with thxedi point, i.e.,
z[0] = 2} € So. Then, from the discrete-time system (35)1] € Sy andz[k] € Sp for k = 2,3,--- (see Fig. 2as a
geometric description of the problem for bipedal walkirlg)particular,z:[2] can be considered as an initial condition
for thenominalreturn mapP in (18). Next, the objective is to tune the constant perttiobasectorA¢ to minimize the
2-norm of the deviationz[2] = z[2] — 7 for all possible disturbance§0] € D, that is,

i Fox[2 46
min max [|F9z[2][)>, (46)
whereF ¢ R*("+1) is a given constant matrfFrom the problem statememtz[0] = 0 and (40) result iz[1] =
C. d[0], and hence,
max || F dz[2]]|2
d[0]eD

= dmax HF (AO,e + Be (I(n+1)><(n+1) & Af)) Ce H2 .

Next, using Schur’s Lemma, the optimization problem (4@dqsivalent to the following LMI optimization
min
A g

Iixi F(Aoe+ Be (Itns1)x(nt1) @ AE)) Ce
* n/d>

max

s.t. > 0,

in which 7 is an upper bound for th&orse casecost functionmax,jep || £ 6[2]||2. Finally, one can combine the
stabilization (see (31)) and robustness optimization lgrab to end up with the following BMI problem

min  —wy u+wen+ 47
o lin—wn gk wan (47)
s.t.
(W Ao W + B (Inxn @ AW -
| * 1—-—pmWw
Il><l F (AO,e + Be (I(n+1)><(n+1) 2y Af)) Ce >0
* 1/ dax
lpxp A >0
* v
p =0,

wherew; andw- are positive weighting factors corresponding to the cagwece rate and robustness, respectively.

5. Numerical Computation of Sensitivity Matrices

The objective of this section is to investigate the propsrdf the first- and second-order derivatives of the nominal
and extended Poincaré maps to present effective numepipedaches to calculate the sensitivity matrices used durin
translating the stability and robustness problems intd af¥8MIs in Sections 3 and 4.

6 Griffin and Grizzle (2014) considered robustness to unitéytan the impact condition during motion planning by desitg the orbit so as to
minimize a function of the deviation from the periodic orafter a single step disturbance.
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Sensitivity Matrices for Stability Analysis: We first present the following theorem to numerically caddelthe first-
and second-order Jacobian matrices in (21) for the stahbitialysis.

Theorem 2 (Calculation of the Sensitivity Matrices)Consider a parameterized closed-loop hybrid systenf4as
satisfying Assumptions 1 and 2. Let

0
(t, w0, ) = a—;(t,mo,g) € ROFDX ()

represent the trajectory sensitivity matrix for the clodedp ODE i = f%(z,¢) and define the final value of the
trajectory sensitivity matrix on the orb@® as follows

®%(§) = (17, 25, 6).

Then the Jacobian matrix of the Poincaré map, i%,(z},g), depends oig only through®%(£) and Y(z%,&) =
9B (a},6);ie.,

oP
5o @5 = @;,€) 25O (3.8, Ve € Z, 49)

in which
FN s, )52 (a%)
28 () fM(}, €%)

(2},€") = Itng1)x(nt1) —

is a projection matrix independent §f Furthermore, the sensitivity matrices are given by

o) =107, 6) { S € 1,69 + 236 G a6 (49)
fori=1,---,p.
Proof.See Appendix B. |
Theorem 2 simplifies the calculation of the sensitivity ricas 68;—81;(@,5*),2‘ = 1,---,p by relating them to
the final value of the trajectory sensitivity matrix @n i.e., ®%(¢"), and its derivatives?é%? (€*). In addition,®7% (&)

can be obtained by numerical integration of a linear timesvg (LTV) matrix differential equation, referred to asth
variational equationParker and Chua, 1989, Appendix D), as follows

. o cl

q)(ov IES, g) = I(n+1)><(n+1)'

(@ (t),8) ®(t,x5,8), 0<t<T*

Finally, one can employ numerical differentiation appitues; like thewo point symmetric differenceethod, to calculate

%%(5*). In particular, fori =1,--- | p,

0%
9

(€)= 55 (@(E +be) — P(E —be))

where{es, - - , e, } is the standard basis f& andd > 0 is a small perturbation value.
Theorem 2 also relates the sensitivity matriggeégg (:p}, £%),1=1,--- ,ptothe sensitivity of the reset map Jacobian,

ie., g—g(x}, &*) (see (49)). For hybrid systems with one continuous-timesphthe reset mag is independent of,
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and hence, one can simplify (48) and (49) as follows

aP * * * * *
whereY (z}) := %(x}). The calculation ofg—gi (z3,€") in (49) for hybrid systems with multiple continuous-time

phases for bipedal walking will be addressed in Section 6pumkndix D.
Extended Sensitivity Matrices for Robustness AnalysisThe following theorem presents a numerical approach to
calculate the extended sensitivity matrices as well asitartbance sensitivity matrix in (39).

