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Abstract

Necessary and sufficient conditions are given for a nonlinear discrete-time system to be feed-
back equivalent to a controllable linear system. Some preliminary work on the effects of sam-
pling on feedback linearizability is reported.

I. Introduction

The problem of determining when a nonlinear continuous-time system can be transformed
into a linear system by changes of state coordinates and (nonsingular) feedback has been exten-
sively studied (local results, Hunt and Su 1981, Jakubczyk and Respondek 1980, Krener 1973;
global results, Cheng et al. 1985, Dayawnsa et al. 1985, Respondek 1985). This paper will
address the corresponding local problem for nonlinear discrete-time systems of the form:

2:x,,.,.1=f(xk.uk): (l-l)

here x € R” ,u € R™ and f is assumed to be an analytic function of its arguments. Necessary
and sufficient conditions will be given for the local existence of a new set of coordinates % = o(x)

and a nonsingular feedback u = y(x.z) .det(%) # 0, which transform (1.1) into a controllable
linear system

X 41 = AX, + Bu, . (1.2)
The result will closely parallel that of van der Schaft 1985 for (general) nonlinear continuous-

time systems, which is in turn based on Jakubczyk and Respondek 1980.
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In practice, many (if not most) discrete-time systems arise by sampling continuous-time
systems. It is, therefore, of interest to investigate how certain properties of continuous-time sys-
tems are affected by sampling. Considerable work has been done in this area by Sontag who has
studied in detail the preservation of controllability (Sontag 1985) and observability (Sontag
1984a) under sampling. Monaco and Normand-Cyrot 1985 have investigated how invariant dis-
tributions behave under approximate sampling procedures. They have also given an explicit
power series (in the input variables) representation of a sampled system in terms of the defining
vector fields of the original continuous-time control system (Monaco and Normand-Cyrot
1985b,c). However, even in the case of linear systems, the author is unaware of any results on
how the solvability of the various so-called synthesis problems is affected by sampling. Some
results in this direction for linear systems will appear in Shor 1986. Here, some preliminary
work on the effects of sampling on feedback linearizability will be reported.

In work related to the feedback linearization problem, those nonlinear discrete-time systems
which can be transformed into controllable linear systems, plus terms of order higher than some
specified integer, have been characterized by Lee and Marcus 1985. They also give a result on the
(exact) feedback linearization problem, but it is uncheckable.

A less restrictive notion than feedback linearization involves immersing a nonlinear system
into a linear system (see Claude et al. 1983). This has been studied by Monaco and Normand-
Cyrot 1983 for those discrete-time systems which are linear in the control:

x‘-+;=f(xk)+2u‘fgi(x,,). (1-3)
i=]
A similar result, using much different techniques, is given by Sontag 1984b.

Finally, Jackubczyk has informed the author that he has obtained necessary and sufficient
conditions for local feedback linearization using techniques introduced in Jakubczyk and
Normand-Cyrot 1984.

II. Preliminaries and Definitions

In the following
Lixpa = f (o)

will always denote the discrete-time system given in (1.1). Feedback will be given by an ana-
lytic function y:R" xR™ - R™ such that for each x €R" (xS :RT" - R™ is a
diffeomorphism. As a point of notion, subscripts will be used to denote the value of a vector at a

particular time instant and supersripts will be used to denote the components of a vector or of a
vector-valued function.



Definition 2.1

System (1.1) is (internally) feedback linearizable if there exist a feedback y and global coor-
dinates x for R" .z for R™ in which

f (. y(x.2))=Ax + Ba (2.1)
for some constant matrices A and B.

Note that if a system is feedback linearizable, there necessarily exists a pair of points
(xoo) € R" X R™ such that f (xquo) = x4:(x otto) Will be called an operating point. It is hen-
ceforth assumed that (1.1) possesses an operating point.

Making precise a local version of the above definition results in the f ollowing.

