
 
 

 

  

Abstract—The control of running is discussed in terms of a 
model called the Asymmetric Spring Loaded Inverted 
Pendulum (ASLIP), shown in Fig. 1. The ASLIP consists of a 
Spring Loaded Inverted Pendulum (SLIP) with the addition of 
pitch dynamics, and can be used to study the sagittal plane 
motion of bipedal running. A hybrid controller for the ASLIP is 
developed that acts on two levels. In the first level, continuous 
in-stride control is used to stabilize the torso at a desired 
posture, and to create an invariant surface on which the stance 
dynamics of the closed-loop system is diffeomorphic to the 
center of mass dynamics of a SLIP. In the second level, event-
based control is employed to stabilize the closed-loop hybrid 
system along a periodic orbit of the SLIP dynamics. These 
results provide a systematic framework for designing control 
laws with provable stability properties which take advantage of 
existing SLIP controllers that are known to induce elegant 
running motions in legged models. 

I. INTRODUCTION 

ost of the hopping and running robots introduced over 
the past twenty years have employed controllers that 

are variations of Raibert’s original controller, [12]. These 
controllers regulate forward speed by positioning the legs 
during the flight phase at a proper touchdown angle, while, 
during the stance phase, hip torque and leg thrust are 
employed to regulate hopping height and body attitude. 

The combined difficulties of hybrid dynamics and 
underactuation inherent in legged systems stymied the direct 
application of nonlinear controller synthesis tools, such as 
those in [10], to running robots and led many researchers to 
believe that the problem did not fit well within the 
framework of modern nonlinear control theory. Despite this 
widespread belief, results in [8], [17], and [5], have 
demonstrated the utility of nonlinear control theory in 
inducing provably asymptotically stable dynamic walking 
and running motions in bipedal robots. In particular, it has 
been shown that planar walking and running gaits can be 
“embedded” in the dynamics of a closed-loop system by 
defining a set of holonomic output functions with the control 
objective being to drive these outputs to zero [8], [17]. In 
essence, this method asymptotically restricts the dynamics of 
the closed-loop hybrid model to a lower-dimensional 
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attractive and invariant subset of the state space. The stable 
periodic solutions of the dynamics restricted on this 
attractive and invariant subset, called the Hybrid Zero 
Dynamics (HZD), encode the desired task (walking or 
running). 
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Figure 1.  The Asymmetric Spring Loaded Inverted Pendulum (ASLIP). 
 

The general idea of task encoding through the 
enforcement of a lower-dimensional target dynamics, rather 
than through the prescription of a set of reference 
trajectories, has been employed successfully in the control of 
dynamically dexterous machines, including juggling, 
brachiating and running robots, by Koditschek and his 
collaborators [3], [11] and [13]. In this work however, the 
restriction dynamics is specified a priori, through the 
selection of a dynamical system that is believed to capture 
the salient characteristics of the task, and is not the outcome 
of the control design procedure as in [17]. Task encoding 
through imposing pre-specified target dynamics leaves one 
with the question of selecting a suitable candidate dynamical 
system for the targeted behavior, and turned attention of the 
robotics community into models that have been inspired by 
biomechanics. 

Faced with the complexity of studying running in animals, 
biologists proposed the Spring Loaded Inverted Pendulum as 
a template, [6]. Notwithstanding its apparent simplicity, the 
SLIP has been useful in (qualitatively) explaining various 
aspects of running in animals [6], and in designing empirical 
controllers for robots [12]. These findings have prompted a 
deeper study of the SLIP, with the aim of understanding 
whether the SLIP is merely one way of describing the 
kinematics of the observed periodic orbits, or whether it 
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represents a dynamic model of the observed running 
behavior of animals, and thus would be an interesting target 
dynamics for legged robots [6], [14]. These research efforts 
produced a large variety of controllers for the SLIP, see [14] 
and references therein, and more recently [2], [7], [15], [16]. 
These controllers exhibit very appealing properties such as 
large domains of attraction and minimal control effort. 

Up to this point, however, much of this research has been 
concentrated on the SLIP itself. The formal connection 
between the SLIP and more elaborate models that enjoy a 
more faithful correspondence to a typical robot’s structure 
and morphology has not been fully investigated. It still 
remains unclear how stability conclusions obtained in the 
context of the SLIP can predict the behavior of more 
complete models; only preliminary results in this direction 
are available [13]. Furthermore, as was shown in [4], 
controllers specifically derived for the SLIP will have to be 
modified in order to be successful in inducing stable running 
in more complete models that include pitch dynamics or 
energy losses. These observations set the stage of this 
research, which aims at establishing a more formal 
connection between the SLIP as a control target for running 
and more complete plant models of legged robots. Hence, 
rather than analyzing the much studied SLIP (see [2], [7], 
[14], [15], [16] for example), we turn our attention to its 
implications in the control of running. 