Theorem 3(Calculation of the Extended Sensitivity Matrice§uppose that Assumptions 1 and 2 are satisfied. Then,

0P, opr

S @7,6,0) = (@}.6) (52)

for all ¢ € = which yields the following relation for the extended sevitjt matrices

0*P, 0?p
* — * . 53
Furthermore, the disturbance sensitivity matrix can beresped as
ape i} fd(x*,f*)
o (T 60) = g (54)
o (23) [N (2}, €%)
In particular, the disturbance sensitivity matr% (x}, &,0) is independent of, i.e.,
oFP,. , , 0P, ,
Proof.See Appendix C. |

Finally, from Theorem 3, (23), and (42), one can concludddiiewing relations among the sequendes; } and

{Ai,e}

Ay = Tproj AO,e Tlift

A; = Tproj Az‘,e T, =1,-++,p.

6. Application to Underactuated 3D Bipedal Robots

The objective of this section is to illustrate the sendiyivanalysis and BMI optimization to systematically design
robust and stabilizing continuous-time feedback laws fmiqalic 3D bipedal walking. Models of bipedal walking are
hybrid with continuous-time phases to describe the evahutif the mechanical system according to the Euler-Lagrange
equations and discrete-time phases to represent the taiséanus impacts between the swing leg end and the ground
(Hurmuzlu and Marghitu, 1994). The state vector for thestesys is taken as:= (¢',¢") ", inwhichq € Q denotes
thegeneralized coordinates vectand Q represents theonfiguration spacerlhe state manifold is the tangent bundle
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X := TQ. The hybrid model of walking includes two continuous-tintepes and can be expressed as

o T = fR(x) + gR(x) u, T ¢ SrosL
") 2t = ArsL(z7), T € SRl
(56)

o = fi(z) +o(r)u, = ¢ SR
xt = AL Lr(z7), 7 € SLoR,

in which the subscripts “R” and “L” represent the right anfll #ance phases, respectively. In particular, the evaruaf
the robot during the stance phase {R,L} is given byi = f;(z) + ¢;(z) u. The right-to-left and left-to-right impact
manifolds are denoted k§k_,. andS, _,r as follows

}
|2

SR_>|_ = {1’ cX | SR_>|_(.1’) =0
SR = {.1’ ex | S|__>R(l’) =0
on which the right-to-left and left-to-right impacts occuespectively. The smooth functiong_,| () and s _,r(z)
represent the height of the swing leg end with respect to thergl. The right-to-left and left-to-right impacts arenhe
given byzt = Ag (z7) andz™ = A r(z7), inwhichAg : X — X andA g : X — X are smooth impact
maps (Hurmuzlu and Marghitu, 1994). Furthermore, durirggdbntinuous-time phasec {R,L}, the control input:
takes the form
u = Fi(ma El)a

wherel'; : X x Z¢ — U is aC*> state feedback law argd € =¢ denotes the parameter vector of phaSéhe closed-loop
vector field is also given by = f%(x, &%) := fi(x) + gi(z) Ti(w, &), whose unique solution with the initial condition
z(0) = z is represented by; (¢, zo, £*). The time-to-reset function during phase {R,L} isT; : X x E% — Rxg
where

T;(wo,&") »=1inf {t > 0] @i(t,20,&") € Sisys}

andj # i € {R,L}. Theone-phase map,_,; : Si,; x &/ — S, i # j € {R,L}, is defined as
Piji(2,8) =0 (T (Aiss;(2),67), Aisj(2), &) .

Using (Westervelt et al., 2007, Theorem 4.3), the closeg-loybrid model with two continuous-time phases can now
be expressed in the standard form (4) as

. | R _
cl . T = Ig(‘rvg ) €T ¢8R—>L
Eg ' { T = A(xf,gl‘), T € SR%L; (57)
in which
Az, ") == ALsro ProL(z,€") (58)

is the composition of the left stance phase flow and the tefight impact map, §” denotes the function composition,
and

R
gzlE]EE:ERxEL (59)

is thefull parameter vector to be determined. Appendix D investigetes3 of Assumption 1 for the closed-loop system
(57) and presents a numerical calculation approach foethsitvity of the reset map Jacobigg (:c;, &)i=1,---,p
in the sensitivity matrices (49).
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6.1. Reduced-Order Sensitivity Analysis based on LetttFegmmetry

For models of bipedal robots with left-right symmetry, thewber of sensitivity matrices in the sensitivity analyss a
well as the number of decision variables in the BMI optimi@atcan be reduced significantly. The objective of this
subsection is to present a systematic way for this reducgergensitivity analysis.

Definition 1 (Left-Right Symmetry) The hybrid model of bipedal walking in (56) is said to havel#feright symmetry
if the following conditions are satisfied.

1. dim(¢R) = dim(€L) = pr.

2. There arestate symmetry matri§, € R("+1x(+1) andparameter symmetry matrig; € RPr*P= such that
Sz Sz = I(n+1)><(n+1)! SE Sf = IPRXPR’ and

fu(z) =5 [r(Sz )

oL (@) TL(2, %) = Sz gr(Se @) TR(Sa 2, Se €5)
sLoRr(T) =srL(Sz )

AL_r(2) =5, ArL(Sy @)

forall z € X and all¢- € Z*.

Corresponding to the hybrid model (56), a hybrid model witle continuous-time phase was already presented in
(57) whose reset map was parameterized.bdyowever, according to the symmetry (Akbari Hamed and Gj22014,
Theorem 4), an alternative and equivalent hybrid model with continuous-time phase can now be presented whose
reset map isndependentf £. This simplifies the sensitivity analysis as well as the BMtimization. To make this
clear, we present the following theorem.

