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Abstract—The control of running is discussed in terms of a
model called the Asymmetric Spring Loaded Inverted
Pendulum (ASLIP), shown in Fig. 1. The ASLIP consis of a
Spring Loaded Inverted Pendulum (SLIP) with the addtion of
pitch dynamics, and can be used to study the sagitt plane
motion of bipedal running. A hybrid controller for the ASLIP is
developed that acts on two levels. In the first lel, continuous
in-stride control is used to stabilize the torso ata desired
posture, and to create an invariant surface on whttthe stance
dynamics of the closed-loop system is diffeomorphito the
center of mass dynamics of a SLIP. In the secondvid, event-
based control is employed to stabilize the closeddp hybrid
system along a periodic orbit of the SLIP dynamics.These
results provide a systematic framework for designig control
laws with provable stability properties which takeadvantage of
existing SLIP controllers that are known to induce elegant
running motions in legged models.

M

are variations of Raibert's original controller,2]1 These
controllers regulate forward speed by positionihg tegs
during the flight phase at a proper touchdown gngtale,
during the stance phase, hip torque and leg thaust
employed to regulate hopping height and body alitu

I. INTRODUCTION

The combined difficulties of hybrid dynamics and

underactuation inherent in legged systems stynfiedlirect
application of nonlinear controller synthesis todsch as
those in [10], to running robots and led many redeas to
believe that the problem did not fit well within eth
framework of modern nonlinear control theory. Désihis
widespread belief, results in [8], [17], and [5]avie
demonstrated the utility of nonlinear control theon
inducing provably asymptotically stable dynamic kiad
and running motions in bipedal robots. In particula has
been shown that planar walking and running gaits oa
“embedded” in the dynamics of a closed-loop systgm
defining a set of holonomic output functions witie tcontrol
objective being to drive these outputs to zero [8F]. In
essence, this method asymptotically restricts jmauahics of
the closed-loop hybrid model to a lower-dimension
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ost of the hopping and running robots introducedrov
the past twenty years have employed controllers tha
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attractive and invariant subset of the state spabe.stable
periodic solutions of the dynamics restricted oris th
attractive and invariant subset, called the HybZdro
Dynamics (HZD), encode the desired task (walking or
running).

y
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Figure 1. The Asymmetric Spring Loaded Inverteddegum (ASLIP).
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The general idea of task encoding through the
enforcement of a lower-dimensional target dynamiather
than through the prescription of a set of reference
trajectories, has been employed successfully irceimerol of
dynamically dexterous machines, including juggling,
brachiating and running robots, by Koditschek arid h
collaborators [3], [11] and [13]. In this work hoves, the
restriction dynamics is specified priori, through the
selection of a dynamical system that is believedapture
the salient characteristics of the task, and istm®tutcome
of the control design procedure as in [17]. Taskoeing
through imposing pre-specified target dynamics ésagne
with the question of selecting a suitable candidiyteamical
system for the targeted behavior, and turned attrermtf the
robotics community into models that have been nespby
biomechanics.

Faced with the complexity of studying running iriraals,
atPioIogists proposed the Spring Loaded Inverted Blema as
a template, [6]. Notwithstanding its apparent sinify, the
SLIP has been useful in (qualitatively) explainingrious
aspects of running in animals [6], and in desigréngpirical
controllers for robots [12]. These findings havempted a
deeper study of the SLIP, with the aim of undemitam
whether the SLIP is merely one way of describing th
kinematics of the observed periodic orbits, or \ubetit



represents a dynamic model of the observed runnimgassless. The ASLIP is controlled by two inputforae u,

behavior of animals, and thus would be an intangstarget
dynamics for legged robots [6], [14]. These redeafforts
produced a large variety of controllers for the SlLsee [14]
and references therein, and more recently [2],[[A], [16].
These controllers exhibit very appealing propersash as
large domains of attraction and minimal controbgff

Up to this point, however, much of this researct haen
concentrated on the SLIP itself. The formal conioact
between the SLIP and more elaborate models thaty emj
more faithful correspondence to a typical robotiucture
and morphology has not been fully investigated.stitl
remains unclear how stability conclusions obtaimedhe

acting along the leg, and a torqug applied at the hip. In
what follows, the subscripts “f" and “s” denoteidft” and
“stance,” respectively.

