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Local input—output decoupling of discrete-time non-linear systems

J. W. GRIZZLEY%

A local treatment of the block input-output decoupling problem is given for
discrete-time non-linear control systems. The major tools employed are the
invariant and locally-controlled invariant distributions that have recently been
extended to the discrete-time domain. A sufficient condition for the solvability of the
problem with local stability about an equilibrium point is also given.

1. Introduction

The problem of modifying a system’s behaviour via feedback so that certain of the
inputs only interact with specified components of the outputs is classical in control
theory. A vast literature exists on this problem for the class of linear systems, where
only Wonham (1979) and Morse and Wonham (1971) are cited as examples. More
recently, the class of non-linear continuous-time systems has also received a lot of
attention, being investigated through a variety of techniques (Claude, Isidori et al.
1981, Nijmeijer and Schumacher 1983, Sinha 1977, van der Schaft 1985). However,
considerably less is known about this problem for the class of discrete-time non-linear
systems.

The goal of this paper is to give a local treatment of the restricted block
input—output decoupling problem for the class of analytic non-linear discrete-time
systems. The major tools employed will be the invariant and locally-controlled
invariant distributions studied by Grizzle (1985 a, b), where they were used to solve
the disturbance decoupling problem locally.

A special case of this problem has been solved by Monaco and Normand-Cyrot
(1984 a), where, given some non-singularity hypotheses, necessary and sufficient
conditions are given for an affine system

X4 =F(x,) + ﬁ; u;g;(x;)

Y = h(x,)

to be feedback equivalent to a parallel cascade of single-input/single-output linear
systems plus an unobservable non-linear part. It should be noted that although this
class of system is rather restricted, the result obtained is explicit and, modulo certain
singularities, also global. On the other hand, a much more general class of system will
be studied here, but only local results will be obtained. A worthwhile goal would be to
combine the approach advocated by Monaco and Normand-Cyrot (1984 a) with that
given here in the hope of obtaining some ‘intermediate’ results. Perhaps an indication
of how this might be done is given by Monaco and Normand-Cyrot (1984 b), where
invariant distributions are treated from an algebraic point of view.

Finally, the problem of finding a feedback law that simultaneously decouples a
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system and locally stabilizes it about an equilibrium point is studied. The usual
linearization method (i.e. Lyapunov’s first method) is combined with locally-
controlled invariant distributions to obtain a sufficient condition for decoupling with
stability.

2. Definitions and preliminaries

This section fixes the notation and setting employed in this study of discrete-time
non-linear systems and summarizes some results owing to Grizzle (1985 a) on
controlled invariant distributions.

Definition 2.1

A non-linear discrete-time system is a five-tuple X(B, M, f, h, N), where n:B - M
is an analytic fibre bundle, N is an analytic manifold and f: B—+M and h: M - N are
analytic mappings. The points of M are the states of the system, the fibres of B are the
(possibly state-dependent) input spaces, and the outputs are valued in N. The system’s
dynamics are defined by x,,, = f(x,, u,), y, = h(x,), for u,en™'(x,). Finally, it is
supposed that both n: B— M and N are connected.

Definition 2.2

A feedback function y is a bundle isomorphism from B to B; ie. y is a
diffeomorphism such that the following diagram commutes:

B——B

S/

In local trivializing coordinates (x, u) for B, one has y(u, x) = (x, y,(u)).
Since y is non-singular, feedback can (and will) be viewed simply as a state-
dependent change of the input coordinates.

Definition 2.3
Let A be an involutive analytic distribution on M. Then A is an invariant

distribution of (B, M, f), with respect to a given open cover of local trivializations
(x, u), of B, if

f(,u),AcA 2.2)

for each local coordinate chart (of the given open cover). A is locally controlled
invariant if for each by € B there exists locally a feedback v (i.e. y is defined on some
open set about b,) such that A is an invariant distribution of the closed-loop system
(B, M, fo 7).

It turns out that locally-controlled invariant distributions can be quite easily
characterized. In the following, V(B) = {Xe TB|n,X =0} denotes the vertical distri-
bution on B.