Definition 2.2
System (1.1) is (internally ) locally feedback linearizable about an operating point (x,.u,) if:

a) There exist open sets O, C 0, about x, and open sets U, C U, about u, such that
f :01 X Uz hd 020

b) There exist a nonsingular feedback y:0, XU 1~ U, and local coordinates x and u defined
on O, and U, in which

f (x.y(x %)) = Ax + Bi

for all x €0, and & € U,. Here, v is said to be nonsingular if for each % € 0,.y(x.):U,=U,is
one-to-one.

It is this latter property which will be characterized. In the proof of the main result, it will
be convenient to view 7: R” x R™ —» R" as a fiber bundle, where 7 is the canonical projection.
In this context, feedback is simply a state-dependent change of the input coordinates and
Definition 2.2 can be restated as follows:

Definition 2.3

The system (1.1) is locally feedback linearizable about an operating point (xou,) if there
exist fiber respecting coordinates (x .z ) about (x.u,) in which

f(xu)=Ax +Bi .

The following technical result, proved in van der Schaft 1982, will be needed in the next
section.



Lemma 2.1

Leth : M — N be a smooth function, from the smooth manifold M to the smooth manifold
N, such that h.:TM — TN is surjective. Let K : = kerh., and let D be an involutive distribution
on M such that D N K has constant dimension. Then h.D is a well-defined involutive distribu-
tion on N if and only if D+K is involutive.

III. Local Linearizability

This section states and proves necessary and sufficient conditions for local linearizability.
When a system is linear, its attainable set up to time k, A, (x):= the set of points in R" which
can be attained in k steps of fewer starting from an initial state x, has a very special structure.
Namely, for each ¥ 21, A, _,(x) is imbedded nicely in A, (x). In particular, for all k 20,
x € R", the tangent space of A, (x) at x exists and gives rise to a well-defined regular (i.e., invo-
lutive and constant dimensional) distribution A, (x): =7, A, (x). For each k, A, ;D A,, and if
the system is controllable, A, has dimension n since A, (x )= R". The basic idea of Theorem 3.1
is to use the above geometric structure in order to obtain a characterization of local feedback
linearizability.

Theorem 3.1

Let £ be a discrete-time nonlinear control system of the form (1.1) with operating point
(xgug). Then the following are equivalent.

(a) £ is locally linearizable about (x ou,) to a controllable system.
(b) f u(xou,) has full rank and there exists an open set O about (x,u,) such that D, =n +m
where

Dy=7"YH0)10

w7 f (D)0 if D; + K is involutive and D; N K has constant dimension
Diy=
D, otherwise
and f =f10, K :=ker f..
(c) There exists an open set O about (x,u,) and regular distributions D,.D,.---.D, defined
about (xD,uo) Such tha‘. DD=TT-_I(O)|O, Dj+l=7ra—'l f:(D,)IO, and. d-’:m Dn =n +m, Whel‘e
f =f10.
Remark 3.1

The importance of (b) is that it identifies the local obstructions to linearizability for exam-
ple, noninvolutivity of D; + ker f. for some i, whereas (c) gives a geometric characterization for
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local linearizability, namely the existence of a sequence of nested regular distributions satisfying
a certain recurrence relation.

Proof

(a)=> (5): By (a), there exist fiber respecting coordinates (.2 ) about (x0.20) in which I has the
form (2.1). In these coordinates, f «(xouo)=[A | B] which must have full rank for (2.1) to be

controllable. One easily calculates that D, = span l%}, D;=B+ --- + Ai-1Bx span{%} where

B=/ImB. Hence, the indicated involutivity and constant dimension conditions hold. Finally,
dim D, =n +m follows from the controllability of (2.1).