In this paper, a framework is proposed that provides a 
systematic procedure for designing feedback controllers with 
provable properties that are suitable for inducing running 
motions in an asymmetric hopping model. This framework 
combines established nonlinear control synthesis tools, such 
as the HZD originally proposed in [17], with controllers 
obtained in the context of the SLIP e.g. [2], [12], [14], [16]. 
Hence, given any controller that results in an exponentially 
stable periodic solution of the SLIP, the method developed 
here shows how to “embed” the SLIP orbit in a more 
complete model that includes nontrivial torso pitch 
dynamics. It is emphasized that the practical consequences of 
these results lie in the fact that they allow the direct use of 
controllers obtained for the SLIP in a more complete model. 
This model is called the Asymmetric Spring Loaded Inverted 
Pendulum (ASLIP), and can be used to study the sagittal 
plane running of bipedal robots. Despite its importance, to 
the best of the authors’ knowledge, no formal studies of the 
ASLIP exist. Proposing and formally analyzing control laws 
for the stabilization of the ASLIP that take advantage of 
SLIP controllers constitutes the goal of this paper. 

II.   THE ASYMMETRIC SPRING LOADED INVERTED 

PENDULUM 

A schematic for the Asymmetric Spring Loaded Inverted 
Pendulum (ASLIP) is presented in Fig. 1. The hip joint does 
not coincide with the center of mass (COM) of the torso, 
which is modeled as a rigid body with mass m  and moment 
of inertia J  about the COM. The leg is assumed to be 

massless. The ASLIP is controlled by two inputs: a force 1u  

acting along the leg, and a torque 2u  applied at the hip. In 

what follows, the subscripts “f” and “s” denote “flight” and 
“stance,” respectively. 

A. Flight Phase Dynamics 

The flight phase dynamics corresponds to a point mass 
undergoing ballistic motion in a gravitational field together 
with a double integrator governing the pitch motion. The 
configuration space fQ  of the flight phase is a simply-

connected open subset of 2 1S×�  corresponding to 

physically reasonable configurations of the ASLIP, and it 
can be parameterized by the Cartesian coordinates of the 
COM together with the pitch angle, i.e. f c c f( , , )q x y Qθ ′= ∈ . 

The flight phase dynamics of the ASLIP evolves in 
3

f f f f f f f{ ( , ) | , }TQ x q q q Q q′ ′ ′= = ∈ ∈ɺ ɺ � , and can be easily 

written in state-space form 

 ( )f f fx f x=ɺ . (1) 

The flight phase terminates when the vertical distance of 
the toe from the ground becomes zero. To realize this 
condition, the flight phase state vector is augmented with 

1
f f( , )a l A Sϕ ′= ∈ ⊆ ×� , where l  and ϕ  are the leg length 

and angle, respectively, and f 0a =ɺ . This is a consequence of 

the assumption of a massless leg; during flight, the leg 
obtains the desired length and orientation instantaneously. 
The threshold function f s f f:H TQ A→ × →�  given by 

 ( ) ( )f s f f c, cos sinH x a y l Lϕ θ θ→ = − + − , (2) 

signifies the touchdown event at its zero crossing, and 
defines a smooth switching manifold f sS →  in the augmented 

state space f f fX TQ A= × , given by 

 ( ) ( ){ }f s f f f f s f f c, , 0, 0S x a X H x a y→ →= ∈ = <ɺ . (3) 

Note that in (2) and (3), the parameter fa  is available for 

control, and will eventually be chosen according to an event-
based feedback law. 

B. Stance Phase Dynamics 

The configuration space sQ  of the ASLIP during the 

stance phase is parameterized by the coordinates 
2

s s( , , )q l Q Sϕ θ ′= ∈ ⊆ ×� . Using the Lagrangian approach 

and then bringing the equations into standard state-space 
form, the ASLIP stance dynamics is described by 

 ( ) ( )s s s s sx f x g x u= +ɺ , (4) 

where 3
s s s s s s s s{( , ) | , }x TQ q q q Q q X′ ′ ′∈ = ∈ ∈ =ɺ ɺ �  is the state 

vector, and 2
1 2( , )u u u U′= ∈ ⊆�  is the input vector. 

The threshold function s f s:H TQ U→ × →� , given by  

 ( ) ( ) ( ) ( )s f s 1 2, cos sinH x u u u lϕ θ ϕ θ→ = + − + , (5) 



 
 

 

specifies the liftoff event at its zero crossing and defines a 
smooth switching manifold s fS →  in the augmented space 

sTQ U× , given by 

 ( ) ( ){ }s f s s s f s, , 0S x u TQ U H x u→ →= ∈ × = . (6) 

Equation (6) describes the fact that liftoff occurs when the 
vertical component of the ground force, which is a function1 
of the control inputs 1u  and 2u , becomes zero.  

C. ASLIP Hybrid Dynamics 

Let f f f: [0, ) X Xφ ∞ × →  and s s s: [0, ) X Xφ ∞ × →  denote 

the solutions generated by the flight and stance models (1) 
and (4), respectively. Note that the simplicity of the vector 
field ff  allows for explicit calculation of the flow f f( , )t xφ . 

