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Preface

The objective of this book is to present systematic methods for achieving sta-
ble, agile and efficient locomotion in bipedal robots. The fundamental prin-
ciples presented here can be used to improve the control of existing robots
and provide guidelines for improving the mechanical design of future robots.
The book also contributes to the emerging control theory of hybrid systems.
Models of legged machines are fundamentally hybrid in nature, with phases
modeled by ordinary differential equations interleaved with discrete transi-
tions and reset maps. Stable walking and running correspond to the design
of asymptotically stable periodic orbits in these hybrid systems and not equi-
librium points. Past work has emphasized quasi-static stability criteria that
are limited to flat-footed walking. This book represents a concerted effort
to understand truly dynamic locomotion in planar bipedal robots, from both
theoretical and practical points of view.

The emphasis on sound theory becomes evident as early as Chapter 3 on
modeling, where the class of robots under consideration is described by lists of
hypotheses, and further hypotheses are enumerated to delineate how the robot
interacts with the walking surface at impact, and even the characteristics
of its gait. This careful style is repeated throughout the remainder of the
book, where control algorithm design and analysis are treated. At times, the
emphasis on rigor makes the reading challenging for those less mathematically
inclined. Do not, however, give up hope! With the exception of Chapter 4 on
the method of Poincaré sections for hybrid systems, the book is replete with
concrete examples, some very simple, and others quite involved. Moreover, it
is possible to cherry-pick one’s way through the book in order to “just figure
out how to design a controller while avoiding all the proofs.” This is mapped
out below and in Appendix A.

The practical side of the book stems from the fact that it grew out of
a project grounded in hardware. More details on this are given in the ac-
knowledgements, but suffice it to say that every stage of the work presented
here has involved the interaction of roboticists and control engineers. This
interaction has led to a control theory that is closely tied to the physics of
bipedal robot locomotion. The importance and advantage of doing this was
first driven home to one of the authors when a multipage computation involv-
ing the Frobenius Theorem produced a quantity that one of the other authors
identified as angular momentum, and she could reproduce the desired result
in two lines! Fortunately, the power of control theory produced its share of
eye-opening moments on the robotic side of the house, such as when days and
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days of simulations to tune a “physically-based” controller were replaced by a
ten minute design of a PI-controller on the basis of a restricted Poincaré map,
and the controller worked like a champ. In short, the marriage of mechanics
and control is evident throughout the book. The culture of control theory has
inspired the hypothesis-definition-theorem-proof-example format of the pre-
sentation and many of the mathematical objects used in the analysis, such as
zero dynamics and systems with impulse effects, while the culture of mechanics
has heavily influenced the vocabulary of the presentation, the understanding
of the control problem, the choice of what to control, and ways to render the
required computations practical and insightful on complex mechanisms.

Target audience: The book is intended for graduate students, scientists and
engineers with a background in either control or robotics—but not necessarily
both of these subjects—who seek systematic methods for creating stable walk-
ing and running motions in bipedal robots. So that both audiences can be
served, an extensive appendix is provided that reviews most of the nonlinear
control theory required to read the book, and enough Lagrangian mechanics
to be able to derive models of planar bipedal robots comprised of rigid links
and joints. Taken together, the control and mechanics overviews provide suf-
ficient tools for representing the robot models in a form that is amenable to
analysis. The appendix also contains an intuitive summary of the method
of Poincaré sections; this is the primary mathematical tool for studying the
existence and stability of periodic solutions of differential equations. The
mathematical details of applying the method of Poincaré sections to the hy-
brid models occurring in bipedal locomotion are sufficiently unfamiliar to both
control theorists and roboticists that they are treated in the main part of the
book.

Detailed contents: The book is organized into three parts: preliminaries,
the modeling and control of robots with point feet, and the control of robots
with feet. The preliminaries begin with Chapter 1, which describes particular
features of bipedal locomotion that lead to mathematical models possessing
both discrete and continuous phenomena, namely, a jump phenomenon that
arises when the feet impact the ground, and differential equations (classical
Lagrangian mechanics) that describe the evolution of the robot’s motion oth-
erwise. Several challenges that this mix of discrete and continuous phenomena
pose for control algorithm design and analysis are highlighted, and how re-
searchers have faced these challenges in the past is reviewed. The chapter
concludes with an elementary introduction to a central theme of the book:
a method of feedback design that uses virtual constraints to synchronize the
movement of the many links comprising a typical bipedal robot. Chapter 2
introduces two bipedal robots that are used as sources of examples of the the-
ory, RABBIT and ERNIE. Both of these machines were specifically designed
to study the control of underactuated mechanisms experiencing impacts. A
mathematical model of RABBIT is used in many of the simulation examples
throughout the book. An extensive set of experiments that have been per-
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formed with RABBIT and ERNIE is reported in Chapter 8 and Section 9.9.
Part II begins with Chapter 3 on the modeling of bipedal robots for walking