(5)=> (c): Lemma 2.1 implies that each D; is a well-defined and regular distribution. Moreover,
the hypothesis that dim D, ,,, =n implies that each D; satisfies D, ,, = ! F D)0,

(c)=>(a): Since f (xouo) =x,, given any fiber respecting coordinate chart (V $) about (xg.u,),
there always exists an open set O C V such that f (0) c (V). Thus one may work in a single
coordinate chart. Define A; = w.D;, u; =dim A;, and set p, = K1, pi =4 —p;o fori=1,2,...,0. Since
Dy Cker w. C D; for each i, Lemma 1 implies that each D; is a regular distribution on M. By
induction, one can show that A; C A;,,. From the fact that dim D, =n+m, one obtains the
existence of a first integer N <n such that dim Ay =n. Therefore, A, C A,C - CAy isa
nested sequence of distribution which can be simultaneously integrated (Respondek and
Jakubczyk 1980), to yield a coordinate system (x?!,--- x¥) about x,, each x' being a vector of
dimension p; , such that

. = span [%Gxil i=1..N.
Let (x,u) be fiber respecting coordinates, with x =(x?!,...,x"), and write f=(Y. .., f")in
the obvious way.
Lemma 3.1
A. The component functions f/ do not depend upon the variables x/,...,x/=2 for j=3.4,...N,

nor does f / depend upon u for j 2 2.

j 1
B. Rank aifjil =p, for j 22, and rank %=p,.

C. Pj1 ? Pj for j=2....,N.
The proof of the lemma will be delayed until the proof of the theorem is complete. As in
Jakubczyk and Respondek 1980 and in van der Schaft 1984, the rest of the proof consists of suc-

cessively modifying the coordinates (x!,...,x#) in such a way that A and B of Lemma 3.1 con-
tinue to hold, and that the component functions f / become "projections.”
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The first step is to introduce the new coordinates yy_, =(f ¥ £¥-Y), yl=x/ if j=N-1,

S N-1
where £~ are (py_; — py) components of x¥~! chosen in such a way that rank gi' =T = PN-1i

this is possible by B. Relabeling (y!,...,y¥) once again as (x!,...,x¥), f can be written as
(f',....f¥2x"""), where £¥~! denotes the first py coordinates of x¥-1; in other words, in
these coordinates, f¥ is the projection onto the first py of the x¥~! coordinate components.
Using A, it is clear that A a(x!,...,x") coordinates.

In the second step, one introduces the new coordinates y¥-2=(f¥-2x¥-2) yJ =xi for

j #N=2, and obtains f =(f!, ..., f¥-2g¥=2¢N-1) (the bar notation continues to denote the
first p; coordinates of xi-!). Continuing by induction, after N-1 steps, one has that
fGu)=(f(xu)x!,...,2¥1). One now performs a state-dependent change of the inputs.

Define new input coordinates by v =(f Xx u).i), where @ denotes (m —p,) components of u

chosen such that rank % =m ; this is posible by B. Of course, v =y(x u):=(f ¥(x u).z) can be

interpreted as state-variable feedback. In the (x,v) coordinates, one finally obtains that
fv)=(@x! . . . 2%, 3.1)

which is clearly a controllable linear system.
0

Remark 3.2 : A simple permutation of the coordinates (x!,...,x¥) can be done to put (3.1) into
Brunovsky canonical form.

It remains to prove Lemma 3.1. This is done next.

Proof of Lemma 3.1

Everything will follow from the relation
q; = ftD;_ll‘"'(O). (3.3)

Let (x,u) be the coordinates constructed immediately preceding the statement of the lemma.
Then f .Dy= A, in a neighborhood of x, implies that for £ & near xq.u,,

2]

1
This yields %{l_‘} =0 for j=2,...N and i=1,...,,m, and also shows that rank %{.‘— =p,. Consider

> of !
L

span lJ (i.ﬂ)af_j';sﬂ ..... m

now f.D,; =4, in a neighborhood of x,. This gives

BESTRICED Wx ) =
oon |£ LG8 0 8D 8| 8 2]

j 2
which yields %{t_i =0 for j=3,...,N and rank %xf-x = p,. This last fact shows that p, € p, as p,



equals the dimension of x!.