When the flight flow f f( , )t xφ  intersects f sS → , transition 

from flight to stance occurs. Let f s f s s: S X→ →∆ →  be the 

transition map from the flight to the stance phase. Similarly, 
let s f s f f: S X→ →∆ →  be the transition map from the stance 

to the flight phase. Then the open-loop hybrid model of the 
ASLIP is 

( )

( ) ( ){ }
( )

f f f

f f f

f
f

f s f f f f s f f

s f s f f

0:
, , 0

,

X TQ A

x f x

a

S x a X H x a

x x a

→ →

+ −
→

= ×


   =       Σ 
 = ∈ =

 = ∆

ɺ

ɺ  (7) 

( ) ( )
( ) ( ){ }

( )

s s

s s s s s

s
s f s s s f s

f s f s

: , , 0

,

X TQ

x f x g x u

S x u TQ U H x u

x x u

→ →

+ −
→

=
 = +Σ  = ∈ × =

 = ∆

ɺ

 (8) 

where ( ) lim ( )i it
x t xτ τ−

↑=  and ( ) lim ( )i it
x t xτ τ+

↓= , {s,f }i ∈  

are the left and right limits of the stance and flight solutions. 
The subsystems fΣ  and sΣ  can be combined into a single 

system with impulse effects ASLIPΣ  describing the open-loop 

hybrid dynamics of the ASLIP. Define the time-to-
touchdown function f f: { }T X → ∞∪� , as 

 ( ) ) ( ){ }f f,0 f f f,0 f s, inf 0, ,T x a t t x Sφ →= ∈ ∞ ∈ . (9) 

The flow map2 f f f:F X X→  for the flight phase can then be 

given by the rule ( )f f f f f,0 f f,0,0( , ) ( , ),x a T x a xφ֏ . Let 

s f f s: S A X→∆ × →  be the map 

 
1 When a feedback controller ( )su xα=  is introduced, the liftoff 

condition ( )( )s f s, 0sH x xα→ =  will only be a function of the states. 
2 The flight flow map presupposes the existence of a time instant t  such 

that ( )f f,0 f s,t x Sφ →∈ . The case where such a time instant does not exist 
does not correspond to periodic running motions. 

 ( ) ( )
f ff s f s fid idA AF→ →∆ = ∆ × ∆ ×� � . (10)3 

where 
f

id A  is the identity map on fA . The map ∆  

“compresses” the flight phase into an “event,” and can be 
thought of as a (generalized) “impact map” or “reset map” 
[5], [8]. In this setting, the hybrid dynamics of the ASLIP 
take the form 

 
( ) ( ) ( )

( ) ( )
s s s s s s s f

ASLIP

s s f s f s f f

, ,
:

, , , , ,

x f x g x u x u S

x x u a x u a S A

−
→

+ − −
→

 = + ∉Σ 
= ∆ ∈ ×

ɺ
. (11) 

The left and right limits sx−  and sx+  correspond to the states 

“just prior to liftoff” and “just after touchdown” respectively. 
The system ASLIPΣ  is defined on a single chart sX , where the 

states evolve, together with a the map ∆ , which reinitializes 
the differential equation at liftoff. 

III.  TARGET MODEL: THE ENERGY-STABILIZED SLIP 

In this section, the target model for our controller is 
introduced. As was mentioned in the introduction, the 
purpose of this paper is to introduce a framework for 
designing controllers of running robots that take advantage 
of feedback control laws available for the extensively studied 
SLIP. The standard SLIP consists of a point mass attached to 
a massless prismatic spring, and it is passive (no torque 
inputs) and conservative (no energy losses). In this paper, we 
consider a variant of the SLIP, where the leg force is allowed 
to be non-conservative. The purpose of this modification is 
to introduce control authority over the total energy, which, in 
the standard SLIP, is conserved along solutions, thus 
precluding the existence of exponentially stable periodic 
orbits [2], [7]. This system, called the Energy-Stabilized 
SLIP (ES-SLIP), is presented in Fig. 2. 
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Figure 2. The Energy Stabilized SLIP (ES-SLIP), with an actuator parallel 
with the spring. 

A. ES-SLIP Open-Loop Hybrid Dynamics 

The derivation of the hybrid model for the ES-SLIP is 
similar to that of the ASLIP, thus the exposition in this 
section will be terse. The flight and stance configuration 
spaces M

fQ  and M
sQ  respectively will both be parameterized 

by the Cartesian coordinates of the COM 
M M M 2

c c f s( , )x y Q Q Q∈ = = ⊂� , where the superscript “M” 

 
3 Notation: let 1 1:f X X→  and 2 2:f X X→ , and define 

1 2 1 2:f f X X X× → ×  by ( ) ( )1 2 1 2 1 2( ) ( ), ( )f f x f x f x X X× = ∈ × , x X∈ . 



 
 

 

denotes the ES-SLIP target model. Hence, the system 
dynamics evolves in the state space 

 ( ){ }M M M M M M M M 2col , ,X TQ x q q q Q q= = = ∈ ∈ɺ ɺ � . 

