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Abstract

To overcome the obstructions imposed by high-dimensional bipedal models, we embed a stable walking motion in

an attractive low-dimensional surface of the system’s state space. The process begins with trajectory optimization

to design an open-loop periodic walking motion of the high-dimensional model and then adding to this solution,

a carefully selected set of additional open-loop trajectories of the model that steer toward the nominal motion. A

drawback of trajectories is that they provide little information on how to respond to a disturbance. To address this

shortcoming, Supervised Machine Learning is used to extract a low-dimensional state-variable realization of the open-

loop trajectories. The periodic orbit is now an attractor of the low-dimensional state-variable model but is not attractive

in the full-order system. We then use the special structure of mechanical models associated with bipedal robots to

embed the low-dimensional model in the original model in such a manner that the desired walking motions are locally

exponentially stable. The design procedure is first developed for ordinary differential equations and illustrated on a

simple model. The methods are subsequently extended to a class of hybrid models and then realized experimentally

on an Atrias-series 3D bipedal robot.
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1 Introduction and Problem Statement

We seek to design controllers for high degree-of-freedom
(DoF) bipedal robots with several degrees of underactuation
(DoU), or, if the robot is “fully actuated”, we wish to take
into account the limited ability of ankle torques to affect the
overall evolution of the robot. The paper will focus on the
tasks of walking stably forward, backward, or in place, and
transitioning among such motions. We want the gaits to be
dynamic in the sense that they can use the full capability
of the robot regarding speed, terrain type, and other forms
of agility. Moreover, of course, we need to embed the
controller on the robot for real-time implementation. Our
unique approach to this well-studied problem is illustrated
in Figure 1.

1.1 Proposed Approach to Controller Design

We begin with a full-order dynamical model of the robot,
expressing its many degrees of freedom and actuation

capability, and a simplified representation of its contact with
the environment so that the overall model can be expressed
as a system with impulse effects, a special class of hybrid
models. To overcome the obstructions imposed by high-
dimensional models, we first seek to embed a stable walking
motion in a low-dimensional surface of the system’s state
space. Subsequently, we seek to stabilize the gait in the full-
order model by rendering the surface attractive.

The most common approach in the literature to getting
around the high dimension of the model is to represent the
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Figure 1. Our overall approach. The full-order model, the
desired objectives, and physical constraints are combined into a
trajectory optimization problem for designing a periodic gait.
Using model structure or physical insight, a low-dimensional
surface of initial conditions is selected for trajectory building,
with the trajectories designed to approach the periodic orbit. If
the trajectories form a low-dimensional surface, Supervised
Machine Learning is used to a extract a vector field from the
data that realizes the trajectories. System structure is then used
again to render the low-dimensional model (surface and vector
field) invariant and attractive.

walking task through the dynamics of a low-dimensional
inverted pendulum (e.g., LIP, SLIP or others in Figure 2),
which equipped with a foot-placement strategy for stability
Kajita et al. (1992); Raibert (1986b,a); Pratt and Tedrake
(2006). The robot is then controlled in such a way
that its center of mass approximately follows the target
dynamics. The many challenges associated with this more
common approach include: achieving stable solutions in the
full model; exploiting the full capability of the machine,
especially in light of physical constraints of the hardware
or environment; deciding how to associate the states of the
low-dimensional pendulum with the full-order system; and
finally, even deciding upon the appropriate pendulum model
for a given task is not evident: what is the correct model for
turning while stepping off a platform?

For these reasons, we do not rely on a pre-specified
pendulum model to encode the walking motion. In this
introduction, we ask that the reader allow us to sketch the

main ideas of our approach without worrying too much about
technicalities. Later developments will be more formal.

For the sake of simplicity, let’s pretend the model of the
robot can be captured by an ordinary differential equation,

ẋ = F (x, u), (1)

with state variables x ∈ X and control inputs u ∈ U . The
design process begins with construction of a periodic
solution meeting relevant constraints. Denote the period by
Tp > 0 and the initial condition by ξ∗. The next step is to
make an initial selection of a low-dimensional set, let’s call
it Z0 ⊂ X , such that ξ∗ ∈ Z0. Now begins the real work; we
seek to design open-loop trajectories of the full-order model

(xξ(t), uξ(t)), 0 ≤ t ≤ Tp, ξ ∈ Z0 (2)

that over the interval [0, Tp], “approach” the periodic
solution. Specifically, for some 0 ≤ c < 1, and for each ξ ∈
Z0, we have

ϕξ(Tp) ∈ Z0 and ||ϕξ(Tp)− ξ∗|| ≤ c||ξ − ξ∗||. (3)

After designing the trajectories, we seek to construct a low-
dimensional subsystem that realizes them, namely,

ż(t) = G(t, z)

x(t) = H(t, z),
(4)

with z ∈ Z ⊂ X , such that (a) for ξ ∈ Z0,

z(0) = ξ ⇒ xξ(t) = H(t, z(t)),

and (b) the periodic motion is a “locally exponentially stable
output” of the model. If this can be done, we would argue that
(4) is a more desirable target model than a typical pendulum
because the target has been constructed directly from the full-
order model and its “specification”, that is, the constraints
imposed when designing the trajectories.