Theorem 4 (Half Map). Assume that the hybrid model of walking has the left-rightregtry. LetD = Or U O be a
symmetric periodic orbit for the hybrid modg6)in the sense thad, = S, Or. Suppose further tha® and¢- are
chosen according to the symmetry relation

€= Se R (60)

Then, the following statements are correct.

1. The Poincaré return map : Sg_,. x =R x = — Sg_,| for the closed-loop hybrid model with two continuous-time
phases can be factorized as

P(z, &R €5) = Poar (Prar (2, €F) , €F)

in which P4 is the half map given by
Prart (2, €7) == P (S #,€7) . (61)

2. The half map is the Poincaré return map for the followiniiy system with one continuous-time phase

sl { =R 2 ¢S ©2)

¢ zt=A(z7), =z~ € SroL,

in which¢ := ¢RandA(z) := AL_r(S, x) is independent of.

Proof.The proof is immediate from the construction procedure @1 (Akbari Hamed and Grizzle, 2014, Theorem
4). O
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Remark 4 (Reduced-Order Sensitivity AnalysisiFrom Theorem 4,

2
O ) = (T a6 3

and hence, the periodic orlii? is exponentially stable for the hybrid model with two cowmtius-time phases if and
only if Or is exponentially stable for (62). Consequently, one caryaiye sensitivity analysis to the Jacobian matrix
%(1’7, ¢R) with fewer parameters rather th%@(m}, ¢R.¢L). Finally, ¢- can be obtained according to the symmetry
relation (60).

6.2. Virtual Constraints

This subsection applies the analytical results of the papénevirtual constraints approachvirtual constraints are
kinematic relations among the generalized coordinatesreed asymptotically by continuous-time feedback control
(Grizzle et al., 2001; Westervelt et al., 2007, 2003; Freidoet al., 2009; Ames, 2014; Lack et al., 2014; Ames et al.,
2014; Akbari Hamed and Grizzle, 2014; Gregg and Sensin@é#d;X5regg et al., 2014; Chevallereau et al., 2003, 2009;
Sreenath et al., 2011, 2013; Morris and Grizzle, 2009; Maggand Consolini, 2013; Shiriaev et al., 2004). It has
been shown that for mechanical systems with more than omeeef underactuation, the choice of virtual constraints
affects the stability of the periodic orbit (Chevallereaak, 2009). Chevallereau et al. (2009) showed that cdirtepl
the actuated coordinates for a five-link underactuated Rledal robot cannot stabilize a periodic walking gait. Next,
based omphysical intuition a different choice of virtual constraints was proposedabitize the same orbit. However,
for ATRIAS, a related robot with additional degrees of fresddue to series elastic actuators, the same intuition did no
lead to a stable periodic orbit (Ramezani et al., 2013). ihderlines the importance of havingygstematienethod for
choosing these constraints. This subsection relates thggmn of choosing virtual constraints to the BMI optimizati
This will be illustrated on the dynamical models of the fiugkl3D bipedal robot of (Chevallereau et al., 2009) and of
ATRIAS.

During phase € {R,L} of the hybrid model of walking (56), the virtual constraiate defined as the-dimensional
output function

yi(q.€") == H' (¢— ¢4 (6:(q))) (64)

inwhichm = dim(u) is the control input dimensior#{* is a constant output matrix to be determingd~= veq H*), and
q4(0;) represents the desired evolution of the generalized coatet vectog on the orbitO; in terms off);. Moreover,
0;(¢q) denotes the phasing variable during phaas a function of the configuration variablgésee Assumption 3). We
note thatin (64)H* ¢ denotes the set abntrolled variableswhereas?’ ¢j(6;) represents the desired evolution of the
controlled variables on the orbit. If the output functiod)as uniform vector relative degree= 2 on the periodic
orbit, the continuous-time controll&y; (x, £%) is then taken as the input-output linearizing feedback lag&xample 2.

Remark 5 (Symmetry in Virtual Constraints)For mechanical models of bipedal robots, the state symnme#tyix
can be expressed &s = block diaq S, S, }, whereS,, is theposition symmetry matribSuppose further tha, is an
output symmetry matriwith the propertyS, S, = L., xm. If the output functions and phasing variables during thatri
and left stance phases are chosen such that

y(q,€5) = Sy yr(Sq q. Se &)
0L(q) = Or(Sq q)

forall ¢ € Q and¢t € =%, then one can conclude that

H- =S8, HRS,,



Akbari Hamed, Buss, and Grizzle 19

or equivalently, the symmetry relation (60) is satisfiaith S; = S;r ®Sy. Inaddition, it can be shown that all conditions
of Definition 1 are satisfi€tHence, we can apply the reduced-order sensitivity arsdysi BMI optimization of Remark
4 to tuneHR (the output matrix during the right stance phase).

