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Summary. Models of bipedal robots in motion are fundamentally hybrid due to the
presence of continuous phases, discrete transitions, and unilateral constraints arising
from the contact forces between the robot and the ground. A major challenge in the
control of bipedal robots has been to create a feedback theory that provides system-
atic synthesis methods, provable correctness and computational tools for designing
asymptotically stable, periodic walking motions, especially walking motions that
are dynamic unlike the quasi-static, flat-footed gaits that are prevalent in today’s
machines. This chapter highlights the fundamental role of zero dynamics in obtain-
ing truly dynamic walking gaits that include underactuated phases. The theoretical
analysis is verified with experimental work.

1 Introduction

Feedback control is an integral part of any biped, whether biological or me-
chanical. With the exception of “passive” robots that exhibit a very limited
range of stable walking on an inclined plane, without any sensing and control
[5], bipeds are dynamically unstable. Said another way, without a properly
functioning control system, a biped stumbles and falls.

Models of bipedal robots are quite complex. They are hybrid, nonlinear,
and typically, high dimensional. In addition, as will be explained later, the
continuous portion of the dynamics is effectively underactuated. A further
complication is that a steady walking cycle is a non-trivial periodic motion.
This means that standard stability tools for static equilibria do not apply.
Instead, one must use tools appropriate for the study of periodic orbits, such
as Poincaré return maps. It is of course well known how to use numerical
methods to compute a Poincaré return map and to find fixed points of it [12].
The drawback in such a direct approach is that it does not yield sufficient
insight for feedback design and synthesis. An extension of the notion of the
zero dynamics to the hybrid models arising in bipedal locomotion leads to a
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feedback design process in which Poincaré stability analysis can be directly
and insightfully incorporated into feedback synthesis.

Early definitions of the zero dynamics of a time-invariant nonlinear con-
trol system were proposed by Krener and Isidori in 1980 (using controlled-
invariant distributions), by Byrnes and Isidori in 1984, and Marino in 1985
(using inverse systems) as a tool for feedback design and stability analysis. An
important refinement of the concept was achieved by Isidori and Moog in 1988
[10], where three equivalent state-space characterizations of the zero dynamics
of a linear time-invariant system were evaluated and compared for nonlinear
systems, including the now-well-known definition of the zero dynamics as the
restriction dynamics to the largest controlled-invariant manifold contained in
the zero set of the output. Which of the definitions to adopt in nonlinear con-
trol was not settled until the hugely-influential 1991 paper [3] by Byrnes and
Isidori that treated stabilization of equilibrium points on the basis of the zero
dynamics. The notion of a hybrid zero dynamics builds on this fundamental
work.

For the hybrid closed-loop system consisting of a biped robot, its environ-
ment, and a given feedback controller, the objective during the analysis phase
is to be able to determine if periodic orbits exist and, if they exist, whether
they are asymptotically stable. In the ensuing feedback synthesis phase, the
objective is to optimize over a class of stabilizing feedback controllers in order
to achieve performance objectives, such as minimal peak actuator torques and
walking with a given average speed.

2 Why Study Underactuation?

An important source of complexity in a bipedal robot is the degree of actuation
of the model, or more precisely, the degree of underactuation. It is assumed
here that the robot’s legs are terminated in points, and consequently, no ac-
tuation is possible at the end of the stance leg. It follows that the mechanical
model is underactuated during single support, as opposed to fully actuated (a
control at each joint and at the contact point with the ground). One could be
concerned that “real robots have feet”, and thus, while the analysis of point-
feet models may be of interest mathematically, it is “misguided for practical
robotics”. Focusing on underactuation is important for at least two reasons.

If one takes human walking as the defacto standard against which mechan-
ical bipedal walking is to be compared, then the flat-footed walking achieved
by current robots needs to be improved. In particular, toe roll toward the end
of the single support phase needs to be allowed as part of the gait design.
Currently, this is not allowed specifically because it leads to underactuation,3

which cannot be treated with a control design philosophy based on trajectory

3 When the foot is rotating about the toe, one effectively has a point contact with
no actuation.
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tracking and the quasi-static stability criterion, known as the Zero Moment
Point (ZMP) [14], as is currently practiced widely in the bipedal robotics
community.