To turn this into a viable feedback design process for the
original system, we have to address the following issues:

(i) How to compute the low-dimensional model (4) for
realistic bipedal robots and the surface1 Z ⊃ Z0 on
which it is defined?

(ii) As with any low-dimensional target model, how to
embed it in the full-order model with stability? In
other words, how to design a feedback for the original
system (1) that does two things: (a) creates an invariant
surface Z in its state space with restriction dynamics
given by (4), thereby encoding the desired stable
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LIPM SLIPIPF

Figure 2. Adapted from (Grizzle et al. 2014, Figure 5). Three
low-dimensional models that are frequently used as
approximate representations of walking robots. From left to
right: the Linear Inverted Pendulum (LIP) lumps the mass of the
robot at a point moving at a constant height and assumes
massless legs; the Inverted Pendulum with Flywheel (IPF)
relaxes the assumption on constant height and adds a flywheel
to account for internal angular momentum; and the
Spring-Loaded Inverted Pendulum (SLIP) adds a spring to
model a robot’s legs as a massless pogo stick. There is no
obvious way to embed these low-dimensional models into the
full model of a robot.

Figure 3. Based on model structure, the system’s state is
decomposed into x = (x1, x2), where the dimension of x1 is
much smaller than the dimension of x2. The surface Z0, shown
here as a line, is the set of initial conditions used to build a set
of trajectories that will fill out the surface Z. By construction, this
model, if it exists, will be easy to embed in the robot’s full state
space.

walking motion; and (b) solutions of the closed-
loop system starting near the surface asymptotically
converge to the surface, thereby realizing the walking
motion in a stable manner in the overall system.

The remainder of the paper is dedicated to addressing
these challenges for a class of hybrid models and tasks
of interest to bipedal locomotion. Section 3 develops the
basic ideas in the simpler setting of ordinary differential
equations. The results are of independent interest for tasks
such as rising from a sitting position or standing in
place. Trajectory optimization is used to generate the low-
dimensional set of open-loop trajectories (2) that includes
a metric for attractivity to a periodic solution, a family
of periodic solutions, or transitions among such solutions.
Model structure and Supervised Machine Learning are
proposed as a means to extract functions from the open-loop
trajectories to build the low-dimensional model (4). Finally,
the appeal is made once again to model structure to embed
the low-dimensional model in the full-order model while
guaranteeing local exponential attractivity.

Section 4 illustrates the design process on the well-known
inverted pendulum on a cart. This will allow the reader to
explore the method on a simple model. Section 5 develops
the results for hybrid models, preparing the ground for the
simulations and experiments reported in Section 6 for the
bipedal robot of Figure 1. The discussion and conclusions are
given in Section 8 and all proofs are given in Appendix C.

2 Related Literature

In the following, related work in the legged robotics literature
is summarized and contrasted to the work in the present
paper. Appendix D provides a more technical comparison
of several nonlinear control methods, namely, backstepping,
zero dynamics, and immersion and invariance.

2.1 Online Optimization

One of the earliest uses of online optimization for bipedal
walking was done on a simulation model of the planar robot
RABBIT Azevedo et al. (2002, 2004). The controller could
only be done in simulation because its computation time was
approximately forty times slower than the duration of a step.
More recently, Model Predictive Control (MPC) was applied
in the DARPA Virtual Robotics Challenge Erez et al. (2013).
In that work, a real “simulation-time” implementation on a
full-order model of Atlas was achieved through the use of a
novel physics engine and a relaxed contact map. MPC was
applied on Kuindersma et al. (2016) to a simplified model of
Atlas that captured the kinematics and centroidal dynamics;
this resulted in walking at 0.4 m/s. On a planar biped, higher
walking speeds from 0.43 m/s to 0.97 m/s were achieved
in Hereid et al. (2016b) using online Partial Hybrid Zero
Dynamics (PHZD) gait generation. Average computational
time was 0.5 s. To stabilize a robot that has to make and break
multiple contacts with the environment, a piecewise affine
approximation of a nonlinear hybrid system was controlled
using a mix of online approach and explicit MPC Marcucci
et al. (2017), or a Piecewise-Affine Quadratic Regulator Han
and Tedrake (2017). These optimizations are more effective
than the purely online MPC, but the model so far has not
taken the centroidal angular momentum into account.