As in the ASLIP, the ES-SLIP hybrid open-loop dynamics 
can be written in the following form 

 ( ) ( ) ( )( )
( ) ( )( ) ( )( )

M M M M M M M M M
s s s f

ES-SLIP
M M M M M M M

s f f

, ,
:

, , , ,

x f x g x u x u S

x x x u S Aψ ψ

−

→

+ − −

→

 = + ∉


Σ 
 = ∆ ∈ ×


ɺ
, (12) 

where M Mu U∈ ⊂�  is the input and M 1
fA Sψ ∈ ⊂  is the 

touchdown angle (angle of attack), and M M M
s :f X TX→  

and M M M
s :g X TX→  are the system and input vector fields 

in the stance phase. The switching surface is taken to be the 
liftoff surface 

 ( ) ( ){ }M M M M M M M M
s f s f, , 0S x u X U H x u→ →= ∈ × = , (13) 

where M M M
s f :H TQ U→ × →�  is defined as 

 ( ) ( )M M M Mc
s f el2 2

c c

,
y

H x u F u
x y

→ = +
+

. (14) 

In (14), elF  is the elastic force developed by the prismatic 

spring of the leg. Assuming for definiteness that the spring is 
linear, 

 ( )2 2
el 0 c cF k r x y= − + , (15) 

where k is the spring constant and 0r  is the nominal spring 

length, see Fig. 2. In this work, 0r  is taken to be the 

uncompressed length of the leg. However, these assumptions 
can be relaxed to allow for spring pretension and nonlinear 
spring characteristics. 

B. ES-SLIP Closed-Loop Hybrid Dynamics 

In order to accommodate perturbations away from the 
nominal energy, the conservative force elF  developed by the 

springy leg of the standard SLIP is modified to include a 
nonconservative feedback component M M M( )u xα= . The 

purpose of Mu  is to stabilize the total energy of the system at 
a desired level, and is achieved by 

 ( ) ( )M M Mc c c c

2 2
c c

E
P

x x y y
x K E x E

x y
α +

 = − − +

ɺ ɺ
, (16) 

where E  is the desired nominal energy level, M( )E x  is the 

total energy of the SLIP, and EPK  is a positive gain. 

To regulate the forward speed, the following event-based 
control law is employed 

 ( ) ( )c c cxx K x xψ ψ− −= + −ɺ
ɺɺ ɺ , (17) 

where ψ  and cxɺ  specify the nominal touchdown angle and 

forward speed respectively, cx−ɺ  is the actual forward speed 

just prior to liftoff, and xK ɺ  is a positive gain. It can be 

recognized that (17) corresponds to a variation of Raibert’s 
speed controller, [12]. 

Substituting the feedback laws (16) and (17) in (12), the 
closed-loop ES-SLIP hybrid dynamics can be obtained as 

 
( ) ( )

( ) ( )( ) ( )

M M M M M
s,cl s f

cl
ES-SLIP

M M M M M
cl s f

ˆ,
:

ˆ,

x f x x S

x x x S

−

→

+ − −

→

 = ∉
Σ 

= ∆ ∈


ɺ
, (18) 

where, 

 ( )( ){ }M M M M M M M
s f s f

ˆ , 0S x X H x xα→ →= ∈ = , (19) 

and ( ) ( ) ( ) ( )M M M M M M M M
s,cl s sf x f x g x xα= +  is the closed-loop 

stance vector field, which is given below for future use, 

 ( ) ( )( )

( )( )

c

c

M McM M
el2 2s,cl

c c

M Mc
el2 2

c c

x

y

x
F xf x

x y

y
F x mg

x y

α

α

 
 
 
 

+ =
+ 

 
 + −
  + 

ɺ

ɺ

. (20) 

In order to study the stability properties of periodic orbits 
of cl

ES-SLIPΣ , the method of Poincaré will be used. The 

Poincaré section is selected to be the surface M
s fŜ →  defined 

by (19). Let M M M
s,cl : [0, ) X Xφ ∞ × →  be the flow generated by 

M
s,clf , and define the time-to-liftoff function 

{ }M M
s :T X → ∞∪� , in a similar fashion as (9), by 

 ( ) ) ( ){ }M M M M M
s s,0 s,cl s,0 s f

ˆinf 0, ,T x t t x Sφ →= ∈ ∞ ∈ . (21) 

Then, the Poincaré map M M M
s f s f

ˆ ˆ:P S S→ →→  is given by 

 ( ) ( ) ( )( )M M M M M M M M
s,cl s cl cl,P x T x xφ= ∆ ∆� . (22) 

Note that feedback control laws similar to (16) and (17) 
exist in the literature, and the particular ones used here are 
for illustrative purposes only. It is emphasized that any other 
in-stride or event-based controller could have been used to 
stabilize the SLIP. For instance, energy stabilization in 
nonconservative monopedal models has been demonstrated 
using linear (leg) and rotational (hip) actuation in [1] and [4], 
respectively. On the other hand, a large variety of event-
based controllers exist for the SLIP e.g. [2], [12], [14], [16], 
which are known to have very appealing properties such as a 
large domain of attraction. In this work, we develop formally 
a controller for the ASLIP that affords the direct use of 
control laws available for the SLIP. 