3 Hybrid Model of a Bipedal Walker

This section introduces a hybrid dynamic model for walking motions of a
planar bipedal robot with point feet. The robot is assumed to consist of N ≥ 2
rigid links with mass connected via rigid, frictionless revolute joints to form a
single open kinematic chain lying in a plane. It is further assumed that there
are two identical sub-chains called the legs, connected at a common point
called the hip, and, optionally, additional sub-chains that may be identified
as a torso, arms, a tail, etc. Since each leg end is terminated in a point, either
the robot does not have feet, or it is walking tip-toe. A typical allowed robot
is depicted in Fig. 1(a), which is intentionally suggestive of a human form.
All motions will be assumed to take place in the sagittal plane and consist
of successive phases of single support (stance leg on the ground and swing
leg in the air) and double support (both legs on the ground). Conditions that
guarantee the leg ends alternate in ground contact—while other links such as
the torso or arms remain free—will be imposed during control design. A rigid
impact is used to model the contact of the swing leg with the ground. Further
details on the model are given in [17, Sec. II], along with assumptions on
the walking gait (symmetric, motion from left to right, instantaneous double
support phase, no slipping or rebound at impact).

The distinct phases of walking naturally lead to mathematical models that
are comprised of two parts: the differential equations describing the dynamics
during the swing phase and a model that describes the dynamics when a leg
end impacts the ground. For the models developed here, the ground—also
called a walking surface—is assumed to be smooth and perpendicular to the
gravitational field, that is, the ground is assumed to be flat as opposed to
sloped or terraced.

3.1 Lagrangian Swing Phase Model

The swing phase model corresponds to a pinned open kinematic chain. It
is assumed that only symmetric gaits are of interest, and hence it does not
matter which leg end is pinned. The swapping of the roles of the legs will be
accounted for in the impact model.

Let Q be the N -dimensional configuration manifold of the robot when
the stance leg end is acting as a pivot and let q := (q1; · · · ; qN ) ∈ Q be a
set of generalized coordinates and denote the potential and kinetic energies
by V (q) and K(q, q̇) = 1

2 q̇′D(q)q̇, respectively, where the inertial matrix D is
positive definite on Q. The dynamic model is easily obtained with the method
of Lagrange, yielding the mechanical model
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Fig. 1. (a) A typical planar robot model analyzed here. For later use, Cartesian
coordinates are indicated at the swing leg end. (b) Hybrid model of walking with
point feet. Key elements are the continuous dynamics of the single support phase,
written in state space form as ẋ = g(x) + g(x)u, the switching or impact condition,
pv
2(q) = 0 and ph

2(q) > 0, which detects when the height of the swing leg above
the walking surface is zero and the swing leg is in front of the stance leg, and the
re-initialization rule coming from the impact map, ∆.

D(q)q̈ + C(q, q̇)q̇ + G(q) = B(q)u, (1)

where u = (u1; · · · ; uN−1) ∈ R
(N−1), where ui is the torque applied between

the two links connected by joint-i, and there is no torque applied between the
stance leg and ground. The model is written in state space form by defining

ẋ =
[

q̇
D−1(q) [−C(q, q̇)q̇ − G(q) + B(q)u]

]
(2)

=: f(x) + g(x)u (3)

where x := (q; q̇). The state space of the model is X = TQ. For each x ∈ X ,
g(x) is a 2N × (N − 1) matrix; its i-th column is denoted by gi. In natural
coordinates (q; q̇) for TQ, g is independent of q̇.

3.2 Impact Model

The impact of the swing leg with the ground at the end of a step is represented
with the rigid (i.e., perfectly inelastic) contact model of [6, 13]. This model
effectively collapses the impact phase to an instant in time. The impact forces
are consequently represented by impulses, and a discontinuity or jump is al-
lowed in the velocity component of the robot’s state, with the configuration
variables remaining continuous or constant during the impact. Since we are
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assuming a symmetric walking gait, we can avoid having to use two swing
phase models—one for each leg playing the role of the stance leg—by rela-
beling the robot’s coordinates at impact. The coordinates must be relabeled
because the roles of the legs must be swapped. Immediately after swapping,
the former swing leg is in contact with the ground and is poised to take on
the role of the stance leg.