2.2 Pendulum Models

The pendulum models illustrated in Figure 2 are ubiquitous
means in the bipedal robotics literature to reduce the online
computational burden. The LIP model is especially prevalent
for the design of flat-footed walking gaits based on the Zero
Moment Point criterion Kajita and Tani (1991); Yamaguchi
et al. (1999); Ogura et al. (2006); Sakagami et al. (2002);
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Kaneko et al. (2011); Park et al. (2005); Pfeiffer et al.
(2002). The optimization or closed-form compute the CoM
trajectories and swing foot positions on the reduced-order
models. A low-level controller and inverse kinematics then
realize these on the full-order model or robot. Recent
experimental uses of this approach can be found in Pratt et al.
(2012); Krause et al. (2012); Faraji et al. (2014); Rezazadeh
et al. (2015).

The bottom line, however, is that when a pendulum model
is pre-specified as a template Full and Koditschek (1999) the
full order model needs to compromise its achievable motions
to follow the template. Moreover, for each different task of
the robot, such as walking or running, the designer is faced
with the selection of the “best” target model. In our approach,
a low-dimensional model is generated from the full-order
model and the task. It is dynamically feasible and uses the
full capability of the robot to accomplish the task.

2.3 Pre-computed Gaits

A means to get around the limitation of online computation
is to pre-compute a set of controllers and design a control
policy to “stitch” them together. A policy that switches the
task (target walking speed, running vs. walking, stairs vs. flat
ground) is employed in Sreenath et al. (2013); Martin et al.
(2014); Powell et al. (2013). Finite-state machines or motion
primitives are used in Park et al. (2013); Saglam and Byl
(2015); Manchester and Umenberger (2014) for rough terrain
and in Apostolopoulos et al. (2015) for reducing settling
time. Interpolation among gaits has been used to create a
continuous family of gaits in Embry et al. (2016); Da et al.
(2016); Nguyen et al. (2017, 2016). Transient trajectories
that approach the nominal periodic orbit were added in
Liu et al. (2013); Da et al. (2017) to enlarge the basin of
attraction. The current paper provides a formal mathematical
framework for the work in Da et al. (2017) and increases its
applicability.

2.4 Hybrid Zero Dynamics

The work in the present paper is related to the method
of virtual constraints and hybrid zero dynamics (HZD)
proposed in Westervelt et al. (2002). In that method, a
monotonically increasing function of a robot’s generalized
coordinates q is first identified, often denoted by θ(q), and
then a family of virtual constraints of the form

y = h0(q)− hd(θ(q), α) (5)

are posted, where dim(y) = dim(u), the number of inputs,
h0(q) represents quantities to be regulated, such as knee

angles and hip angles, and hd(θ(q), α) is a vector of splines
representing the two be determined desired evolution of
h0(q). A parameter optimization problem is posted to select
the values of α (if they exist) so that y ≡ 0 along a periodic
solution of the model, torque bounds are met, as are ground
contact forces. If the outputs y have vector relative degree
two (Westervelt et al. 2007, pp. 119), the robot model with
outputs (5) is input-output linearizable, and hence a feedback
controller can be designed that drives the virtual constraints
asymptotically to zero. If the surface defined by the outputs
being zero is invariant in the hybrid model of the robot,
then (Westervelt et al. 2007, Ch. 5) provides strong stability
theorems for the closed-loop system.

While this theory has been successfully implemented
on many robots Ames et al. (2012); Ames (2014); Buss
et al. (2014); Chevallereau et al. (2003); Hereid et al.
(2014); Martin et al. (2014); Sreenath et al. (2011, 2012);
Reher et al. (2016b), lower-limb prostheses Gregg et al.
(2014); Aghasadeghi et al. (2013); Zhao et al. (2015)
and exoskeleton Agrawal et al. (2017), it has important
limitations that the current paper overcomes:

• In basic HZD, only one optimization is done, namely
the determination of the periodic orbit. Hence, only
that solution is guaranteed to be feasible. Here, we
build a low-dimensional surface of feasible solutions.

• The stability theorems in Westervelt et al. (2007) only
apply to robots with one degree of underactuation.
Here, multiple degrees of underactuation can be
handled. Moreover, unlike the method proposed in
Buss et al. (2016); Hamed et al. (2016) which works
with the linearization of the Poincaré map to achieve
local exponential stability for robots with more than
one degree of underactuation, here, at least on the low-
dimensional surface, large perturbations away from
the periodic orbit can be included in the controller
design, providing better robustness.

• For robots with one degree of underactuation, the
stability mechanism in (Westervelt et al. 2007, Ch. 5.4)
is through energy loss at impacts, similar to the
stability proofs for passive robots walking down a
slope. Here, more general stability mechanisms in
bipedal robots Pratt and Tedrake (2006), such as
posture adjustments through foot placement and knee
bend, automatically arise.