IV.  MAIN THEOREM: CONTROLLER DESIGN 

The control action takes place in two hierarchical levels. 
In the first level, continuous in-stride control is exerted 
during the stance phase to stabilize the torso at a desired 



 
 

 

posture and to create an invariant manifold on which the ES-
SLIP dynamics can be imposed. In the second level, an 
event-based SLIP controller is used to stabilize a periodic 
orbit of the system. These results are summarized in the 
following theorem and corollary. 

Theorem 1: Hybrid controller 

Let s s s{ | sin }Q q Q l L ϕ= ∈ ≠ɶ . Then, there exists a map 
6

s:TQΦ →ɶ �  that is a diffeomorphism onto its image, and 

such that, in coordinates 6( ) ( , )sx x zη ′ ′ ′Φ = = ∈� , the 

following hold: 
A. In-stride Continuous Control 
For every 0ε > , there exists a 1C  feedback control law 

s( , )u xα ε= , such that the model 

 ( ) ( ) ( ) ( )s,cl s s s s s s, ,f x f x g x xε α ε= + , (23) 

satisfies: 
A.1) the vector field 

 ( ) ( )
( )1

s

s,cl s,cl s
s

, ,
x x

f x f x
x

ε ε
−=Φ

 ∂Φ=  ∂ 

ɶ  (24) 

  has the form 

 ( ) ( )
( )

s,cl,1:2
s,cl

s,cl,3:6

,
,

,

f
f x

f z

η ε
ε

η

 
=  
 
 

ɶ
ɶ

ɶ
; (25) 

A.2) the set s{ | 0}Z x TQ η= ∈ =ɶ  is a smooth 4-

dimensional 1C  embedded submanifold of 6
�  and is 

invariant under the stance flow, i.e. x Z∈  implies 

( )s,cl , xf x T Zε ∈ɶ ; 

A.3) the restriction dynamics  

 ( ) ( )s,cl s,cl,3:6, ,0
Z

f x f zε =ɶ ɶ  (26) 

  is diffeomorphic to the ES-SLIP stance phase closed-

loop dynamics M M
s,cl( )f x  given by (20). 

B. Exponentially Contracting Transverse Dynamics 

B.1) s,cl,1:2( , )f η εɶ  takes the form 

 ( ) ( )s,cl,1:2 ,f Aη ε ε η=ɶ , (27) 

  and ( )
0lim 0Ae ε

ε =
ց

. 

C. Event-based control 
There exists a 1C  event-based control law f ( )a xβ −=  such 

that the map 

 ( ) ( )( ) ( )1 1
cl x xα β− − − − ∆ = ∆ Φ × Φ ×

 
� �  (28) 

satisfies: 
C.1) s fS Z→ ∩  is a smooth co-dimension one submanifold 

of Z  and cl s f( )S Z Z→∆ ⊂∩ ; 

C.2)  the restricted reset map cl ( ) |Zx∆  is diffeomorphic to 

the ES-SLIP closed-loop reset map M
cl∆ .■ 

The proof of Theorem 1 will be given in Section V. 
For 0ε >  a given constant, the closed-loop hybrid 

dynamics of the ASLIP under the continuous and event-
based feedback control laws of Theorem 1 takes the form 

 
( )
( )

s,cl s fcl
ASLIP

cl s f

ˆ, ,
:

ˆ,

x f x x S

x x x S

ε −
→

+ − −
→

 = ∉Σ 
= ∆ ∈

ɶɺ
, (29) 

where 

 ( )( ){ }1
s f s s f

ˆ , ( ), 0S x TQ H x xα ε−
→ →= ∈ Φ =ɶ . (30) 

The stability properties of cl
ASLIPΣ  will be studied via the 

corresponding Poincaré return map. As in Section III, let 

s,cl s s: [0, ) X Xφ ∞ × →  be the flow generated by s,clfɶ , and 

{ }s s:T X → ∞∪�  be the time-to-liftoff function defined as 

 ( ) ) ( ){ }s 0 s,cl 0 s f
ˆinf 0, ,T x t t x Sφ →= ∈ ∞ ∈ . (31) 

Then, the Poincaré return map s f s f
ˆ ˆ:P S S→ →→  is given by 

 ( ) ( ) ( )( )s,cl s cl cl,P x T x xφ= ∆ ∆� . (32) 

The following Corollary 1 is an immediate consequence of 
Theorem 1 in view of the results in [9]. 