The relabeling of the generalized coordinates is given by a matrix, R, acting
on q with the property that RR = I, i.e., R is a circular matrix. The result
of the impact and the relabeling of the states provides an expression

x+ = ∆(x−) (4)

where x+ := (q+; q̇+) (resp. x− := (q−; q̇−)) is the state value just after (resp.
just before) impact and

∆(x−) :=

[
∆q q−

∆q̇(q−) q̇−

]
. (5)

The impact map is linear in the generalized velocities. Further details are
given in [7, 17].

3.3 Overall Hybrid Model

A hybrid model of walking is obtained by combining the swing phase model
and the impact model to form a system with impulse effects. Assume that the
trajectories of the swing phase model possess finite left and right limits, and
denote them by x−(t) := limτ↗t x(τ) and x+(t) := limτ↘t x(τ), respectively.
The model is then

Σ :

{
ẋ = f(x) + g(x)u, x− /∈ S

x+ = ∆(x−), x− ∈ S,
(6)

where the switching set is chosen to be

S := {(q, q̇) ∈ TQ | pv
2(q) = 0, ph

2(q) > 0}. (7)

In words, a trajectory of the hybrid model is specified by the swing phase
model until an impact occurs. An impact occurs when the state “attains”
the set S, which represents the walking surface. At this point, the impact of
the swing leg with the walking surface results in a very rapid change in the
velocity components of the state vector. The impulse model of the impact
compresses the impact event into an instantaneous moment in time, resulting
in a discontinuity in the velocities. The ultimate result of the impact model
is a new initial condition from which the swing phase model evolves until the
next impact. In order for the state not to be obliged to take on two values
at the “impact time”, the impact event is, roughly speaking, described in
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terms of the values of the state “just prior to impact” at time “t−” and “just
after impact” at time “t+”. These values are represented by the left and right
limits, x− and x+, respectively. Solutions are taken to be right continuous
and must have finite left and right limits at each impact event. Figure 1(b)
gives a graphical representation of this discrete-event system.

A step of the robot is a solution of (6) that starts with the robot in double
support, ends in double support with the configurations of the legs swapped,
and contains only one impact event. Walking is a sequence of steps.

4 Feedback Design via Posture Control

Any attempt to describe walking, even something as simple as the difference
between human-like walking (knees bent forward) and bird-like walking (knees
bent backward), inevitably leads to a description of the posture or shape of
the robot throughout a step. In other words, a description of walking involves
at least a partial specification of the path followed in the configuration space
of the biped; see Fig. 2. The following is one possible way to express this
mathematically: let qb = (q1; · · · ; qN−1) be a set of body coordinates for the
robot and let θ be the angle of some point of the robot with respect to an
inertial frame, and assume moreover that θ has been chosen so that it is
strictly monotonic throughout the step. Then the path of the robot in the
configuration space can be expressed as

0 = qb − hd(θ). (8)

A natural objective is therefore: determine a feedback controller that drives
asymptotically to zero the output function

y = h(q) := qb − hd(θ). (9)

This leads to two questions:

1. An analysis question: when will a given choice of hd(θ) lead to an
asymptotically stable periodic orbit (i.e., a stable walking motion)?

2. A synthesis question: how to make a choice of hd(θ) that will yield
an asymptotically stable periodic orbit meeting physically motivated re-
quirements such as: energy efficiency; the robot walks at a desired speed;
and the reaction forces at the leg end are such that the contact between
the stance and the ground behaves as a pivot?

Addressing the first question leads to the notion of the hybrid zero dynamics,
the focus of this chapter. A finite parametrization of possible paths hd(θ, α) via
Bézier polynomials and the use of parameter optimization have been employed
to address the second question.
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Fig. 2. Joint angles for a four-link walker over a complete gait cycle, that is, two
steps. The gait cycle consists of two phases each of double support (DS) and single
support (SS). Depicted are the relative hip angle and the knee angle of the leg drawn
in white. The first single support phase can be thought of as a graph of (8) for the
relative angles of the hip and knee during the swing phase, and the second single
support phase is a graph of (8) for the relative angles of the hip and knee during the
stance phase. The angle θ in (8) can be taken as the angle of the hip with respect
to the ground contact point of the stance leg.