The rest of the proof proceeds in a similar manner and is left to the reader.

IV. Linearizability and Sampling

With present technology, controllers are often implemented digitally even when their
design is based upon a continuous-time (i.e., analog) system model. Such implementation neces-
sitates making certain approximations and motivates working directly with a discrete-time
(sampled-data) model of the system (Monaco and Normand-Cyrot 1985¢c). The question there-
fore arises, if a continuous-time system is feedback linearizable, are its sampled-data versions
necessarily feedback linearizable for most sampling intervals T? In other words, if feedback
linearization is a viable design method for a given continuous-time system, will it also be appli-
cable to the sampled system? Note that one is only insisting upon achieving linearity from sam-
ple instant to sample instant and nothing is claimed about the interim periods.

It will be shown, via examle, that, in general, feedback linearizability is not preserved under
sampling. Moreover, the example suggests the following. Given any locally linearizable
continuous-time system, consider its orbit under the feedback group (i.e., the group of coordinate
transformations and invertible state-variable feedbacks). Then the orbit contains an infinite
number of elements for which linearizability will be preserved under sampling and an infinite
number of elements for which it will not be preserved. Of course, the basic difficulty here is that
sampling and feedback do not commute.

The example is as follows:
il=x2 @)
2= u(1+(x2)?)
x!,x2,u € R. This system was chosen because its closed-form solution is easily obtained; unfor-

tunately, it does have a finite escape time for constant u, but the reader should be able to con-
vince himself that this is not the obstruction to linearizability when the system is sampled.

For a sampling interval T > 0 and u constant, one calculates the sampled-data system to be

T
xly =xt+ f tan(u 7 + arctan (x,2))d 7
0

(4.2)
x = tan(ul + arctan (x,2))

where x, : = x (kT) (this is exact discretization). Letting Fr(x, .z ) denote the right-hand side of
(4.2), one calculates further that
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r
ker Fr, = span {f(% — 1)1 + tan®(u 7 + arctan (x 2))]
0

1 8 .. 8 _1 1

9
1+ (x2)? a o' 2 T 1+ (x22 5}' (4.3)

A final calculation shows that for all 7 > 0. kerFr,+ span {%} is not involutive, and hence (4.2)

is not feedback linearizable for any sampling interval T > 0.

Since exact discretization cannot be achieved in practice, the next question is whether any
approximate discretization schemes preserve linearizability? This subject will not be addressed
in any measure of completeness here. It is simply remarked that, it one lets Fr(x u) denote the
sampled-data system (4.2), and if one obtains approximating systems by performing a Taylor
expansion in the sampling intervl T, then in the coordinates used above, neglecting second and
higher order terms in T results in a system which is linearizable, whereas neglecting only third
and higher order terms results in a system which is not linearizable. The first cited approxima-
tion corresponds, by the way, to an Euler integration scheme applied to the differential equation
(4.1). Obviously, much work remains to be done here, and it is important to note that Taylor
expansions are coordinate dependent.

V. Conclusions and Comments

Necessary and sufficient conditions for local feedback linearization of a nonlinear discrete-
time system were given. In an attempt to understand some of the trade-offs involved in model-
ing a continuous-time system with a discrete-time model, the question of whether feedback
linearizability was preserved under sampling (i.e., exact discretization) was raised. This was
answered in the negative via an example which also showed that many higher-order approximate
discretization schemes would probably result in systems which were also not feedback lineariz-
able. In conclusion, the following conjecture is made.

Con jecture

Let £:x = f (x ) be a single-input analytic control system on R" such that f(0,0) = 0, and
let x; 4y = Fr(x, u, ) be its sampled version for sampling interval T. Then Fr(-) is locally feed-
back linearizable for an open set of sampling times if and only if I is state-equivalent to a con-
trollable linear system (i.e., T can be linearized using only state transformations).
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