Corollary 1: Exponential stability of cl
ASLIPΣ  

Let M *( )x  be a fixed point of MP  and *x  a fixed point of 

P . There exist 0ε >  such that, for all (0, )ε ε∈ , *x  is 

exponentially stable, if, and only if, M *( )x  is exponentially 

stable.■ 
Remark 1. The intuitive meaning of Corollary 1 is that, for 
given controllers that create an exponentially stable periodic 
orbit of the ES-SLIP, the feedback laws s( , )u xα ε=  and 

f ( )a xβ −=  specified in Theorem 1 render this orbit 

exponentially stable in the ASLIP. 

V. PROOF OF THE MAIN THEOREM 

In this section, Theorem 1 is proved through a sequence of 
Lemmas. The procedure is constructive, and results in a 
control law satisfying the requirements of Theorem 1. 

A. In-stride Continuous Control 

The purpose of the in-stride control action during the 
stance phase is twofold. First, it ensures that the torso 
remains at a desired (constant and upright) pitch angle, and 
second, it renders the translational dynamics of the ASLIP 
diffeomorphic to the ES-SLIP closed-loop stance dynamics. 
This prepares the continuous part of cl

ASLIPΣ  in (29) so that 

any event-based controller that exponentially stabilizes a 
periodic orbit of the SLIP can be used to achieve exponential 
stability of the ASLIP orbit. In view of the underactuated 
nature of the stance phase, the two control objectives will be 
achieved in different time scales. Since the requirement for 
the torso being upright throughout the motion is more 



 
 

 

stringent, high-gain control will be imposed on the pitch 
rotational motion. Hence, the system will be decomposed 
into fast and slow dynamics governing the rotational and the 
translational dynamics of the torso, respectively. 

The continuous part of ASLIPΣ  can be written as 

 ( ) ( ) ( )s s s s s 1 s,2 s 2,1x f x g x u g x u= + +ɺ . (33) 

Define the output function s:h Q →ɶ �  by 

 ( )sy h q θ θ= = − , (34) 

where θ  is a desired pitch angle, taken to be a constant. It 

can formally be shown that θ  being constant is a necessary 
condition for the existence of an embedding control law. Due 
to limited space, the proof of this statement will not be 
presented here. The output defined by (34) results in the 
second-order input-output dynamics 

 ( ) ( ) ( )
s s,1 s s,2 s

2
2

s s 1 s 22 f g f g f

d y
L h x L L h q u L L h q u

dt
 = + +  , (35) 

where 

 ( )
s

2
s 0fL h x = , 

 ( )
s,1 s s

cos
g f

L
L L h q

J

ϕ−= , ( )
s,2 s s

sin
g f

L l
L L h q

Jl

ϕ −= . (36) 

Lemma 1: Stance phase zero dynamics 
Under the output function h  defined by (34), and for 

s s s s{ | sin }q Q q Q l L ϕ∈ = ∈ ≠ɶ , 

1) the set ( ) ( )
ss s s{ | 0, 0}fZ x TQ h x L h x= ∈ = =s

ɶ  is a 

smooth 4-dimensional submanifold of TQs
ɶ ; 

2) the feedback control law 

 
( )
( )

s,1 s

s,2 s

s*
2 1

s

g f

g f

L L h x
u u

L L h x
= −  (37) 

  renders Z  invariant under the stance dynamics; that 
is, for all sx Z∈ , 1u ∈� , 

            ( ) ( ) ( )
s

*
s s s,1 s 1 s,2 s 2 xf x g x u g x u T Z+ + ∈ ; 

3) there exist smooth functions 1 s( )xγ  and 2 s( )xγ  so 

that the map 6
s:TQΦ →ɶ �  

 ( )s 1 2 1 2( , , , )x x z zη η ′ ′ ′Φ = = , (38) 

  where 

 ( )1 sh qη = , ( )
s2 sfL h xη = , 

 ( )1 , 'z l ϕ= , ( ) ( )( )2 1 s 2 s, 'z x xγ γ= , (39) 

  is a valid coordinate transformation, i.e. Φ  is a 
diffeomorphism onto its image, and 

 ( )
s,2 1 s 0gL xγ = , ( )

s,2 2 s 0gL xγ = .■ (40) 

 

Proof: 
Parts 1) and 2) of Lemma 1 follow from general results in 
[10]. For part 3), consider the distribution s,2span{ }G g= , 

which has constant dimension 1d =  on TQs
ɶ . Since G  is one 

dimensional, it is involutive and thus, by the Frobenius 
theorem, integrable. As a result there exist 6 1 5n d− = − =  

real-valued functions defined on TQs
ɶ  such that the 

annihilator G⊥  of G  is 1 2span{ , , , , }G dl d d d dϕ θ γ γ⊥ = . A 

straightforward application of the constructive proof of the 
sufficiency part of Frobenius theorem [10] results in  

 ( )1 s cosx l Lγ θ ϕ= +ɺ ɺ , (41) 

 ( )2 s

sin
1

( sin )

L J
x

l ml L l

ϕγ ϕ θ
ϕ

 
= + − + + − 

ɺɺ . (42) 

Finally, it is straightforward to check that Φ  is a 
diffeomorphism onto its image in 6� .■ 