5 The Zero Dynamics of Walking

The zero dynamics of the hybrid model (6) with output (9) are developed
in a two-step process. First, the zero dynamics of the (non-hybrid) nonlinear
model consisting of the swing phase dynamics (3) and the output (9) are
characterized, and then, second, an impact invariance condition is imposed
on the swing-phase zero dynamics manifold in order to obtain the hybrid zero
dynamics. For general hybrid systems and output functions, this approach
to forming a hybrid zero dynamics is less general than directly applying the
output zeroing definition of Isidori et al. [3, 9, 10]. From results in [17, 18],
however, it can be deduced that for an N -degree of freedom biped model with
one degree of underactuation and an N − 1 dimensional output vector of the
form (9), if there exists at least one periodic solution of the hybrid model (6)
that zeros the output and is transversal to S, then the approach followed here
and the definition used in [9] are equivalent.
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5.1 The Swing Phase Zero Dynamics

The objective is to characterize the zero dynamics manifold and associated
restriction dynamics for the swing-phase model (3) and output (9). The zero
dynamics, by definition, is independent of the choice of coordinates and the
application of regular state variable feedback [9, pp. 228]. Express the me-
chanical model (1) in the generalized coordinates q = (qb; θ). It is proven in
[8, pp. 562] that the model (3) is globally feedback equivalent to

q̈b = v (10a)

θ̇ =
σ̄N

dN,N (qb)
− Jnorm(qb)q̇b (10b)

˙̄σN = −∂V

∂θ
(qb, θ), (10c)

where
Jnorm(qb) =

1
dN,N(qb)

[dN,1(qb), · · · , dN,N−1(qb)] , (11)

dj,k is the j-k-element of D, σ̄N is the generalized momentum conjugate to
qN = θ, and v is the new input coming from the feedback transformation.
Taking x̃ := (qb; θ; q̇b; σ̄N ), the swing-phase model after feedback is expressed
in state variable form as

˙̃x =




q̇b
σ̄N

dN,N(qb) − Jnorm(qb)q̇b

v
−∂V

∂θ (qb, θ)


 =: f̃(x̃) + g̃(x̃)v. (12)

Decoupling Matrix

Differentiating (9) twice along the dynamics (12) gives

ÿ = L2
f̃
h(x̃) + Lg̃Lf̃h(q)v. (13)

A simple calculation gives that the decoupling matrix is

Lg̃Lf̃h(q̃) = I(N−1)×(N−1) +
∂hd(θ)

∂θ︸ ︷︷ ︸
(N−1)×1

Jnorm(qb)︸ ︷︷ ︸
1×(N−1)

. (14)

It follows that [?]

det(Lg̃Lf̃h)(q) = 1 + Jnorm(qb)
∂hd(θ)

∂θ
(15)

and is nonzero if, and only if,
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dN,N(qb) +
[
dN,1(qb), · · · , dN,(N−1)(qb)

] ∂hd(θ)
∂θ

�= 0. (16)

Moreover, on the open set T Q̃ ⊂ TQ where the determinant of the decoupling
matrix is nonzero, the inverse of the decoupling matrix is

[
Lg̃Lf̃h(q)

]−1

= I(N−1)×(N−1) +
1

det(Lg̃Lf̃h)(q)
∂hd(θ)

∂θ
Jnorm(qb). (17)

The swing phase zero dynamics manifold is then4

Z := {x ∈ T Q̃ | h(x) = 0, Lfh(x) = 0}; (18)

it is a smooth two-dimensional embedded submanifold of TQ. The feedback
control

ũ∗(x̃) = −
[
Lg̃Lf̃h(q)

]−1

L2
f̃
h(x̃) (19)

renders Z invariant under the closed-loop vector field f̃ + g̃ũ∗. The zero dy-
namics vector field is the restriction

fzero := f̃ + g̃ũ∗
∣∣∣
Z

. (20)

The zero dynamics is given by

ż = fzero(z), (21)

for z ∈ Z.

Computing Terms in the Zero Dynamics

In the coordinates (qb; θ; q̇b; θ̇), the zero dynamics manifold can be written as

Z =
{

(qb; θ; q̇b; θ̇)
∣∣∣∣ qb = hd(θ), q̇b =

∂hd(θ)
∂θ

θ̇

}
. (22)

On Z, the generalized momentum conjugate to θ becomes

σ̄N = I(θ)θ̇, (23)

where the virtual inertia I(θ) is given by

I(θ) :=
[
dN,N(qb) +

[
dN,1(qb), · · · , dN,(N−1)(qb)

] ∂hd(θ)
∂θ

]∣∣∣∣
qb=hd(θ)