Theorem 2.1
If A is an analytic involutive locally-controlled invariant distribution on M, then
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for each vector field Xen, '(A) and beB,
£,X, < A(f(b)) + £, (b)V(B) 2.3)

Moreover, if A, f ' (A)n V(B) and f restricted to the fibres of B all have constant rank,
then (2.3) is also sufficient for A to be locally-controlled invariant.

Remark 2.1:

Owing to the analyticity assumption, there will always exist open dense subsets
M’ < M and B’ c B, =(B’) > M, on which the aforementioned constant-rank hypoth-
eses are satisfied.

Though it is not true that a maximal locally-controlled invariant distribution
contained in a given distribution always exists, something very close to this does in
fact hold.

Definition 2.4

An analytic distribution A is said to satisfy the local controlled invariance (LCI)
condition if there exists an open dense subset B’ = B such that

. X, = A(f(b)) + f, (b)V(B)

for all Xen, '(A) and beB'.
This leads to the following important result.

Theorem 2.2

Let K be an analytic involutive distribution on M. Then K contains a maximal
distribution satisfying the LCI condition; moreoever, it is necessarily involutive and,
on the open dense subsets of M and B where the constant-rank hypotheses of
Theorem 2.1 are satisfied, it is also locally-controlled invariant.

An algorithm for calculating the maximal LCI distribution contained in K is given
by Grizzle (1985 a).

Doing local-coordinate calculations for discrete-time systems is more delicate than
in the case of continuous-time systems, since one must usually work with a pair of
coordinate charts: one about the domain of f, and the other about its image. Let
(%0, ug)e B, and consider f(x,, uy)e M. Choose a coordinate chart (b, Vi) about
f(xo, uo) and consider the open set f~!(V,,) about (%0, Up). Choose a trivializing
coordinate chart (¢g, V) about (X, u,) such that Vg < f ! (Vm). (ds, Vg), (dm, Vi)
will be called a coordinate-chart pair. Denote coordinates for (g, V) by (x, u), and
for (¢m, V) by x. (This abuse of notation is useful and permits one to perform local
calculations as if one were working in a single coordinate chart.) The coordinate-chart
pair will be denoted simply by (x, u). If A is an involutive distribution on M having
constant dimension, then by the Frobenius theorem one can assume that

0 i,
A = span {ax—,, ’W}

in each chart (¢pg, V), (dm, Vi), and hence the notation

0 0
A =span {6)(—" vees ﬁ}
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is not ambiguous. Note that n(Vg) and Vy, may or may not intersect and may or may
not coincide. However, if f(xq, Ug) = X, then one can always choose Vg such that

(Vg) = Vi and dg|n(Vg) = dwm|n(Vp).

3. Restricted block decoupling problem

Let (B, M, f, h, N) be a discrete-time non-linear control system for which the
outputs have been grouped into blocks; ie. h=(h!, ..., h'), where hi:M —N' and
N = N!x...xN'. The restricted block decoupling problem{ (RBDP) is to find, if it
exists, a non-singular feedback ¥(x,u) and a partitioning of the inputs into
u=(u',...,,u,u'*"), each u’ possibly being a vector, such that u’ does not affect
y/=hi(x) for all j#i, i=1,..,1, and u'*! does not affect the outputs at all (the
possibility of u'*! being zero-dimensional is not excluded). If one adds the condition
that u' ‘controls’ y¢, then one has the restricted block non-interacting control problem.
However, since non-singular state variable feedback cannot modify the accessibility
nor the output accessibility properties of the system, only the first problem need be
addressed.

Starting from the above purely input—output definition of ‘decoupledness’, a
global state-space characterization of this property will be given in terms of invariant
equivalence relations. This will lead to a natural localization of the problem in terms
of invariant distributions to which the results of Grizzle (1985 a) can be applied to
study the local solvability of the RBDP.