Let 0ε >  and define the feedback 

 ( ) ( ) ( ) ( )( )s,1 s

s,2 s

2 2 s s 1
s

1
, , , g f

g f

u x L L h x u
L L h x

α ε υ θ θ ε= = −ɺ , (43) 

where 

 ( ) ( )2

1 1
, , P VK Kθ θυ θ θ ε θ θ θ

εε
= − − −ɺ ɺ , (44) 

and PKθ , VKθ  are positive constants. Under this feedback 

law, the model (33) becomes 

 ( ) ( )s s s s s 1,x f x g x uε= +ɶɺ ɶ , (45) 

where 

 ( ) ( ) ( ) ( ) ( )
s,2 s

s s s s s s,2
s

1
, , ,

g f

f x f x g x
L L h x

ε υ θ θ ε
 

= +  
  

ɶ ɺ , (46) 

 ( ) ( ) ( )
( )
( )

s,1 s

s,2 s

s

s s s,1 s s,2 s
s

g f

g f

L L h x
g x g x g x

L L h x

 
= − 
  

ɶ . (47) 

Under the coordinates of Lemma 1, (45) has the form 

 ( )Aη ε η=ɺ , (48) 

 ( ) ( ) 1,z zz f z g z uη= +ɺ . (49) 

With the additional change of coordinates 1 1η η ε=ɶ  and 

2 2η η=ɶ , the model (48)-(49) can be written as 

 Aεη η=ɺ ɶɶ ɶ , (50) 

 ( ) ( ) 1, ,z zz f z g z uη ε= +ɶɺ , (51) 

where 

 
0 1

p v

A
K Kθ θ

 
=  − − 

ɶ . (52) 

Setting 0ε = , (50) reduces to the algebraic equation 



 
 

 

0Aη =ɶ ɶ , which, by properly selecting the gains { , }p vK Kθ θ  in 

(52), has the origin as its unique solution. Hence, (50)-(51) is 
in standard singular perturbation form and the corresponding 
reduced model is obtained by substituting 0ε =  and 0η =  

in the slow part of the dynamics (51), i.e. 

 ( ) ( ) 10, ,0z zz f z g z u= +ɺ , (53) 

where direct calculation leads to 

( ) ( )
( )

3

4

2
1 4 2

3 4 2

1

cos

2 sin

z

z

z

z z g zf z

z z g z

z

θ

θ

 
 
 
 − +=  
 − + +
 
 
 

, ( )

( )
2

1 2 1

0

0

1

cos

sin

z mg z

L z

mz L z z

 
 
 
 =
 
 
 − 

. (54) 

Lemma 2: Restriction dynamics 
If θ  is the desired pitch angle in (34), define 

 ( ) 2 2
1 1 22 sinr z z L Lz z= + − , (55) 

 ( ) ( ) ( )
1 2 1 2

3 4

sin cosz L z Lz z
r z z z

r z r z

−
= −ɺ , (56) 

 ( ) ( )1 2cos siny z z z Lθ θ= + + . (57) 

Then, if E  is the desired energy level, the feedback law 

 ( ) ( ) ( )1 2
1 1 ES-SLIP

sinz L z
u z F z

r z
α −

= =ɶ , (58) 

with 

 ( ) ( ) ( ) ( )ES-SLIP 0
E
PF z k r r z K r z E z E = − − −    ɺ , (59) 

 ( ) ( ) ( ) ( ) 22 2 2
3 1 4 0

1 1

2 2
E z m z z z mg y z k r r z= + + + −   , (60) 

and 0E
PK > , renders the restriction dynamics (26) 

diffeomorphic to the SLIP closed-loop dynamics M M
s,cl( )f x . 

Proof: 
Substitution of (58) into (53) gives 

 ( ) ( ) ( ) ( )1 ,clz z zz f z g z z f zα= + =ɶɺ . (61) 

Define the map 4:z ZΦ →�  by 

 ( )

( )
( )

( ) ( )
( ) ( )

1 2

1 2

3 2 1 4 2

3 2 1 4 2

sin cos

cos sin

sin cos

cos sin

z

z z L

z z L
z

z z z z z

z z z z z

θ θ

θ θ

θ θ

θ θ

 − + +
 
 + +
 Φ =
 − + − +
 
  + − + 

. (62) 

It is straightforward to check that zΦ  is a diffeomorphism 

onto its image, thus it describes a valid coordinate 

transformation on Z . Observe that ( ) M
z z xΦ = . The result 

 ( )
( )

( )
M 1

M M
,cl s,cl

z

z
z

x z

f z f x
z −=Φ

∂Φ  = ∂ 
 (63) 

is obtained after straightforward algebraic manipulations.■ 

B. Stride-to-stride Control 

The purpose of the stride-to-stride controller is to arrange 
the configuration of the ASLIP at liftoff so that the manifold 

s fS Z→ ∩  is invariant under the reset map cl∆ . 