6.3. PENBMI Solver

In order to solve the stability and robustness BMI optinmi@aproblems in (31) and (47), we make use of the solver
PENBMI® (TOMLAB, 2015) integrated with the MATLAB environment thugh the YALMIP'? (Lofberg, 2004). BMIs
are NP-hard problems (VanAntwerp and Braatz, 2000; TokéGabay, 1995) however, PENBMI is a general-purpose
solver for BMI optimization problems which guarantees tlo@wergence to a critical point satisfying the first-order
Karush-Kuhn-Tucker optimality conditions (Henrion et, &005). It is a local optimizer and its behavior (speed of
convergence) depends on the initial guess. For the nunhamedyses of this paper, the initial guess option for the
YALMIP was not activated so that the solver looks for thateTdptimization procedure for the five-link robot wigh
DOF (see Section 6.4) and ATRIAS witl3 DOF (see Section 6.6) on a computer with ditgbre,2.4 GHz Intel Xeon
processors took approximatel§ seconds and5 minutes, respectively.

6.4. Five-Link Walker

This subsection illustrates the results of the paper tagdesibust and stabilizing virtual constraints for a walkigagt

of an underactuated 3D bipedal robot watdegrees of freedom arkddegrees of underactuation. The robot model was
previously presented in (Chevallereau et al., 2009). Thetroonsists of a torso and two identical legs with revolute
knees and point feet. Each hip has two degrees of freedoma#isumed that there is no yaw motion about the stance
leg end. Furthermore, the roll (i.g3,) and pitch (i.e.g2) angles at the leg end are unactuated, whereas all of thraéhte
joints are independently actuated. The structure and amatiign variables of the robot during the right stance plaase
shown in Fig. 3. Here, the phasing variable is defined as thkeafi thevirtual leg connecting the stance leg end to the
stance hip in the sagittal plane. A periodic oBits then designed using the motion planning algorithm of (@Hereau

et al., 2009). The virtual constraints controller of (CHer@au et al., 2009) can stabilize the orbit. However, itroat
handle rough ground walking. To resolve this problem, th@Erominal controlled variables is taken to be simply the
actuated coordinates

)T

HR*q:: (CIS;Q47Q5;C]6aQ77Q8 3 (65)

in which HR?* € R®*8 is the nominal value of th&/ R matrix. By employing this nominal output function, the doait
eigenvalues of th&5 x 15 Jacobian matrix of the half map becofne3.3475, 0.8558, —0.2064 }, and hence)is unstable.
Next, we lett = veq HR) € R*® and employ the reduced-order sensitivity analysis as givRemark 4. The-norm of
the extended sensitivity matricds . versus the elements of t#h&*X matrix is depicted in Fig. 4. From this figure, the most
important sensitivity matrices around the nominal outpattion correspond to the first column of tH& matrix, which

is related to the roll angleg,. According to this observation, we reduce the dimensioh@BMI optimization problem
(47) by lettingA¢ parameterizes only the first column of th& matrix, i.e., HR = HR?* 4+ {Ag Osx1 - 06x1]
For robust stability, letem := (vZ,, vém) T € R? denote the horizontal components of the robot’s center s&r@OM)
velocity expressed in the world frame. Next, thenatrix in (46) is taken as

~ Ovuem

r= 52

"We make use of the vectorization operator property aéié¢ = veq(Sy HR S,;) = (S, ® Sy) ved HR).
8 The proof is similar to the one of (Akbari Hamed and Grizzi@12, Theorem 7).

9 http://www.penopt.com/penbmi.html

Lhttp://users.isy.liu.se/johanl/yalmip/
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Fig. 3. A five-link 3D bipedal robot during the right stance phasehwiint feet and the associated configuration variables
(Chevallereau et al., 2009).

to minimize the deviation in the COM velocity just before iagbduring uneven ground walking. Solving the optimization
problem (47) with the weighting factors, = 30 andw, = 40, and the maximum ground height variati@ip.. = 1(cm)
results in the following controlled variables

g3 +0.4173 1 |
g1 + 0.5094 ¢
+0.8000
HRg=|P m (66)
de — 0.8000 q1
¢r +0.2130 ¢1

gs + 0.0966 ¢,

Corresponding to thi&R matrix, the dominant eigenvalues of the Jacobian of thePilicaré map, calculated based
on the Taylor series expansion (21), &re0.9329,0.9341, 0.3463}. Next, the dominant eigenvalues of the real Jacobian
of the half Poincaré map beconfie0.9319, 0.8269, 0.5869}. Figure 5 depicts the phase portraits of the roll and pitch
angles during0 consecutive steps on flat ground. Here, the simulation ofldsed-loop system is started off the orbit
with an error of6 (deg/s) on each component of the generalized velocity véctoonvergence to a stable limit cycle is
clear.

The results of the sensitivity analysis shown in Fig. 4 aredftimized virtual constraints (66) have an important
interpretation. The nominal output function

y(q,€") = ho(q) — ha(Opiten(q)), (67)

coordinates the links based only upon a phasing varigfle(q) = 0(¢) defined in the sagittal plane. Thus it ignores
deviations from the periodic orbit in the roll direction.dantrast, the optimized output function, which can be espzd
agt

y(¢,€) = ho(q) — ha(Bpicn(a)) — ha(Bron (), (68)

responds to roll angle errors by adjusting the desired ¢eols of the controlled variables. This new output enhances

stability of the periodic orbit by coupling pitch and roll&way that would be impossible to discover through intuition
To evaluate the robustness of the closed-loop system faremnground walking, a ground height profilg] with

d[k] € [—dmax; dmax] iS cOnsidered, in whicli,. = 0.01 (m). Itis further assumed thdfk] is periodic with the period

of 7 steps, i.e.d[k + 7] = d[k] forall k = 0,1, - - - . Figure 6 presents the ground height prodilg] and corresponding

INote that the ternk 4 (fro(¢)) vanishes on the orbit. Furthermore, the pseudo-phasingol@d;o (¢) need not satisfy Assumption 3.
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column

Fig. 4. Plot of the2-norm of the extended sensitivity matrices versus the corapts of thes x 8 HR matrix around the nominal
output function. Herej = row + 6(column— 1).
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Fig. 5. Phase portraits of the closed-loop hybrid system for thlearodl pitch coordinates durin®) consecutive steps of walking
corresponding to the optimal solutions of (47). The circkgzresent the initial condition of the simulator.