Proposition 3.1

Let Z(MxU'x ... xU'*! £, h, N'x ... xN') be a discrete-time non-linear control
system. Then X is input—output decoupled with respect to the given partition of the
inputs and outputs if and only if there exist / equivalence relations R’,..., R on M
such that whenever xR'x,

h!(x) = h(k) (3.1a)
and
f(x, u!, ..., Wt HRHf(X, @', ..., 0 " ul, o't L afttY) (3.1b)

for all W), eVl i,j=1,..,L

Proof

Assume that such equivalence relations exist; consider one of them, say Ri, and let
M/R' denote the set of equivalence classes associated with R'. Then (3.1) gives that E
projects, in a set-theoretic sense, to a system on M/R":

Xyp1= ?(ih u:z)
Yi= ﬁ‘(ik)

from which it is clear that y* does not depend on w’ for j 5 i. On the other hand, for
fixed x and X, define xR'x if, for arbitrary input sequences (u;)i%, and (0;);%, such
that u;=(u},...,u* ') and 0;=(0}, ..., 05", uj, @5*', ., af* ).

V06 (U 1) = V(% (@)1 )

+ The problem is restricted in the sense that only non-singular state variable feedback is
allowed; in particular, dynamic compensation is not permitted.



Local input—output decoupling of non-linear systems 1521

for all k=0,1,... where yi(x; (u;)i2,) denotes the output of T(MxU'x...
xU'* 1 M, f, b, N¥) with initial condition x and input sequence (u 5%y Then it is
easily checked that R satisfies (3.1). 0

Remark 3.1

For linear systems, one can show that the R’ constructed above corresponds to a
linear subspace of the state space.

Hence, to solve the RBDP one must give conditions for the existence of a feedback
function y and a partitioning of the inputs such that the closed-loop system admits /
equivalence relations satisfying (3.1). However, since such conditions would necessari-
ly involve global computations, one is led to localizing the problem. The key to doing
this is given by the following result, the proof of which has been relegated to the
appendix.

Lemma 3.1

Let Z(MxU'x ... xU'* ' M, f, h, N'x ... xN') be a decoupled non-linear discrete-
time control system and let R, ..., R’ be the equivalence relations constructed in the
proof of Proposition 3.1. Then for each i = 1, ..., there exists an analytic involutive
distribution A’ and an open dense subset M’ = M on which the orbits of A’ and R!
locally coincide.

When A' is constant dimensional and M‘ = M, R’ will be said to be regular.

Definition 3.1

The restricted block decoupling problem is regularly solvable for
E(B, M, f, h, N'x ... xN') if there exist / regular equivalence relations and a feedback
function y such that £, := (B, M, foy, N'x ... xN') satisfies (3.1). (For B non-trivial,
(3.1 b) should be interpreted with respect to a given open cover of charts (x, u),.) The
problem is locally regularly solvable if y exists at least locally.

Simply diffrentiating along the orbits of the equivalence relations RY, ..., R! gives
the following results.

Lemma 3.2

The restricted block decoupling problem is locally regularly solvable for
(B, M, f, h,N'x ... xN') if and only if there exist ! involutive constant-dimensional
distributions A', ..., A’ on M such that for each b,eB and sufficiently small local
trivializations (x, u) of B about b, there exist a local feedback function y and a
partition (u', ..., u'*") of the inputs satisfying;

(@) h;(A‘)=0, i=1..1L
b) foy(-, W A cA, i=1,..,1

a | . .
(© fo'y*(span {Wlné:})cA‘, i=1,..,1

Remark 3.2

In continuous time, the non-interacting control problem is usually formulated in
terms of controllability subspaces (Wonham 1979) or controllability distributions
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(Nijmeijer and Schumacher 1983). To the author’s best knowledge, such distributions
have not yet been introduced for discrete-time non-linear systems. Let

i+1
Xesy =AX, + ‘Zl Biuj

vi=Cx,; i=1,..,1

be a linear discrete-time system on R". Then Definition 3.1 demands the existence of
subspaces S, ..., 8' of R" and a feedback function v = Fx + Gu, |G| #0, such that

(@) S’ c ker C
®)(A +BF)Sic S’
(c) BGspan {u',...,u" L u*! . u'*!}c Sl

Now (b") and (c') are the essential ingredients in the definition of a controllability
subspace (one need only add that §' is the smallest such subspace). One therefore sees
that the formulation of the decoupling problem arrived at in Definition 3.1 is in fact
analogous to those posed by Wonham (1979), Morse and Wonham (1971), Nijmeijer
and Schumacher (1983) and van der Schaft (1985) for continuous-time systems. More
importantly, (b) and (c) may lead to a good notion of a controllability distribution for
discrete-time non-linear systems.