and running motions. For many readers, the differential equation portions of
the models, which involve basic Lagrangian mechanics, will be quite familiar,
but the presentation of rigid impacts and the interest of angular momentum
will be new. The differential equations and impact models are combined to
form a special class of hybrid systems called nonlinear systems with impulse
effects. The method of Poincaré sections for systems with impulse effects is
presented in Chapter 4. Some of the material is standard, but much is new.
Of special interest is the treatment of invariant surfaces and the associated
restricted Poincaré maps, which are the key to obtaining checkable necessary
and sufficient conditions for the existence of exponentially stable walking and
running motions. Also of interest is the interpretation of a parameterized fam-
ily of Poincaré maps as a discrete-time control system upon which event-based
or stride-to-stride control decisions can be designed. This leads to an effective
means of performing event-based PI control, for example, in order to regulate
walking speed in the face of model mismatch and disturbances. Chapter 5
develops the primary design tool of this book, the hybrid zero dynamics of
bipedal walking. These dynamics are a low-dimensional controlled-invariant
subsystem of the hybrid model that is complex enough to retain the essential
features of bipedal walking and simple enough to permit effective analysis and
design. Exponentially stable periodic solutions of the hybrid zero dynamics
are exponentially stabilizable periodic solutions of the full-dimensional hy-
brid model of the robot. In other words, they correspond to stable walking
motions of the closed-loop system. The hybrid zero dynamics is created by
zeroing a set of virtual constraints. How to design the virtual constraints
in order to create interesting walking gaits is the subject of Chapter 6. An
extensive set of feedback design examples is provided in this chapter. The
controllers of Chapter 6 are acting continuously within the stride of a walking
motion. Chapter 7 is devoted to control actions that are updated on a stride-
to-stride basis. The combined results of Chapters 6 and 7 provide an overall
hybrid control strategy that reflects the hybrid nature of a bipedal robot. The
practical relevance of the theory is verified in Chapter 8, where RABBIT—
a reasonably complex mechanism—is made to walk reliably with just a few
days of effort, and not the many months of trial and error that is customary.
Part II of the book is concluded with a study of running in Chapter 9. A
new element introduced in the chapter is, of course, the flight phase, where
the robot has no ground contact; the stance phase of running is similar to
the single support phase of walking. Chapter 9 develops natural extensions of
the notions of virtual constraints and hybrid zero dynamics to hybrid models
with multiple continuous phases. An extensive set of design examples is also
provided. An initial experimental study of running is described in Section 9.9;
the results are not as resoundingly positive as those of Chapter 8.

The stance foot plays an important role in human walking since it con-
tributes to forward progression, vertical support, and initiation of the lifting
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of the swing leg from the ground. Working with a mechanical model, our
colleague Art Kuo has shown that plantarflexion of the ankle, which initiates
heel rise and toe roll, is the most efficient method to reduce energy loss at the
subsequent impact of the swing leg. Part III of the book is therefore devoted
to walking with actuated feet. Chapter 10 addresses a walking motion that al-
lows anthropomorphic foot action. The desired walking motion is assumed to
consist of three successive phases: a fully actuated phase where the stance foot
is flat on the ground, an underactuated phase where the stance heel lifts from
the ground and the stance foot rotates about the toe, and an instantaneous
double support phase where leg exchange takes place. It is demonstrated that
the feedback design methodology presented for robots with point feet can
be extended to obtain a provably asymptotically stabilizing controller that
integrates the fully actuated and underactuated phases of walking. By com-
parison, existing humanoid robots, such as Honda’s biped, ASIMO, use only
the fully actuated phase (i.e., they only execute flat-footed walking), while
RABBIT and ERNIE use only the underactuated phase (i.e., they have no
feet, and hence walk as if on stilts). To the best of our knowledge, no other
methodology is available for integrating the underactuated and fully actuated
phases of walking. Past work that emphasized quasi-static stability criteria
and flat-footed walking has primarily been based on the so-called Zero Mo-
ment Point (ZMP) or, its extension, the Foot Rotation Indicator (FRI) point.
Chapter 11 shows how the methods of the book can be adapted to directly
control the FRI point during the flat-footed portion of a walking gait, while
maintaining provable stability properties. Importantly, FRI control is done
here in such a way that both the fully actuated and underactuated phases
of walking are included. For comparison with more standard approaches, a
detailed simulation study is performed for flat-footed walking.

Possible paths through the book: This book can be read on many dif-
ferent levels. Most readers will want to peruse Appendix B in order to fill
in gaps on the fundamentals of nonlinear control or Lagrangian mechanics.
The serious work can then start with the first three sections of Chapter 3,
which develop a hybrid model of bipedal walking. The definition of a periodic
solution to the hybrid model of walking, the notion of an exponentially stable
periodic orbit and how to test for its existence via a Poincaré map are ob-
tained by reading through Section 4.2.1 of Chapter 4. Chapters 5 and 6 then
provide a very complete view on designing feedback controllers for walking at
a single average speed. If Sections 5.2 and 5.3 seem too technical, then it is
advised that the reader skip to Section 6.4, before completing the remainder
of Chapter 5. After this, it is really a matter of personal interest whether one
continues through the book in a linear fashion or not. A reader whose pri-
mary interest is running would complete the above program, read Section 7.3,
and finish with Chapter 9, while a reader whose primary interest is walking
with feet would proceed to Chapters 10 and 11, for example. For a reader
whose interests lie primarily in theory, new results for the control of nonlinear
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systems with impulse effects are concentrated in Chapters 4 and 5, with sev-
eral interesting twists for systems with multiple phases given in Chapters 9
and 10; the other parts of the book could be viewed as a simple confirmation
that the theory seems to be worthwhile. The numerous worked-out examples
and remarks on interesting special cases make it possible for a practitioner to
avoid most of the theoretical considerations when initially working through
the book. It is suggested to seek out the two-link walker (a.k.a., the Ac-
robot or compass biped) and three-link walker examples in Chapters 3, 5,
and 6, which will provide an introduction to underactuation, hybrid models,
the MPFL-normal form, virtual constraints, the swing phase zero dynamics,
Bézier polynomials, optimization, and a systematic method to enlarge the
basin of attraction of passive gaits. The reader should then be ready to read
Chapter 8, with referral to previous chapters as necessary. Further ideas on
how to work one’s way through the book are given in Appendix A.
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B.3 Poincaré’s Method of Determining Limit Cycles . . . . . . . . 399
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