2 andy components of the COM velocity deviatidncm[k] for the robust optimal solution versus the step nuniber
The animation of this simulation can be found at (Grizzlel 20

6.5. Exponential Stability Modulo Yaw

The five-link walker of Subsection 6.4 does not have yaw nmogibout the stance leg end. For bipedal robots with yaw
motion, there are two kinds of stability during walking on at fjroundfull-state stabilityand stability modulo yaw
(Shih et al., 2012). This subsection extends the senyitwitllysis developed in Subsection 2.4 for exponentiallgtab
modulo yawn 3D bipedal walking. To achieve this goal, without loss ehgrality, we assume that the first component of
the state vectar represents thgaw positiorof the robot with respect to the world frame and we denotedbimponent

by zyaw. From theequivariance propertpf (Shih et al., 2012), if the feedback laWs(z, ¢%), i € {R,L} do not depend

on the yaw position (i.egyaw), then the first column of the Jacobian mat#k (x%,€R,¢4) becomes1,0,---,0)". In
particular, there is an eigenvalug’corresponding to the yaw position. Hence, for exponerstiability modulo yaw,

we apply the sensitivity analysis to
op .
%(l’f} €Ra €L)7

in which %—f(x},gR,gL) represents thén — 1) x (n — 1) matrix obtained by removing the first row and column of
%—I;(x;, ¢R. €LY, This approach can also be applied to the half map develop&Héorem 4. For this goal, we assume

that on the orbitD, the symmetry condition for the yaw position can be given as

Tyaw(t + 1) = —zyan(t), Vt>0.
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Fig. 6. Plot of a ground height profild[k] (m) and the corresponding andy components of the deviation in the five-link robot’s
COM velocity (i.e.,0vem[k]) (M/s) for the optimal solution of (47) versus the step nunibe

Then, the(1, 1) element of the state symmetry matfx is —1, and hence, the first column 8%(1:;, ¢R) would be
(—=1,0,---,0) 7. Similarly, for exponential stability modulo yaw, one caupéy the sensitivity analysis to the — 1) x

(n — 1) matrix
OPnatt . . .
ox (:Cf ) € )

obtained by removing the first row and column%;l” (%, €R).

Remark 6 (Equivariance Property for Virtual Constraintdp the virtual constraints approach, it can be shown that if
(i) the columns corresponding to the yaw position in the atitpatricesH ¢ are zero and (i) the phasing variabtgég)

do not depend on the yaw position, then the input-outpudlizéeng feedback law (15) is independent of yaw and hence,
the equivariance property of (Shih et al., 2012) is satisfied

6.6. ATRIAS

ATRIAS 2.1 is a human scale and underactuated 3D bipedalt il point feetand series-compliant actuatoys
designed for energy efficient and robust walking (Ramezaali £2013; ATRIAS, 2013; Grimes and Hurst, 2012) (see
Fig. 7). During the single support phase, the mechanicalahoidthe robot has3 DOF and6 actuators. Hence, the
system is highly underactuated witldegrees of underactuation. The robot consists of a torstvamitlentical legs.

The orientation of the torso with respect to an inertial wdrame can be described by thrigeler anglesg.t, gyt
andq,t, referred to as thgaw, roll andpitch. In the sagittal plane, the angles of the shin and thigh limitis respect to
the torso are denoted layr andgor for the right leg (again see Fig. 7) and by andgo, for the left leg. To control
these angles, two DC motors in series with harmonic drivedarated at each of the hips. The angles of the outputs
of harmonic drives with respect to the torso are representeg,1r andgg,2r for the right leg andy,,.1. andgg,oL for
the left leg. In additiony g, usr, u1L @andug. denote the torques generated by the corresponding DC matoeships
are driven by two DC motors, located in the torso. In the fabptane, the angles of the right and left hips with respect
to the torso are representeddy; andgs, , respectively (again see Fig. 7). The generated torqudsddyip motors are
denoted byusg andus, . Finally, the generalized coordinate vector of ATRIAS carelipressed as

q = (q,zT; qyT,92T, 41R, 42R, 91L, G2L, 9gr1R; 4gr2R; 43R, grilL, gr2L , C]3L)T7 (69)

in which the first seven componentsgdire unactuated, whereas the remaining six componentstasgedt. The control
inputw is taken as the following-dimensional vector

L T
U = (U1R7U2R7UBR; UL, U2L, UBL)



Akbari Hamed, Buss, and Grizzle 23

Segintizl Plao Froutal Plaas

Fig. 7. Sagittal and frontal planes of ATRIAS 2.1 during the righarste phase with the associated configuration variables. The
Euler angles;.t (yaw), ¢, (roll) and gt (pitch) describe the rotation of the torso fratertyrzt with respect to the world frame
Ooxoyo,ZQ.