A. Flight Phase Dynamics

The flight phase dynamics corresponds to a poirgsma
undergoing ballistic motion in a gravitational @efogether
with a double integrator governing the pitch motidrhe
configuration spaceQ, of the flight phase is a simply-

connected open subset oR?xS' corresponding to
physically reasonable configurations of the ASL#nd it

context of the SLIP can predict the behavior of enorcan be parameterized by the Cartesian coordindteéleo

complete models; only preliminary results in thisedtion

COM together with the pitch angle, i.q. =(x_,y.,8) 0Q, .

are available [13]. Furthermore, as was shown ih [4The flight phase dynamics of the ASLIP evolves in

controllers specifically derived for the SLIP wiilave to be
modified in order to be successful in inducing Ealinning

in more complete models that include pitch dynamics
energy losses. These observations set the stageisof

TQ ={x =(¢,¢)'| g 0Q,q OR%, and can be easily
written in state-space form

% =fi(x). @

research, which aims at establishing a more formal The flight phase terminates when the vertical distaof

connection between the SLIP as a control targetuoning
and more complete plant models of legged robotsicele
rather than analyzing the much studied SLIP (sée[T2,

[14], [15], [16] for example), we turn our attemtido its
implications in the control of running.

In this paper, a framework is proposed that pravide
systematic procedure for designing feedback cdetowith
provable properties that are suitable for inducingning
motions in an asymmetric hopping model. This framdw
combines established nonlinear control synthesits tsuch
as the HZD originally proposed in [17], with corlteos
obtained in the context of the SLIP e.g. [2], [12}], [16].

the toe from the ground becomes zero. To realize th
condition, the flight phase state vector is auge@niith

a =(I,¢) OA ORxS', wherel and ¢ are the leg length
and angle, respectively, arggd = 0. This is a consequence of
the assumption of a massless leg; during flighe kbg
obtains the desired length and orientation instedasly.
The threshold functioH, . :TQ, x A - R given by

f-s

H; (x.a )=y, ~lcos¢+6)-L sirg, )

signifies the touchdown event at its zero crossiagd
defines a smooth switching manifol§ _ in the augmented

Hence, giverany controller that results in an exponentiallystate spacex, =TQ x A , given by

stable periodic solution of the SLIP, the methodeti@ed

here shows how to “embed” the SLIP orbit in a more
torso pitch

complete model that includes nontrivial
dynamics. It is emphasized that the practical cgmseces of
these results lie in the fact that they allow tlreat use of
controllers obtained for the SLIP in a more compleindel.
This model is called thAsymmetric Spring Loaded Inverted

s . ={(x.a)0%|H .(x.a)=0%<d. @

Note that in (2) and (3), the parametgr is available for

control, and will eventually be chosen accordinguoevent-
based feedback law.

B. Sance Phase Dynamics

Pendulum (ASLIP), and can be used to study the sagittal

plane running of bipedal robots. Despite its impoce, to
the best of the authors’ knowledge, no formal €isdif the
ASLIP exist. Proposing and formally analyzing cohtaws
for the stabilization of the ASLIP that take adwge of
SLIP controllers constitutes the goal of this paper

Il. THE ASYMMETRIC SPRINGLOADED INVERTED
PENDULUM

A schematic for the Asymmetric Spring Loaded Inedrt
Pendulum (ASLIP) is presented in Fig. 1. The hiptjdoes
not coincide with the center of mass (COM) of theso,
which is modeled as a rigid body with massand moment

The configuration space&), of the ASLIP during the
stance phase is parameterized by
q =(,9,0) 0Q, ORxS?. Using the Lagrangian approach
and then bringing the equations into standard -stadee
form, the ASLIP stance dynamics is described by

% = f(x)+g(xJu, 4
where x, 0TQ, ={(d, 4)'| . 0Q . g IR = X s the state
vector, andu = (u,,u,)' U OR? is the input vector.