Lemma 3: Event-based controller 
Let cxɺ  and ψ  be the forward running speed at liftoff and the 

touchdown angle, respectively, corresponding to a (desired) 
fixed point of the ES-SLIP. Define 

 ( ) ( )s c s c( )xx K x x xψ ψ− − −= + −ɺ
ɺɺ , (64) 

where cx−ɺ  is the forward running speed of the ASLIP prior to 

liftoff. Then, the controller ( )f s s s( ) ( ( ), ( ))a x l x xβ ϕ− − − ′= Φ = , 

 ( ) ( )2 2
s 0 0 s2 sin ( )l x L r Lr xψ θ− −= + + − , (65) 

 ( ) ( )
( )

2 2 2
s 0

s

s

asin
2

l x L r
x

Ll x
ϕ

−
−

−

 + −
 =
  

, (66) 

where θ  is the desired pitch angle in (34), achieves C.1) 
and C.2) of Theorem 1.■ 

Proof: 

Suppose s f
ˆx S Z→∈ ∩ . To show C.1) notice that this implies 

0θ − =ɺ  and θ θ− =  just prior to liftoff. Since during the 

flight phase 0θ =ɺɺ , i.e. ( )tθ θ≡ , at touchdown, we have 

0θ + =ɺ  and θ θ+ = , which means that x Z+ ∈ . This 

establishes hybrid invariance i.e. cl s f
ˆ( )S Z Z→∆ ⊂∩ . The 

rest of the proof is a consequence of the fact that the flight 
flow of the ES-SLIP is the same as the translational part of 
the flight flow of the ASLIP. Equations (65) and (66) ensure 
that, not only the flight flows, but also the corresponding 
reset maps, are identical.■ 

C. Proof of Theorem 1 

The proof of Theorem 1 follows from Lemmas 1, 2 and 3. 

VI.  SIMULATION RESULTS 

This section presents a simulation of the controller 
described above. The mechanical properties of the ASLIP 
correspond to preliminary designs of a biped robot that is 
currently under construction, and are given in Table I (see 
Fig. 1). The desired pitch angle θ , the nominal leg length 0l  

and the touchdown angle tdϕ  are specified a priori, based on 

gait requirements and design constraints. Then the nominal 
leg length of the ES-SLIP is calculated through 

 2 2
0 0 0 td2 sinr l L l L ϕ= + − . (67) 

The ES-SLIP mass coincides with the ASLIP mass while the 
spring constant k  is arbitrarily specified. Table I presents 
the parameter values used in the simulations. 



 
 

 

Given these parameters, an exponentially stable fixed 
point for the Poincaré return map of the ES-SLIP is 
calculated. The fixed point is chosen so that it satisfies the 
desired specifications (e.g. forward running speed), and is 
then achieved on the ASLIP using the controller described in 
Theorem 1. In the results presented here, the gains are 

300PK θ = , 30VKθ = , 1.2ε = , 2E
PK =  and 0.2xK =ɺ . 

Figure 3 presents ASLIP variables as it recovers from a 
perturbation 10degδθ = −  and 1m/sxδ =ɺ . These values 

were chosen to highlight the performance of the controller. 
Indeed, as is shown in Figure 3, the large domain of 
attraction of Raibert’s controller for the SLIP is inherited in 
the ASLIP, while the in-stride controller rejects perturbations 
in the pitch angle and fixes the total energy to its nominal 
value. The ability to take advantage of existing high 
performance controllers of the SLIP is one of the benefits of 
this method. 

TABLE I 

SIMULATION PARAMETERS 

 Parameter Value Units 

 Torso Mass (m ) 27 kg 

 Torso Inertia (J ) 1 kg m2 

 Hip to COM Spacing (L ) 0.25 m 

 Nominal ASLIP Leg Length (0l ) 0.9 m 

 Nominal ASLIP Leg Angle ( tdϕ ) -60 deg 

 Desired ASLIP Pitch angle (θ ) 80 deg 

 ES-SLIP Spring Constant (k ) 7600 N/m 
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Fig. 3. Pitch angle, COM forward velocity, and energy of the ASLIP. The 
dashed lines show desired nominal (fixed point) values. 

VII.  CONCLUSION 

In this paper, a framework for the systematic design of 
control laws with provable properties for the ASLIP, an 
extension of the SLIP that includes nontrivial torso pitch 
dynamics, is proposed. The ASLIP can be envisioned as a 
“building block” toward the construction of controllers for 
more elaborate models that constitute more accurate 
representations of legged robots. The control law proposed 
in this paper acts on two levels. In the first level, continuous 

in-stride control asymptotically stabilizes the torso pitch and 
creates an invariant surface on which the closed-loop ASLIP 
dynamics is diffeomorphic to the target SLIP dynamics. In 
the second level, an event-based SLIP controller is used to 
stabilize the system along a desired periodic orbit. An 
immediate practical consequence of this method is that it 
affords the direct use of a large body of controller results that 
are available in the literature for the SLIP. Elsewhere, 
implementation issues will be addressed and the energetic 
benefits of this approach will be demonstrated. 
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