Furthermore, the phasing variable is defined as the angheedfittual leg in the sagittal plane.
In what follows,© = Or U O, is a periodic orbit for walking at.1 (m/s) designed using the motion planning
algorithm of (Ramezani et al., 2013).

Stability Modulo YawTo stabilize the periodic orb® module yaw, the nominal controlled variables are taken as

%(anR + qgr2R)
%(Qgrn + qgraL)
HR g — 4gr2R — qgriR 7 (70)
dgr2L — qgriL

43R
| & (wsw— zcom) (27) ¢

where the first and second components are the stance andlsgiaggles, respectively. The leg angle is defined in the
sagittal plane as the angle between the torso and the viiteatonnecting the hip to the leg end. The third and fourth
components of the controlled variables in (70) are the stand swing knee angles, respectively. We note that since the
legs are actuated through springs, the leg and knee angles®ban defined at the outputs of the harmonic drives. These
components can stabilize periodic orbits for planar wajlih ATRIAS (Ramezani et al., 2013). The fifth component
is then defined as the stance hip angle in the frontal plamallfzi zsw(q) — zcom(g) denotes the horizontal distance
between the robot's COM and swing leg end in the frontal pl&tere,zsw(¢) andzcom(q) represent the horizontal
coordinates of the swing leg end and COM in the frontal plaespectively (see Fig. 7). The sixth component of the
controlled variables in (70) is taken as the linearized apipnation of the distance function around the o1 just
before the impact (i.ez}). The idea of controlling the distance between the COM aridgleg end in the frontal plane
originated in (Chevallereau et al., 2009). For the five-tioliot of Subsection 6.4, the distance function can stadiliz

gait, whereas for the ATRIAS structure, it cannot. In pautti, the dominant eigenvalues of th& x 25 Jacobian of

the half Poincaré map afe-1.0000, —1.3011,0.8363, —0.1602}. Since the distance function is defined in the frontal
plane, it is yaw invariant and hence, from Remark 6, the eigleile—1 corresponds to the yaw position.
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Fig. 8. Plot of the2-norm of the extended sensitivity matrices versus the corapts of thes x 13 H~ matrix around the nominal
output function (70). Here, = row + 6(column— 1).

Figure 8 represents tlenorm of the extended sensitivity matrices versus the etesraf the R matrix. From this
figure, the most important sensitivity matrices relate tuoms1 — 7 and13. However, the first column corresponds
to the yaw position and we do not consider it for stability mimdyaw. According to these observations, we At
parameterize only the columfis- 7 and13. Next, the optimization problem (47) with; = 1, wy = 1 anddyax = 1
(cm) is solved for exponential and robust stability. Theirpt controlled variables, i.eHR g, are then given bl

1(ggrir + Qgror) [—0.1193 g, — 0.1277 gs_ |
2 (qgriL + qgraL) +0.0786 g, 7 + 0.0842 g5,
qgr2R — qgriR n —0.0313 g7 — 0.0334 g3 1)
dgr2L — qgriL +0.0400 g, 7 + 0.0428 g3,
4R +0.0038 g, 7 + 0.0041 g3
| 2 (wsu—wcom) (#3)q| | -0.2731g,7 — 0.2923 gs |

Corresponding to these controlled variables, the domigigenvalues of th5 x 25 Jacobian of the half Poincaré map,
calculated based on the Taylor series expansion (21),-ated000, —0.9033, 0.8087,0.5410, —0.1128}. For compar-
ison, the dominant eigenvalues of the real Jacobian of tePloincaré map becomg—1.0000, —0.8183, 0.8686 +
0.10114, —0.1104}. The controlled variables (71) can also be interpreted fisidg a modified output of the form (68).

Figure 9 depicts the phase portraits of the closed-looperysturing50 consecutive steps of walking. Here, the
simulation starts at the end of the left stance phase on thedieorbit (see the circles in the plots). During the fdurt
step, an external horizontal force with a magnitude@f(N) is applied to the COM of the robot f&0% of the step.
Convergence to the periodic orbit is clear. The oihas been designed to walk along tjraxis of the world frame
which corresponds to the yaw anglg being zero. However, since the orbit is exponentially gtabbdulo yaw, the
horizontal disturbance changes the direction of walkinglhifting the phase portrait in the yaw coordinates.

To evaluate the robustness of the closed-loop system, weatiead walking over a periodic sequence of ground height
disturbancel[k] € [—dmax, dmax] With the period20. The maximum disturbance sizk,., = 0.03 (m) corresponds
to 3.75% of robot’s leg length. Figure 6 presents the evolutions ef disturbancel[k] and corresponding andy
components of the COM velocity deviati@m.y[k| for the optimal solution. An animation of this simulationnche
found at (Grizzle, 2015).