The threshold functioH, , : TQ,xU - R, given by

H, . (%,u) =u,cos(¢ +8)-(u,/) si{g+86), (5)

of inertia J about the COM. The leg is assumed to be

the coordinates



specifies the liftoff event at its zero crossingl atefines a A=A, . o(|:f xid , )O(As (xid,, ) (10
smooth switching manifoldS, ; in the augmented space

TQ,xU , given by where id, is the identity map onA . The map A

“compresses” the flight phase into an “event,” arah be
S ={(XS,U)DTQS><U|H . 1(xsu) =O} . (6) thought of as a (generalized) “impact map” or “tesap”
[5], [8]. In this setting, the hybrid dynamics dfet ASLIP

Equation (6) describes the fact that liftoff occwisen the take the form

vertical component of the ground force, which isiaction*

of the control inputsy, and u, , becomes zero. [x=fx)*axJu. (xuu)os,
ASLIP *

C. ASLIP Hybrid Dynamics X =A(x.ua),  (x.ua)0s, xA
Let ¢ :[0,0)x X; ~ X; and @ :[0,00)x X  ~ X denote The left and right limitsx, and X’ correspond to the states

the solutions generated by the flight and stanceetso(1) “ust prior to liftoff’ and “just after touchdowntespectively.

and (4), respectively. Note that the simplicitytbé vector e systent,,» is defined on a single chaX, , where the
field f, allows for explicit calculation of the flovg (t, x ) .

. (11)

states evolve, together with a the map which reinitializes
When the flight flow ¢ (t,x ) intersectsS _;, transition the differential equation at liftoff.

from flight to stance occurs. Leh,  :S . - X, be the

transition map from the flight to the stance ph&imilarly, IIl. - TARGETMODEL: THE ENERGY-STABILIZED SLIP

let A, :S. ; — X, be the transition map from the stance In this section, the target model for our contmolle
to the flight phase. Then the open-loop hybrid rhadehe introduced. Ag was mgntioneq in the introductiohe t
ASLIP is purpose of this paper is to introduce a framewarsk f
designing controllers of running robots that takivamtage
Xp =TQ x A of feedback control laws available for the extealistudied
(Xf J _ [ fo (% )J SLIP. The standard SLIP consists of a point masstad to
_ 3, B 0 a massless prismatic spring, and it is passive témque
2 7 inputs) and conservative (no energy losses). hyghper, we
S :{(Xf!a'f )0 X | H o (%.a)= O} consider a variant of the SLIP, where the leg fascallowed
X =4, (xf',af) to be non-conservative. The purpose of this maatifin is
i to introduce control authority over the total engnghich, in
X =TQ the standard SLIP, is conserved along solutionsis th
) s ° precluding the existence of exponentially stableiopkc
] = fs(x5)+gs(xs)u orbits [2], [7]. This system, called thEnergy-Stabilized
15, ={(xu)0TQxU[H, (x,u)=0 ®)  sip (ESSLIP), is presented in Fig. 2.
= A .U Nominal Symmetric Stance Phase
Xf s f (Xs ) (XC, yc) m
where x (t) =lim_, x(7) and x"(t) =lim_ x(7), i Ofs,f}
are the left and right limits of the stance angHhftisolutions. M kr
The subsystem&, and X, can be combined into a single e
system with impulse effects . describing the open-loop >
hybrid dynamics of the ASLIP. Define the time-to- : ]
touchdown functiori, : X; - R(f3} , as Figure 2. The Energy Stabilized SLIP (ES-SLIP),wdin actuator parallel

with the spring.