. (24)

On Z, the invertibility of the decoupling matrix establishes a bijective rela-
tionship between σ̄N and θ̇,
4 By [9, pp. 230], Lf̃h = Lfh; moreover, (12) and (3) have the same zero dynamics

because they are related by a regular state variable feedback [9].
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θ̇ =
σ̄N

I(θ)
. (25)

Restricting (10c) to Z,

˙̄σN = −∂V

∂θ
(qb, θ)

∣∣∣∣
qb=hd(θ)

. (26)

Defining ξ1 := θ and ξ2 := σ̄N , it follows that the swing phase zero dy-
namics is

ξ̇1 = κ1(ξ1)ξ2 (27a)
ξ̇2 = κ2(ξ1), (27b)

where

κ1(ξ1) =
1

I(ξ1)
(28a)

κ2(ξ1) = −∂V

∂θ

∣∣∣∣
qb=hd(θ), θ=ξ1.

. (28b)

It is emphasized that these terms can be determined directly from the La-
grangian of the swing-phase model and the term hd of the output (9). In
particular, there is no need to invert the inertia matrix, as would be required
if the zero dynamics were computed directly from (3).

5.2 The Hybrid Zero Dynamics

To obtain the hybrid zero dynamics, the zero dynamics manifold must be
invariant under the impact map, that is

∆(S ∩ Z) ⊂ Z. (29)

If S∩Z is nonempty, then, due to the form of the output (9), S∩Z is a smooth
one-dimensional embedded submanifold of T Q̃ if, and only, if pv

2(hd(θ), θ) has
constant rank on its zero set. Furthermore, when the decoupling matrix is
invertible, the following statements are equivalent [17]:

(a) (29) holds;
(b) h ◦ ∆|(S∩Z) = 0 and Lfh ◦ ∆|(S∩Z) = 0; and
(c) there exists at least one point (q−0 ; q̇−0 ) ∈ S ∩ Z such that σ̄N �= 0, h ◦

∆q(q−0 ) = 0, and Lfh ◦ ∆(q−0 , q̇−0 ) = 0.

Definition 1 (Hybrid zero dynamics [17]). Consider the hybrid model (6)
and output (9). Suppose that the decoupling matrix (14) is invertible and let Z
and ż = fzero(z) be the associated zero dynamics manifold and zero dynamics
of the swing phase model. Suppose that S ∩ Z is a smooth, one-dimensional,
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Fig. 3. In (a) geometry of the closed-loop system. In (b), the prototype RABBIT,
which was developed as a French National Project by the CNRS [4]; the robot is
housed in LAG, the Automatic Control Laboratory of Grenoble.

embedded submanifold of TQ. Suppose further that ∆(S ∩ Z) ⊂ Z. Then the
nonlinear system with impulse effects,

Σzero :

{
ż = fzero(z), z− /∈ S ∩ Z

z+ = ∆(z−), z− ∈ S ∩ Z,
(30)

with state manifold Z, is the hybrid zero dynamics.

In the local coordinates (ξ1; ξ2), S∩Z and ∆ : (ξ−1 ; ξ−2 ) → (ξ+
1 ; ξ+

2 ) simplify
to

S ∩ Z =
{
(ξ−1 ; ξ−2 ) | ξ−1 = θ−, ξ−2 ∈ R

}
(31a)

ξ+
1 = θ+ (31b)

ξ+
2 = δzero ξ−2 , (31c)

where δzero is a constant that may be readily computed using (4) and (9) and
where θ− and θ+ satisfy

pv
2(hd(θ−), θ−)) = 0, ph

2(hd(θ−), θ−) > 0, (32a)

pv
2(hd(θ+), θ+)) = 0, ph

2(hd(θ+), θ+) < 0. (32b)

The hybrid zero dynamics is thus given by (27) during the swing phase, and
at impact with S ∩ Z, the re-initialization rules (31b) and (31c) are applied.

For θ+ ≤ ξ1 ≤ θ−, define
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Vzero(ξ1) := −
∫ ξ1

θ+

κ2(ξ)
κ1(ξ)

dξ. (33)

A straightforward computation shows that Lzero := Kzero − Vzero [17], where

Kzero =
1
2

(
ξ̇1

κ1(ξ1)

)2

, (34)

is a Lagrangian of the swing-phase zero dynamics (27). This implies, in par-
ticular, that the total energy Hzero := Kzero+Vzero is constant along solutions
of the swing-phase zero dynamics.