Yaw Stability Next, our objective is to improve the controlled variables)(for full exponential stability including yaw.
For this goal, the sensitivity analysis is done around therowed output function (71). Figure 11 depicts the 2-norm of

¥or this optimal solution, the elements Af corresponding to columris— 7 are very small and are not reported here.
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Fig. 9. Phase portraits of the closed-loop hybrid system for theEangles and right hip duririg) consecutive steps corresponding
to the optimal solutions of (47) for stability modulo yaw. & bircles represent the initial condition of the simulator.

the extended Jacobian matrices. Since, the orbit is alrgtatbjlized modulo yaw, we only I&k¢ parameterizes the first
column of theHR matrix which corresponds to the yaw position. Next, the mjztation problem (47) is solved with
w1 = 1 andwy = 0. The optimal perturbation in the controlled variables srtigiven by

[ 0.0263 ¢.1 |
0.0230 ¢.1
—0.0112 ¢ut
~0.0186 ¢u1
~0.0729 g1
| 0.1065¢.7 |

for which the dominant eigenvalues of the estimated andJadbian matrices beconfie 0.8836 + 0.0529:, 0.8694 +
0.10514, —0.1109} and {—0.8854, —0.8854, 0.8757,0.8757, —0.1109}, respectively. Figure 12 illustrates the phase
portraits of the closed-loop system corresponding to thiengbsolution duringg0 consecutive steps of walking. During
the fourth step, an external horizontal force with a magtétaf 70(N) is applied to the side of the robot to its COM
over50% of the step. Finally, Fig. 13 depicts the trajectory of theNC@nd the foot step locations in they-plane of
the world frame. Convergence to the periodic orbit even @i position is clear.

Other Nominal Output Function§o demonstrate the power of the sensitivity and BMI approachstudy the sta-
bilization of other nominal output functions. We start witbminal controlled variables as in (70) in which the sixth
component is replaced by

g (1
(9_(] (al’sw - l’COM) (‘T;) q (72)

whereizsu(q) — zcom(q) represents the distance between the COM and the point mitleiayeen the the leg ends
in the frontal plan&. In (72), the distance function has been linearized arobedtbitOr just before the impact.

13rhe expression (72) assumes that the stance leg end is orighreas the world frame.
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Fig. 10. Plot of the ground height profilé[k] (m) and the correspondingandy components of the deviation in ATRIAS’s COM
velocity (i.e.,dvem[k]) (m/s) for the optimal solution of (47) versus the step nuribe
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Fig. 11. Plot of the2-norm of the extended sensitivity matrices versus the corapts of thes x 13 HR matrix around the improved
nominal output function (71).

The dominant eigenvalues of the Jacobian of the half Pantap arg —1.0000, 1.0499, —0.8455,0.8430, —0.1130}

and hence, zeroing the output function cannot stabilizeotb& O. The optimization problem (31) is then solved for
exponential stability modulo yaw. The dominant eigenvalaéthe Jacobian of the half Poincaré map based on the
linear approximation of (21) arge—1.0000, —0.8702, 0.8359 4+ 0.0851¢, —0.1329}. Next, the dominant eigenvalues of
the real Jacobian of the half Poincaré map correspondinigisgerturbation becomg—1.0000, —0.8623, 0.8630 +
0.07134, —0.1465}.

If the sixth component of the nominal controlled variablas(70) is defined as the swing hip angjg , the
periodic orbit® is extremely unstable and the dominant eigenvalues of tbebin of the half Poincaré map are
{—1.0000, —2.4587,0.8414, —0.4228}. Next, for exponential stability modulo yaw, the optimipat problem (31)
is solved. The optimal perturbation values are then pluggetthe output functions. However, the values are not
small enough to have a good approximation based on the Tagligs expansion and as a consequence, the orbit
O is not stable. In particular, the dominant eigenvalues @f itbal Jacobian of the half Poincaré map become
{—1.0000, —1.2608, 0.8087, —0.2036 }. Next, an alternative sensitivity analysis is done arotredresultant perturbed
output function. The optimal solution of (31) is then calted. Finally, the dominant eigenvalues of Jacobian of the
half Poincaré map, based on Taylor series expansion (21yealctalculations, ar¢—1.0000, —0.8561,0.8418 +
0.10304, —0.1084} and{—1.0000, —0.8764, 0.7773 + 0.1056¢, —0.1308}, respectively.

7. Conclusion

This paper introduced a method for designing continuausg-tiontrollers to robustly and exponentially stabilizegaic
orbits for hybrid systems. In contrast with previous methtitht rely on recomputing the Jacobian of the Poincaré map
at each step of a nonlinear optimization, the proposed ndethiploys a sensitivity analysis to approximate the Jacobia
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Fig. 12. Phase portraits of the closed-loop hybrid system for theilEangles and right hip durirt) consecutive steps corresponding
to the optimal solutions of (47) for full stability. The cles represent the initial condition of the simulator.

Fig. 13. Trajectory of the COM and feet trace durifg consecutive steps of walking with yaw stability.

by an affine function of the control parameters. The resgitiptimization problem involves LMI and BMI constraints
and can be solved efficiently with existing software packad®e power of this approach was illustrated in the design
of robust and stabilizing virtual constraints for two uratguated 3D bipedal robots withand13 DOF. The approach
can handle both full-state stability and stability moduéow

The algorithm presented in this paper can be extended togeorzal form of robust stabilization problems, including
robustness against uncertainties rising from externaef®acting on the robot. In future research, we will invedgg
these forms of uncertainties. We will also investigate #sfts for stable and 3D underactuated running by ATRIAS
with 32 states an@ actuators. Furthermore, the BMI optimization of this pagem be extended to improve stability of
bipedal walking by designing proper phasing variables.
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A. Proof of Lemma 1