T (%08 ) =inf{t0[0,) @ (t.x,)0S .} 9

. A. ESSIP Open-Loop Hybrid Dynamics
The flow map F, : X, — X, for the flight phase can then be

The derivation of the hybrid model for the ES-SLE
given by the rule (Xf,O'af)Hw(-l? (%o ,a )1)$,0)- Let similar to that of the ASLIP, thus the expositiam this
A:S, XA - X, bethe map section will be terse. The flight and stance canfigion
spacesQ"” and QY respectively will both be parameterized
by the Cartesian coordinates of the COM

! When a feedback controllet = is introduced, the liftoff .
a(x) (%, y¥.)0Q" =QY =qQ" OR?, where the superscript “M”

condition H,_, (x,@(x,))=0 will only be a function of the states.

2 The flight flow map presupposes the existencetirha instantt such
that Q(t,xm)Dsﬂs. The case where such a time instant does not exist > Notation: let f,:X - X, and f,:X - X,, and define
does not correspond to periodic running motions. fx 1 X o Xy x X, by (f,%£,) () = (.09, f,(x))OX,xX,, xOX .



denotes the ES-SLIP target model. Hence, the systgnst prior to liftoff, and K, is a positive gain. It can be
dynamics evolves in the state space recognized that (17) corresponds to a variatioRaibert's

M _TAM — = : speed controller, [12].
X7 =10 {XM COI(dVI a )‘dw 9.4 OR } ' Substituting the feedback laws (16) and (17) in),(1e

As in the ASLIP, the ES-SLIP hybrid open-loop dyizsn closed-loop ES-SLIP hybrid dynamics can be obtaased
can be written in the following form XM =1 (XM ) ()€V| )_ 0s;

CUEPEEOL (I g Bt ) () og
() = ((e) ). () w)os <A : '
where,
where u* OU™ OR is the input andy OA" O S is the
touchdown angle (angle of attack), arfg’ : X" - TX"
and g : XM - TX" are the system and input vector fieldsand " (x*) =t (%) + g4 (»")a" (*') is the closed-loop

s,cl

in the stance phase. The switching surface is tékdre the stance vector field, which is given below for figurse,
liftoff surface

, (18)

ES-SLIP *

& ={x oxHe (e (¥))=g, a9

X
g ={(eu)oxut e (X ) =g, @3 7.
where HM  :TQ" xU™ _ R is defined as i (x) = xfxi v (FeI +a" (X" )) , (20)
—-— yC
HsNLf(XM,UM)—W(Fm*'UM)- (14) Xczy:_yz (Fe,+aM(xM))—mg

In (14), F, is the elastic force developed by the prismatic | order to study the stability properties of peiworbits

spring of the leg. Assuming for definiteness thet $pring is  of s¢ ., the method of Poincaré will be used. The

linear, _ i o - _
Poincaré section is selected to be the surfate defined

Fo = k(ro —yx+ yi) ’ (15)  py (29). Letg” :[0,00)x XM — XM be the flow generated by
where kis the spring constant ang is the nominal spring fey, and  define  the  time-to-liftoff  function

length, see Fig. 2. In this works, is taken to be the T :X" _>[RU{°<>} , In a similar fashion as (9), by

uncompressed length of the leg. However, thesargsgans MM\ A
can be relaxed to allow for spring pretension aadlinear T (sto) —|nf{t D[O'Oo)| ﬂﬁ'(t’)&f)msws } ' (21)
spring characteristics. Then, the Poincaré map" :és“"af - §S“4f is given by

B. ESSLIP Closed-Loop Hybrid Dynamics vl V- "

In order to accommodate perturbations away from the P (X )_@’AC' (TS OA”()N )'Ad(*ﬂ )) (22)

nominal energy, the conservative foreg developed by the  Note that feedback control laws similar to (16) 4hd)
springy leg of the standard SLIP is modified toline a exXist in the literature, and the particular onesdukere are

nonconservative feedback componenlf =a" (x"). The forillustrative purposes only. It is emphasizedt#my other
6{p-stride or event-based controller could have besed to