5.3 Existence and Stability of Periodic Orbits

The analysis of periodic orbits of the hybrid zero dynamics forms the basis
for proposing feedback laws that induce exponentially stable walking motions
in the full-dimensional hybrid model. Take the Poincaré section to be S ∩ Z
and let

ρ : S ∩ Z → S ∩ Z (35)

denote the Poincaré (first return) map5 of the hybrid zero dynamics. Using the
fact that the total energy Hzero is constant along solutions of the continuous
portion of the dynamics, the Poincaré map may be shown to be

ρ(ζ−2 ) = δ2
zero ζ−2 − Vzero(θ−), (36)

where ζ−2 := 1
2 (ξ−2 )2, and its domain of definition is

Dzero =
{
ζ−2 > 0

∣∣ δ2
zero ζ−2 − V max

zero > 0
}

, (37)

where
V max

zero := max
θ+≤ξ1≤θ−

Vzero(ξ1). (38)

The domain Dzero is non-empty if, and only if, δ2
zero > 0. Whenever δ2

zero < 1,
the fixed point of (36),

ζ∗2 := −Vzero(θ−)
1 − δ2

zero

, (39)

will be exponentially stable as long as it belongs to Dzero. The conditions for
there to exist an exponentially stable periodic orbit of (30) are thus

δ2
zero

1 − δ2
zero

Vzero(θ−) + V max
zero < 0 (40a)

0 < δ2
zero < 1. (40b)

Periodic orbits of the hybrid zero dynamics are periodic orbits of the full-
dimensional model. Two different feedback controllers are provided in [11, 17]
for exponentially stabilizing these orbits in the full-dimensional model, (3).
5 This is in general a partial map.
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6 Experimental Data

The hybrid zero dynamics has played an integral role in the design of walking
gaits for a prototype bipedal robot called RABBIT [4]; see Fig. 3(b). The
analytical results of Section 5.2 are rendered useful in feedback synthesis by
introducing a finite parametrization of the output (9). In particular, the func-
tion hd is constructed from Bézier polynomials [1], which in turn introduces
free parameters α into the hybrid zero dynamics (30),

Σzero,α :

{
ż = fzero,α(z), z− /∈ S ∩ Zα

z+ = ∆(z−), z− ∈ S ∩ Zα,
(41)

through
hα(q) := qb − hd(q, α). (42)

Moreover, the hybrid invariance condition (29) can be imposed analytically;
see [17, Thm. 4].

A minimum-energy cost criterion

J(α) =
1

step length

∫ step time

0

||u∗
α(t)||22dt (43)

is posed, where
u∗

α := − [LgLfhα]−1
L2

fhα

∣∣∣
Z

(44)

is the (unique) input to the model (3) realizing the periodic orbit of the hy-
brid zero dynamics. Constraints based on (40) are easily imposed to guarantee
that periodic orbits exist and are exponentially stable. Additional constraints
are used to prescribe walking at a desired average speed, with the (unilateral)
forces on the support leg lying in the allowed friction cone. Parameter opti-
mization is then used to minimize the cost J(α). Whenever a solution exists,
the result is a provably stable, closed-loop system with satisfied design con-
straints. Typical solutions times for computing the optimal parameter value
are thirty seconds to one minute in MATLAB. For further details on the
procedure, see [17].

Feedback control designs based on the hybrid zero dynamics have been
extensively evaluated on RABBIT. As reported in [16], natural walking mo-
tions were obtained with remarkably little trial and error. Figure 4 compares
a limit cycle obtained on the robot with a limit cycle obtained with the same
controller on a simulation model. For videos of RABBIT walking and running,
see [2, 15].

7 Conclusions

The notion of zero dynamics has become ubiquitous in nonlinear control the-
ory and practice. This chapter has reviewed an extension of the zero dynamics
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Fig. 4. Limit cycles of the closed-loop hybrid systems corresponding to asymptoti-
cally stable walking.

to a class of hybrid models relevant for the analysis of walking gaits in bipedal
robots. The hybrid zero dynamics provides an effective tool for the analysis
and synthesis of feedback controllers that induce exponentially stable, periodic
walking motions in bipedal robots. Its utility has been confirmed experimen-
tally.
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