Letus define the sensitivity of the solution with respechigarameter vector 8¢, o, §) := %—f (t,xo,&) € ROFDxP,
From the definition of the solutiop(t, z¢, £),

o(t, 00, €) = 20 + /O 1 (o7, 20, €),€) dr. (73)

Differentiating both sides of (73) with respe&cand next with respect to the time yields the following mattifterential
equation

o cl
\Ij(t,lﬁo,g) a—‘];( ag) w=p(t,20,€) \Ij(t,:ﬁ(),g)
o/ (74)
+ (z,€) ()
\IJ(O,ZE(),g) =0

Sincef® is C>, the solutions of (74) are unique over the maximal interadstence. Consequenty,(, 2o, £) = 0
if and only if %= (x,¢) = 0 for all = = @(t, o, ).

B. Proof of Theorem 2

According to Items 2 and 3 of Assumption@(zg, §) = T andA(z7},§) = zg for all § € E. This fact together with
(17) implies that the Jacobian of the Poincaré return magpeaxpressed &5

Dy P(x},€) = D1 (T, xg, &) D1 T(x5,€) D1 A, §)

(75)
+ DQ QO(T*VTS)&) Dl A(IE;,&)
Furthermore,

Dl @(T*,IS,E) = (p(T*a 35875)
_ gcl * ok
_f l((p(T a$07§)a€) (76)
= [z}, )
= f%},£"),

in which we have made use of the invariance condition (se} (hithe last equality. Bo(T™*, z§, &) can also be
expressed as

D2 (T3, €) = 22 (1", .
zo
= (" 5,€) (r7)
= (I);(f).
¥Following common convention for the partial derivativesaaf! function p(z1, -+ - , xv),
Dy p(er - w0) i= L (ar, o w), G= Lo .

Ox;
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From the switching and invariance conditions (see Item 2ssfuinption 1),
s(p(T",20,€)) =0, VE€E
which together with the Implicit Function Theorem implibésit
s(p(T'(z,8),x,8)) =0 (78)
for all z in an open neighborhood af; and all{ € =. Differentiating (78) with respect te around(z, &) results in

D S(ZE?) Dl QO(T*v :rgv 5) Dl T(:rgv 5)
+ Ds(z;) D2 (T, 25,€) =0

which in combination with (76), (77) and the transversadisgumption results in

(79)

In particular, the Jacobian of the time-to-reset functiepehds org only throughq)}(g). Replacing (79) in (75) yields
(48), from which (49) follows immediately.

C. Proof of Theorem 3

The proof of (52) is immediate from (37). To extract (54),nfrdAssumption 1T, (z§,£,0) = T* for all § € E.
Furthermore, the Implicit Function Theorem is applied to

s (o (Te(z,€,d),2,8)) =d (80)
from which, it can be concluded that
D S(l’}) Dl (P(T*v xzkw 6) D3 Te(xzk)v 6) 0) —-1=0.

This latter equation together with (76) results in

1

Dy T (25, £,0) = — .
80 = e )

(81)

Finally, P, depends or only through the extended time-to-reset function(see (34)), and hence,
D3 Pe(27,&,0) = D1 (T, 2, &) D3 Te (2, €, 0).

This together with (81) and (76) completes the proof.

D. Numerical Calculation of the Sensitivity of the Reset MapJacobian

The objective of this appendix is to investigate Item 3 of uxaption 1 for the hybrid model of 3D walking in (56).
This section also provides a systematic approach to nualgrizalculate the sensitivity of the reset map Jacobian, i.
S& (23,67, whereY (7, €) == 52 (2}, &) was already defined in Theorem 2.
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Theorem 5(Sensitivity of the Reset Map Jacobiahet©O = OrUO, be atransversal periodic orbit for the closed-loop
hybrid model of 3D walking. Then the following statemenéscarrect.

1. Items 1 and 3 of Assumption 1 are satisfied if

off _q
o (x,&") veo, 0, ie{RL}.

2.Let{x} g} == OrN Sk, {2}, } = OL N SLr, anda’} := a7} p. Suppose further that denotes the nominal

full parameter vector. Thelf%(m;,g*),i =1,---,pin (49)can be expressed as
oY % ex\ 8A|__>R % 82PR_>|_ % %
8_&($f,€ )_ O (‘Tf,L) 8518$ (‘rf.,R7§ )7
in which
i I e e P51 00,
aé-zaw (:rf,R5§ ): HL(:Ef,L5§ ) 8&1 (5 ) or (:I"f,R)
(@, €) B8 ()
e (23,,£7) =l (n41)x(nt1) — I; f7L* o " L
¢ P %(%,L) fl(wf,uf*)
and®? | (£) denotes the final value of the trajectory sensitivity mabiixt, zo, §) := 27“‘,’:(15,1:0,5) on the orbitO, .

cl —
Proof.According to (11),%(1:,5) = 0 for all z € Og follows Item 1 of Assumption 1. In an analogous manner,

cl —
%(x,gL) = 0forall z € O results in%“g—t(t, ARﬂL(:p},R),gL) = 0forall ¢t > 0, and hence,
PR%L(xy,RagL) = "E;,La VSL € EL-

This together with (58) completes the proof of Item 3 of Asgtion 1. The proof of Part 2 is similar to the one presented
in Theorem 2. |
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