Stabilize the SLIP. For instance, energy stabiliratin
nonconservative monopedal models has been demimastra
(M) = g E XX Ty E(x)-E 16) Using linear (leg) and rotational (hip) actuatiorii] and [4],
! (X ) " \/Xcz+y2 [ (X ) J (16) respectively. On the other hand, a large varietyewént-
_ _ _ ‘ _ based controllers exist for the SLIP e.g. [2], [12H], [16],
where E is the desired nominal energy levé(x") is the which are known to have very appealing propertiehss a

total energy of the SLIP, ank{ is a positive gain. large domain of attraction. In this work, we deyeformally

To regulate the forward speed, the following eveased a controller for the ASLIP that affords the diracte of
control law is employed ' control laws available for the SLIP.

purpose ofu" is to stabilize the total energy of the system
a desired level, and is achieved by

w(X)=0+K, (% -%), 17) IV. MAIN THEOREM: CONTROLLERDESIGN

where ¢ and X, specify the nominal touchdown angle and The cgntrol action ta!<es plage in.two hierarchleabls.
. In the first level, continuous in-stride control éxerted
forward speed respectively. is the actual forward speed during the stance phase to stabilize the torso désired



posture and to create an invariant manifold on liie ES-
SLIP dynamics can be imposed. In the second leuel,
event-based SLIP controller is used to stabilizeedodic
orbit of the system. These results are summaripethé
following theorem and corollary.

Theorem 1: Hybrid controller

Let Q ={q,0Q,[!#Lsing}. Then, there exists a map

The proof of Theorem 1 will be given in Section V.

For £>0 a given constant, the closed-loop hybrid
dynamics of the ASLIP under the continuous and even
based feedback control laws of Theorem 1 takefotine

®:TQ, - R°® that is a diffeomorphism onto its image, andvhere

such that, in coordinatesb(x,)=x=(7,Z) OR®, the
following hold:

A. In-stride Continuous Control

For every £ >0, there exists aC' feedback control law
u=a(x,&), such that the model

fou(Xe€) = fo(x)+a(x)a(x.e), (23)
satisfies:
A.1) the vector field
fs,cl (X1 5) = [aﬁ fs,cl(xy‘g)j (24)
aXS x=07(x)
has the form
. f ..(n,
fs,cl (X' £) :[ “S'CIVIZ(,] g)J ’ (25)
fs,cl,3;6(21,7)

A2) the set Z={xOTQ]|n7=0} is a smooth 4-
dimensionalC' embedded submanifold dk® and is
invariant under the stance flow, i.ec0Z implies
f.o(x€)0T,Z;

A.3) the restriction dynamics

Fs,cl (X' £)|Z = f:‘s,cl,3:6(zl 0) (26)

is diffeomorphic to the ES-SLIP stance phaseedes
loop dynamicsf.,(x") given by (20).

B. Exponentially Contracting Transverse Dynamics

B.1) f,4..(7,€) takes the form

foana(?.€) = Ale)7,

andlim,.  e"9 =0.
C. Event-based control
There exists &' event-based control laa, = 3(x”) such
that the map

0, 1) =[ae(0x(a=07) ]

satisfies:

(27)

(28)

_ x=f ,(x€), x0OS,, 2
ASLIP * ot :Ad(X_), X_Dégﬁf ) (29)
§ . ={x0TQH, (xa(e(.e))=d. @0

cl

The stability properties o}, will be studied via the
corresponding Poincaré return map. As in Sectionlék

@, :[0,0)x X, -~ X be the flow generated by, and

s,cl?

T,: X, - RU{} be the time-to-liftoff function defined as

¢s,cl(t'xo) D Ss. f} .
Then, the Poincaré return maq S, , - S, is given by

P(X) =@ (Teo84(x).84(x)) -

The following Corollary 1 is an immediate consequesnf
Theorem 1 in view of the results in [9].