The main result characterizing the local solvability of the above problem is the
following. (One should note that, owing to analyticity, the constant-rank hypotheses
that will be made, hold on open dense subsets of M and B.)

Theorem 3.1

Let £(B, M, f, h, N'x ... xN') be a discrete-time non-linear control system. If the
restricted block decoupling problem is locally regularly solvable, then there exist /
involutive constant-dimensional distributions A, ..., A’ on M satisfying

(a) hi,(A) =0;
(b) for the family of distributions E':= f,'(A)nn ! (A'),
(i) n E=A

(ii) Q(E‘nV(B))+D(Ean(B))=V(B)

for all non-empty disjoint subsets I, J = {1, ..., [}

Moreover, if f restricted to the fibres of B and E'nV/(B) all have constant rank, then
these conditions are also sufficient.

Proof

Necessity. Suppose the RBDP is locally regularly solvable. Fix b, € B and let (x, u)
be a sufficiently small coordinate-chart pair about by and let y(x, u), u = (u', ..., u**!)
and A', ..., A' be as in Lemma 3.2. Since v is always of the form y(x, u) = (x, Y(w)), (b)
of Lemma 3.2 gives that n, E' = A’. To establish (ii) of (b), first note that

d b}
V(B) = span {hbu—p o Y*W}
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Now (c) of Lemma 3.2 gives that

i) .
span {Y*W j# i} cFE

so that
. 9 .. .
E‘AV(B) > span {Y*E‘FIJ # 1}

Therefore
) d |.
Q E‘nV(B) > span {V*W\Jé I}

which establishes (ii) of (b) once one uses the disjointness of I and J.

Sufficiency. The key point is that by the proof of Theorem 5.1 of Isidori et al.
(1981), Condition (ii) of (b) implies that the family of distributions {E‘nV(B)}!_ is
simultaneously integrable (Jakubczyk and Respondek 1980). Hence one can choose
coordinates u =(u', ..., u’* ") for the fibres of B, each u’ possibly being a vector, such that

,. 2 & @ 2
E'nV(B)=span {W’ o GO T au'“}
Now condition (i) of (b), n, E' = A, implies that A’ is locally-controlled invariant
(Grizzle 1985 a, b). Moreover, as

%e E‘'nV(B)

for j # i, a local feedback 'y rendering A’ invariant can always be chosen to be of the
form fy(x,u)=(x, u',..,ui"! ¥i(x,u), ut L u'*!). Now define v(x,u):=
Moo ly(x, u)=(x, 7', u'), ..., ¥'(x, u'), u'*!). It is claimed that y is a decoupling
feedback. To show (b) of Lemma 3.2, let Xe A’ and consider

of ! of Y (x, u)
foy(o,u) X=<_ - X
* ox fix,u) i=1 ouw’ —_— ax
of of oy ;
(& + ﬁ aT‘)X cA
by the definition of y'. Furthermore, for j # i,
oy’ 0
TS
which is mapped into A’ under
o*
ouw!
by the construction of E'. Hence (b) of Lemma 3.2; (c) is shown similarly. O

One of the drawbacks of Theorem 3.1 is that it gives no hint as to how A'is to be
determined. However, in conjunction with Theorem 2.2 one has the following result.

Corollary 3.1

Let X be as in Theorem 3.1 and let A™* be the maximal LCI distribution contained
in ker h},. Suppose that A’*, f_ ' (A"*)~ V(B) and f restricted to the fibres of B all have
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constant rank. Then the RBDP is locally regularly solvable if and only if
(' A*)AV(B) + ) (f, ' (A™*)nV(B) = V(B)
tel jelJ

for all non-empty disjoint subsets / and J of {1,2,...,1}.

