High-Aspect Ratio Deep Sub-Micron α-Si Gate Etch Process Control

H.-M. Park, T. L. Brock, D. Grimard, J. W. Grizzle and F. L. Terry, Jr University of Michigan

> 195th Spring Meeting of ECS May 3, 1999

Overview of Talk

- Motivation and Project Goal
- Deep Sub-micron Etch Process Development: 0.1 μm Gate
- Real-Time Control of ME to OE Switch Point
- Application: Process Disturbance Rejection
 - Blank sample
 - •Patterned sample
- Conclusion

Etching Process of Deep Sub-micron Structure

• Problem sources

- Smaller feature size
- Higher aspect ratio
- Larger wafer size

• Etching process problems

- Etch rate, and profile drift
- Etch uniformity, and selectivity
- Plasma damage, and contamination

Generic solutions

- Hardware development
- Process development
- Process control

Vehicle for Process Control Investigation

α-Si Etch Rate Drift: long term (Lam TCP9400SE)

• Avg. etch rate: 2070 Å /min, 3σ : 240 Å

Etch Rate Drift: short term (Mar. 13,1999)

• Avg. etch rate: 2036 Å /min, 3σ : 108 Å

Etch Profile Drift

July 16, 1998

July 27, 1998

0.1 µm oxide mask, 1:1 line-to-space ratio

4:1 aspect ratio

BT/ME/OE:10/75/90 seconds

Project Goal

• Long-term Goal

Improve the repeatability of the etching process of

- 0.1 μm and below α -Si gate line
 - In situ morphology
 - Detection of real-time plasma variation via RF sensor

• This Work

Improve etch profile repeatability through control of ME to OE switch point

- Real-time measurement and estimation of film thickness
- Use of blanket test pad (S. W. Butler et al., 1994)
- Real-Time Spectroscopic Ellipsometry (RTSE)

Process Development (I)

• Oxide Mask Patterning Process

- E-Beam lithography
- Lift-off process
- 1:1, 1:3, and 1:10 line-to-space

• Etching Process

- Three-step etching: BT, ME, and OE
- Cl₂ and HBr plasma gas
- Lam TCP9400SE plasma etching system

Process Development (II)

Industry Goal

- High throughput
- Good morphology
- Minimum gate oxide damage

Our Goal

- High throughput
- Thin mask oxide: must switch to OE before mask erosion

In neither case can we do the switch based on an OES signal

Importance of Proper Switch Point (Etch Profiles: BT, ME and OE)

10/45/120 seconds

10/60/120 seconds

	Тор	Bottom	Space
10/45/120	67	125	75
10/60/120	55	110	90 nm

Endpoint Detection

Motivation

• Reduction of gate etch profile (CD) variation via accurate transition timing detection of ME to OE

Difficulty

• Cannot measure α -Si thickness via RTSE

Solution

• Estimate the α -Si etch depth via the measurement of n+ poly-si etch depth

Endpoint Detection (contd.)

Problem of n+ poly-si thickness measurement

- Slow measurement speed: 0.4 Hz (2.5 sec/measurement)
 - ~ 10 nm change between measurements
- Time delay
 - Measurement delay: 0.18 sec
 - Thickness model fitting delay

Solution

• Estimate the inter-measurements poly-si thickness with the use of a Kalman filter including the time delay

- Estimation interval: 0.1 sec
- 1 nm accuracy

Endpoint Detection Experiment

• Detect n+ poly-si thickness within 1 nm error

α-Si Endpoint Detection Experiment in Presence of Nominal Short-term Process Drift

Disturbance Rejection Experiment

Purpose

• To compare closed-loop endpoint detection to open-loop (timed-etch)

Method

- Intentional addition of disturbance
 - Chemical disturbance
 - Chamber wall condition: chamber venting
 - Cl₂ flow rate variation
 - Physical disturbance
 - Bias power variation

Disturbance Rejection Chamber Venting

Disturbance Rejection Chamber Venting

Open loop: 58.2 sec

Application to the Patterned Sample Cl₂ (+50%) Disturbance Rejection

Open loop: 60 sec ME

Closed loop: 55.1 sec ME

	Тор	Bottom	Space
Standard	72	113	87
Open	48	76	124
Closed	67	106	94 nm
			RICHIGAN

H.-M. Park 19

Conclusion

• 0.1 μ m and below, α -Si gate line mask patterning and etching processes were developed.

- The ME to OE transition timing is critical to the etch profile.
- Developed Automated α -Si ME endpoint detection algorithm
 - Real-time n+ poly-si thickness measurement
 - Kalman filter
 - 1 nm accuracy
- In limited experiments, automatic endpoint detection proves better performance than timed-etch with and without disturbance.