T, (%) :inf{t 0[0,) (31)

(32)

cl

Corollary 1: Exponential stability of X}

Let (xX") be a fixed point ofP™ and x* a fixed point of
P. There existf >0 such that, for alleJ(0,£), X is
exponentially stable, if, and only i{x")" is exponentially
stablem

Remark 1. The intuitive meaning of Corollary 1 is that, for
given controllers that create an exponentially Ist@eriodic
orbit of the ES-SLIP, the feedback laws= a(x,,&) and

a = [(x7) specified in Theorem 1 render this orbit
exponentially stable in the ASLIP.

V. PROOF OFTHE MAIN THEOREM

In this section, Theorem 1 is proved through a sage of
Lemmas. The procedure is constructive, and resalta
control law satisfying the requirements of Theorkm

A. In-stride Continuous Control

The purpose of the in-stride control action durithg
stance phase is twofold. First, it ensures that ttmso
remains at a desired (constant and upright) pitaiiea and
second, it renders the translational dynamics ef ABLIP
diffeomorphic to the ES-SLIP closed-loop stanceagits.
This prepares the continuous part 3, . in (29) so that

any event-based controller that exponentially §tads a

C.1) §.NZ isasmooth co-dimension one submanifoldyo o qic orbit of the SLIP can be used to achieymeaential

of Z andA,(S_,NZ)0Z;
the restricted reset mdy, (x) |, is diffeomorphic to
the ES-SLIP closed-loop reset mA{{ .m

C.2)

stability of the ASLIP orbit. In view of the undetaated
nature of the stance phase, the two control objestwill be
achieved in different time scales. Since the rexmémt for
the torso being upright throughout the motion isreno



stringent, high-gain control will be imposed on tpich
rotational motion. Hence, the system will be decosau
into fast and slow dynamics governing the rotati@mal the
translational dynamics of the torso, respectively.

The continuous part af ., can be written as

% = f(x)+gq(xJutgfx)u. (33)
Define the output functioﬂn:@S -R by
y=h(a)=6-0, (34)

Proof:

Parts 1) and 2) of Lemma 1 follow from general ltssin
[10]. For part 3), consider the distributic® =span{g; , },
which has constant dimensiah=1 on TQ,. SinceG is one

dimensional, it is involutive and thus, by the Feolus
theorem, integrable. As a result there existd =6-1=5

real-valued functions defined onlfQ, such that the
annihilator G” of G is G” =spanfll d¢ d6 dy, dy, }. A
straightforward application of the constructive gir@f the

where @ is a desired pitch angle, taken to be a constant.sufficiency part of Frobenius theorem [10] resirits

can formally be shown tha being constant is mecessary

conditionfor the existence of an embedding control law. Due

to limited space, the proof of this statement witit be
presented here. The output defined by (34) resnltthe
second-order input-output dynamics

d2
dtzy = |:L2fsh(xs) + LgsvlLfsh(qs)ul:I + Lg s,sz sh(q s) u il (35)
where
L%h(x) =0,
-L Lsing -1
Lgs,lLfsh(qS) = 305¢ ! Lgs,szsh(qs) :% : (36)

Lemma 1: Stance phase zero dynamics

yi(x)=1+LOcosp,

Lsin¢+ J .
I ml(Lsing —1)

Finally, it is straightforward to check thatb is a

diffeomorphism onto its image iR®.m
Let £ >0 and define the feedback

(41)

v2(%) :¢J{—1+ (42)

_ _ 1 AN
u, =a,(x,€) —m(u(e,e,s) Lgs‘lLfsh(&_,)ul) , (43)
where
v(6.0.¢) :—5—12 Kﬁ(@—?)—%Kfé’, (44)

Under the output functionh defined by (34), and for and K, K{ are positive constants. Under this feedback

0, 0Q,={q,0Q ! # Lsing},
1) the setZ={x0OTQ,| h(x)=0,L h(x)=0} is a
smooth 4-dimensional submanifold B, ;