4. Decoupling with local stability
4.1. General

In the previous two sections, conditions were given under which a system could be
input-output decoupled via state-variable feedback. Of course, if decoupling can only
be achieved at the price of instability, then it is of no practical interest. Here, an easily
checkable sufficient condition, based on the first method of Lyapunov, will be given
for the existence of a feedback that simultaneously decouples and stabilizes a system
in the neighbourhood of an equilibrium point.

Definition 4.1

Let X(B, M, f) be a non-linear discrete-time system. A point b,eB such that
f(b.) =n(b,) is called an equilibrium point. (In a local-coordinate chart (x, u) this
means that f(x., u,) = x,, where (x.,u,):=b,.)

Definition 4.2

Let X(B, M, f, h, N) be a non-linear discrete-time system with equilibrium point
b, and let (x, u) be local coordinates about b,. Then the linearization of I at b, is the
system

5Xk+l = A6Xk + BEUk

5yk = C(sxk (4‘1)
where
A:=ﬁ , B:=—a-i , C:=a—h , OX:=X—Xx,, ou:=u-—u,
axbg du b, ox

and dy:=y —y, for y.:= h(x.), and y local coordinates for N about y,.

Remark 4.1

(i) It is easily shown that different choices of local coordinates (x, u) result in
linearizations that are equivalent under the linear feedback group.
(i) The state space of the linearized system (4.1) is T, M.

Definition 4.3

Let A be an involutive distribution. The set of local non-singular feedbacks y that
make A an invariant distribution of the closed-loop system L(B, M, f. y) is denoted
by #(A) (read ‘friends of delta’). For the linearized system (4.1), (V) denotes the set
of linear feedback u = Fx + v such that (A + BF)V c V.

The main result of this section is the following theorem, whose proof will be
developed in the sub-sections that follow.
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Theorem 4.1

Let (B, M, f, h, N'x ... xN') be an analytic non-linear discrete-time system with
equilibrium point b,. Suppose that X satisfies the sufficient conditions of Theorem 3.1
for the local regular solvability of the RBDP. Then

(i) V:= Ai(x,) are controlled invariant subspaces of the linearized system (4.1);
(i1) if there exists an Fe

4
(1 #V)

that stabilizes (4.1), the RBDP is in fact solvable with local stability about x..
In particular, this is the case if (4.1) is completely controllable and

(Vv'=(0)

4.2. Invariance with local stability

This sub-section investigates the existence of a local feedback y e #(A) that locally
stabilizes a system about an equilibrium point. The main idea is to combine the
standard linearization method of analyzing local stability with the geometric theory of
invariant distributions.

Towards this end, let £(B, M, f) be a system with equilibrium point b, and let y be
a feedback function. The closed-loop system I, : = (B, M, f o y) will have equilibrium
point b,=y7!(b.). (Note, n(b,)=n(b.).) In local coordinates (x,v) about the
equilibrium point b, one easily calculates the linearization of L, to be

0%, +1 = (A + BF)éx, + Bév, 4.2)
where A, B, and dx are as in (4.1), v =v —V,, and F is given by
o,
17).9 6.

Hence, a sufficient condition for ¥ to be locally stabilizing is that (A + BF) has its
eigenvalues in the open unit circle. In addition, if (A + BF) has no eigenvalue on the
unit circle, then this condition is also necessary. (When there are eigenvalues on the
unit circle, one must appeal to more sophisticated techniques, such as those based on
centre manifolds (Carr 1981) in order to deduce stability or instability.)

Now suppose that the involutive distribution A is locally-controlled invariant and
that ye #(A). Then from (2.3), it follows that V:= A(x,) is a controlled invariant
subspace of the linearized system (4.1) and that

M Fesv)

ox 6.
That every F € #(V) arises in just this way, given certain constant-rank assumptions,
is the statement of the following result, whose proof is given in the appendix.