2) the feedback control law
L. L:h
U; — Os1 I (XS)U]_ (37)
Ly, Lih(x)

rendersZ invariant under the stance dynamics; that g

is, forall x,0Z, u, OR,

fs(Xs) + gs,l(xs)u 1+ g s,{x )U* QTXSZ '
3) there exist smooth functiong (x,) and y,(x,) so
that the mapd : TQ, - R®

®(x)=x= (7112 2,7,) (38)
where
n =h(a,), 7, =L h(x),
z,=(1.8)" 2 = (1 (x).r2(x))", (39)
is a valid coordinate transformation, i.€ is a
diffeomorphism onto its image, and
Lo Ji(%)=0. Ly pp(x)=0.m (40)

law, the model (33) becomes

% = f(x,8)+ g (xJu, (45)
where

- _ 1 .

fo(x,. €)= fs(xs)+[mu(9,6’,£)] 9, (%), (46)
_ _ Lgs,ll-fsh(xs)

S(x%)= [95,1(X5) g.4{x )m] : (47)
Under the coordinates of Lemma 1, (45) has the form
n=A~A(&)n, (48)
z=1,(n.2)+9,(2)y,. (49)

With the additional change of coordinatgs=7,/¢ and
A1, =n,, the model (48)-(49) can be written as

&= hAg, (50)
z2=1,(7,2.€)+9,(2)u, (51)
where
A:[ Og 19]. (52)
-K? -K!

Setting £=0, (50) reduces to the algebraic equation



Aj =0, which, by properly selecting the gaifk?, K} in

(52), has the origin as its unique solution. Hei(66)-(51) is
in standard singular perturbation form and theesponding
reduced model is obtained by substitutingg0 and 7 =0

in the slow part of the dynamics (51), i.e.

z2=1,(0,2,0+g,(2)u, (53)
where direct calculation leads to
z, 0
Z, 0 (54)
(2= aZ-geoddrz) |'a()=|  ym
-22,7,+¢ sin(? + 22) _ Lecosz,
mz (Lsinz, -z)
A
Lemma 2: Restriction dynamics
If @ is the desired pitch angle in (34), define
r(z) =4z +L2-2Lzsinz, (55)
r'(z): z-Lsinz, Lz cos, Z,, (56)
r(2) r(2)
y(z):zlcos(zz+§)+Lsin§. (57)

Then, if E is the desired energy level, the feedback law

_z-Lsingz, F

u=a,(z)= ) (58)

ES-SLIP(Z)'
with
Foasur(2) =K1 (2]~ K5t ([ E(2)-E].  (59)
E(2) :%m(zg+zfz§)+ngy(z)+_;k[ro—r(z)f, (60)

and Kf >0, the
diffeomorphic to the SLIP closed-loop dynamit§,(x") .

renders

Proof:
Substitution of (58) into (53) gives
z2=1,(z)+9,(2)a,(2) = f,4(2). (61)
Define the mapd, : Z — R* by
-z sin(z,+8)+L cod
z,coqz,+8)+L sirg (62)

D,(z)= — -
=) —zssin(zz+0)—2124cos(zz+6’)
zecos(zz+§)—ziz4 sir(zz+§)
It is straightforward to check thab,
onto
transformation orZ . Observe thatp, (z) = x" . The result

0D, _
)], T e

restriction dynamics (26)

its image, thus it describes a valid coordinat

is obtained after straightforward algebraic maragiohsm

B. Sride-to-stride Control

The purpose of the stride-to-stride controlleroisatrange
the configuration of the ASLIP at liftoff so thdtet manifold
S._;NZ isinvariant under the reset may .

Lemma 3: Event-based controller
Let X, and@ be the forward running speed at liftoff and the

touchdown angle, respectively, corresponding tdesifed)
fixed point of the ES-SLIP. Define

w(x) =g +K, (% 00) %),
where X is the forward running speed of the ASLIP prior to
liftoff. Then, the controllera, = B(®(x)) = (1), #(x.)) .