Lemma 4.1

Let X be a non-linear system with equilibrium point b,, let A be an involutive
distribution satisfying the sufficient conditions of Theorem 2.1 for local controlled
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invariance, and let V:= A(x,). Then for every F e # (V) there exists a y& % (A) such
that

Fo b
ox 5,

Combining Lemma 4.1 with the previous discussion on stability analysis via
linearization, one obtains a sufficient condition for the existence of a feedback that
simultaneously makes a given distribution invariant and stabilizes the system about
an equilibrium point.

Theorem 4.2

Let X, A, and V be as in Lemma 5.1. Then, if there exists an Fe % (V) such that
(A + BF) is asymptotically stable, there exists a y € #(A) that locally stabilizes X
about x..

Remark 4.2
There exists an F e (V) such that (A + BF) is asymptotically stable if and only if

V =V}, where V¥ is the maximal (asymptotically) stabilizable (A, B) invariant

subspace contained in V (Wonham 1979).

4.3. Proof of Theorem 4.1

The following lemma provides the key result and can also be used to give an
alternative proof of Lemma 4.1.

Lemma 4.2

Let £ be a non-linear system with equilibrium point b, let A be an involutive
distribution satisfying the sufficient conditions of Theorem 2.1 for local controlled
invariance, and let V:= A(x,.). Then for every ye #(A) and F e #(V) there exists a
local feedback ¥ such that ¥:= §.ye%#(A) and

0%«

x|

ox 6.
where b, =7 ~*(b,).

Proof

Let ye#(A) and Fe&F (V) be arbitrary. Choose local coordinates (X, u)=
(x!, ..., x", u',...,u”) about b, =y~ !(b,) such that

0 0 gy ] F)
A_span{gx_fs"'a&f} and V(B)hf* (A)—{Spanw,...,ﬁ}

Note that in such coordinates, V=A and B !(V)=R"n[A|B] V=
V(B)f; !(A). Define

F:=%
ox 6.

and define § by §,(u) := (F — F)x + u. Since F, Fe #(V), it follows that (F — F)V <
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B~ !(V) (Wonham 1979). Therefore, (f-7),A = fr.A=F, v )A+(F)F-FAc
(foy),A+f (V(B)nf,(A) = A+ A=A, which establishes that y& Z(A). That

N _p
ox 6.

is clear. [}

Theorem 4.1 will now be established. First note that V¢ is controlled invari-
ant<>AVic Vi+Im B<>[A|B]JVXR" < V/+Im B<sf (bo)n, (A)) = A'(f(b,)) +
f,(bo)V(B). Hence A’ being locally-controlled invariant, and therefore satisfying (2.3),
implies (i). Next note that the hypotheses of the theorem give that

() F@)=
(i.e. the RBDP is solvable). To show (ii), one must prove the existence of a

ve () #4)
that is locally stabilizing. Let ¥ be any element of

() #)

and let § be the feedback constructed in Lemma 4.2 for a stabilizing

Fe 'd F(\V)
Then

Y:i=% -7eidf(Ai) and % ] =F

Hence 7 is locally stabilizing for the non-linear system L. a

S. Conclusions and comments

This paper has considered the input—output decoupling problem for non-linear
discrete-time systems from a local viewpoint. Starting from a global state-space
characterization of what it means for a system to be input—output decoupled, it was
shown that a natural (regular) local version of the problem could be formulated in
terms of invariant distributions. This local problem was then resolved using some
recent results on controlled invariant distributions for discrete-time systems. In a
similar manner, one can also treat the triangular decoupling problem.

The input-output decoupling problem with stability was also considered, and
sufficient conditions for its resolution were established. The approach centred on
‘invariance with local stability’ and linked up the classical linearization method with
the differential geometric-decoupling theory.

In a related paper, Grizzle and Nijmeijer (1985) have studied the infinite-zero
structure of a non-linear discrete-time system and have characterized the solvability of
the RBDP in terms of it.
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Appendix
A.l. Proof of Lemma 3.1
The following result will be useful.