(64)

I()Q):\/L2+r§+2LrOsin((//(x; )-8), (65)
N G
¢(xs)—asm[T(xs_)], (66)

where 8 is the desired pitch angle in (34), achieves C.1)
and C.2) of Theorem i.

Proof:
Supposex ] éw N Z . To show C.1) notice that this implies

6 =0 and 8 =@ just prior to liftoff. Since during the
flight phase =0, i.e. (t)=8 , at touchdown, we have

6"=0 and 8" =8, which means thatx'0Z. This
establishes hybrid invariance i.é (S ,NZ)0Z. The

rest of the proof is a consequence of the fact thfflight
flow of the ES-SLIP is the same as the translatipaat of
the flight flow of the ASLIP. Equations (65) andsjéensure
that, not only the flight flows, but also the capending
reset maps, are identiasl.

C. Proof of Theorem 1
The proof of Theorem 1 follows from Lemmas 1, 2 &nd

VI. SIMULATION RESULTS

This section presents a simulation of the controlle
described above. The mechanical properties of tBelIRA
correspond to preliminary designs of a biped rdbet is
currently under construction, and are given in €ablsee

Fig. 1). The desired pitch angi, the nominal leg length,
and the touchdown anglg, are specified a priori, based on

is a diffeomorphism gait requirements and design constraints. Themdtminal

leg length of the ES-SLIP is calculated through

r, =12 +L2 -2 Lsing,, . (67)

The ES-SLIP mass coincides with the ASLIP massenthié
spring constantk is arbitrarily specified. Table | presents
the parameter values used in the simulations.



Given these parameters, an exponentially stabledfixin-stride control asymptotically stabilizes thesompitch and
point for the Poincaré return map of the ES-SLIP isreates an invariant surface on which the closegd-RSLIP

calculated. The fixed point is chosen so that fisas the
desired specifications (e.g. forward running speedd is
then achieved on the ASLIP using the controllecdbsd in

Theorem 1. In the results presented here, the gaias
KZ =300, KY=30, £=12, Kf=2 and K,6=0.2.

Figure 3 presents ASLIP variables as it recoveosnfia
perturbation 66 = -10deg and dx=1m/s. These values

were chosen to highlight the performance of thetrodier.

Indeed, as is shown in Figure 3, the large domdin o

attraction of Raibert's controller for the SLIPimherited in

the ASLIP, while the in-stride controller rejecesriurbations
in the pitch angle and fixes the total energy toribminal

value. The ability to take advantage of existingghhi
performance controllers of the SLIP is one of theddits of

this method.

TABLE |
SIMULATION PARAMETERS

Parameter Value Units
Torso Mass (n) 27 kg
Torso Inertia ¢ ) 1 kg nf
Hip to COM Spacing ) 0.25 m
Nominal ASLIP Leg Lengthl() 0.9 m
Nominal ASLIP Leg Angle §,,) -60 deg
Desired ASLIP Pitch angled) 80 deg
ES-SLIP Spring Constank() 7600 N/m
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Fig. 3. Pitch angle, COM forward velocity, and eyyeof the ASLIP. The
dashed lines show desired nominal (fixed pointyi&sl
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VII.

In this paper, a framework for the systematic def
control laws with provable properties for the ASLI&n
extension of the SLIP that includes nontrivial torgitch
dynamics, is proposed. The ASLIP can be envisicaead
“building block” toward the construction of conti@is for

CONCLUSION

more elaborate models that constitute more accurate

representations of legged robots. The control lagpased
in this paper acts on two levels. In the first lewentinuous

dynamics is diffeomorphic to the target SLIP dynzsniln
the second level, an event-based SLIP controllersed to
stabilize the system along a desired periodic orBib
immediate practical consequence of this methochds it
affords the direct use of a large body of contralésults that
are available in the literature for the SLIP. Elkeve,
implementation issues will be addressed and thegetie
benefits of this approach will be demonstrated.
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