Lemma A.1

Let X, Y, and Z be analytic manifolds and let g:XxY —Z be an analytic map.
Define an equivalence relation R by R(X)={xeX|g(x, y)=g(X, y) for all yeY}.
Then there exists an open dense subset of X where the orbits of R locally coincide with
the leaves of A:= TXnkerg,.

Proof

A is clearly an involutive analytic distribution and hence has constant dimension
on an open dense subset X' = X. Furthermore, if necessary one can shrink X' so that

og ,
(. VIX

has constant rank for an open dense subset of y’s in Y. Now fix a point Xe X’ and
choose coordinates (x,, ..., X,) for X such that

0 d
A= —_— e — = 1
span { X ax,}’ r:=dimA

Consider the associated leaves of A given by
F(i) = {(xl’ ey xn)lxr+l = ir-&- L5 vees xu = xn}

Claim
R(x) = F(X) in a neighbourhood of x.

Proof
In the above coordinates, one can write g(X, Y)=9(X,+,---, X,, ¥). Therefore,

R(i)= {(xl’ tres xn)lg(xr+la seey xm y)= g(’—‘r'i-l, eeey i’ V) fO[' a" y EY} > {(xl, ey xn)l
X, 41 =%, 415..., X, = X, } = F(X). Going in the other direction, foreachi=r+1,...,n,

og _
a_xi(x, y) 7& 0

for some yeY (for otherwise

2
0x;

would be an element of A) and hence R(X) < F(x). O

Returning to the proof of Lemma 3.1, define a sequence of equivalence relations



Local input—output decoupling of non-linear systems 1529

Ri,i=1,...,L k=0,1,... by xRix if
VALS (u;)i%0)= Yi(%; (07 0)

forallt=0,..., k (u;)i2 and (0;);2 o, where the notation of Proposition 3.1 has been
employed. Fix i. By Lemma A.1, for each k =0, 1, 2, ... the orbits of R} locally coincide
with the leaves of some analytic involutive distribution Af.

One shows quite easily that

R., (%) = {x e RL(%)|f(x, u', ..., u")RLE(X, O, ..., 0", ui, @'+, ..., Q")

for all u!,...,u” Q% ..., G "L G L 0n)

Hence AL, , c Al; but since each A} has constant dimension on an open dense
subset of M, for k > dim M =:n, one must have A} = A! on an open dense subset of
M. This establishes the result for A':= Al. 0O

A.2. Proof of Lemma 4.1

It suffices to establish the lemma for the case V(B)nf, ! (A) = {0} since if ye #(A),
7.IV(B)nf, 1 (A) is completely arbitrary. For the linearized system, this condition
translates into VA Im B = {0}. Now recall the construction of % (V) (Wonham 1979):
let v1, ..., v* be a basis for V. Then AV cV +Im B and VnIm B = {0} imply the
existence of unique u',...,u* such that Av‘+Bu'cV. Define Fy:V—R™ by
Fovi = u’; then #(V) = {F:R" > R"|F|V =F,|V}.

From the proof of Theorem 2.1 of Grizzle (1985 a) and the Frobenius theorem
(Spivak 1979), #(A) is constructed in the following manner:

Let X!, ..., X* be a basis for A. Then A is constant dimensional, V(B)nf;'(A) =
{0}, and f,(n; ' (A)) = A + £, V(B) imply the existence of unique Y*, ..., Y*€ V(B) such
that f, (X' + YY) < A. Then yeZ(A) is any locally-invertible solution of the set of
partial differential equations

MWy o i _
TX () =Y'(y(x,u)), 7, (W=u
Hence
a?x i — i
X b'x (x.)=Y'(b,)

is completely specified for i=1, ..., k but

37, k+1 n

ox|, |span {X**1,..., X"}
is arbitrary for X!, ..., X" a local basis for TM. Therefore, as X'(x.), ..., X*(x.) is a
basis for V and as AX(x,) + BY'(b,) = f, (b,)[X + Y'] = A(f(b,)) = A(x.) = V, the
uniqueness of Fy|V implies that

Yy
FolV= ¥ \Y;

b,

Since

1

0x b,

is arbitrary ‘off of V’, the proof is complete. 0
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