• Only gaits for which a monotonic variable can be
identified can be treated with the current HZD method.
Here, a much richer set of locomotion primitives can
be realized, such as stepping in place or transitioning
from walking forward to walking backward. As in
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Wang and Chevallereau (2011), Reher et al. (2016a),
Da et al. (2016), the feedback is allowed to be time-
dependent, enriching the set of possible closed-loop
solutions.
• Similar in spirit to Griffin and Grizzle (2016),

which added conjugate momenta of the underactuated
coordinates into the virtual constraints, this paper
can include velocity as well as positions in the
low-dimensional surface that eventually defines a
generalized hybrid zero dynamics manifold; see also
Hartley et al. (2017).

3 Presentation of Main Ideas

For the class of robot problems of interest to us, optimal
gaits can now be computed in minutes Jones (2014); Hereid
et al. (2016a), but not in tens of milliseconds, which is what
would be required for online use. In the simpler setting of a
non-hybrid system, this section develops our main ideas for
mitigating the curse of dimensionality in optimization-based
controller design. Section 3.2 provides the first example
of conditions for a family of open-loop trajectories of a
model from which a realization can be extracted and its
equilibrium will be locally exponentially stable; see also
Coron (1994); Schürmann and Althoff (2017). The process
of building the realization from the trajectories is based on
regression, namely Supervised Machine Learning. The size
of the model that can be treated with these initial results
is limited by both the number of optimizations it takes to
create the family of open-loop trajectories and the number
of features that can be included in the Supervised Machine
Learning. Section 3.3 extends the design process to building
reduced-order target model for a high-dimensional model.
Importantly, the design is based on a far smaller set of
open-loop trajectories. Sections 3.4 and 3.5 then provide
conditions for embedding the target model in the full-order
model such that the origin of the full-order model is locally
exponentially stable. The proofs of the results developed in
the section are given in Appendix C. The relationship to other
controller design methods is addressed in Appendix D.

In presenting the main ideas, we will deliberately organize
them as a design philosophy. We choose to let the user rely on
his or her wits to meet our conditions, rather than muddying
the waters with a set of highly technical sufficient conditions
that no one would ever check. We know as well as the readers
know that optimization problems are very tricky: it is easy
to paint oneself into a corner that only yields non-smooth
solutions. On the other hand, many problems, such as the
examples worked out in the paper, seem to have very nicely

behaved solutions. We are confident that we did not cherry-
pick the only nice problems and that the readers will find a
host of further interesting examples.

3.1 Model Assumptions

To keep the connection to stabilizing periodic gaits in bipeds,
we consider a periodically time-varying nonlinear system
with equilibrium point at the origin,

ẋ = f(t, x, u). (6)

The simple coordinate transformation required for shifting
a periodic solution of a nonlinear model to the origin is
provided in (Khalil 2002, pp. 147). An equilibrium point is
treated as a special case of a periodic orbit where the period
can be any number Tp > 0; in particular, when discussing
periodicity, Tp is not required to be a fundamental period.

The ODE (6) is assumed to satisfy the following
conditions.

A-1 f : [0,∞)× Rn × Rm → Rn is locally Lipschitz
continuous in x and u, piecewise continuous in t, and
there exists Tp > 0 such that ∀ (t, x, u) ∈ [0,∞)×
Rn × Rm, f(t+ Tp, x, u) = f(t, x, u).

A-2 f(t, 0, 0) = 0 for all t ≥ 0.
A-3 The user has selected an open ball about the

origin, B ⊂ Rn, a positive-definite, locally Lipschitz-
continuous function V : B → R, and constants 0 <

α1 ≤ α2 such that, ∀ x ∈ B

α1x
>x ≤ V (x) ≤ α2x

>x.

�

As alluded to above, the reader is encouraged to view the
assumptions made throughout this section as requirements to
impose on an open-loop trajectory optimizer. We have found
them straightforward to meet when using the optimizers
of Jones (2014); Hereid et al. (2016a). In many cases, the
positive-definite function indicated in A-3 comes “for free”
from the optimization problem used to compute trajectories;
this is standard in model predictive control Mayne et al.
(2000). Because the Lyapunov condition in A-4 below can
also be included as a constraint in the trajectory generation
process, the user has much freedom in its selection, even
something as simple as the 2-norm squared could be used.
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3.2 Extracting a Feedback from Open-loop
Trajectories

Two feedback controllers can be constructed from the
following solutions of the model (6). The obvious relation
to MPC is discussed in the remarks following Prop. 1.

A-4 There is a constant 0 ≤ c < 1, such that, for each
initial condition ξ ∈ B, there exists a continuous input
uξ : [0, Tp]→ Rm and a corresponding solution of the
ODE, ϕξ : [0, Tp]→ Rn satisfying ϕξ(Tp) ∈ B, and

V (ϕξ(Tp)) ≤ cV (ξ); (7)

moreover, for ξ = 0, uξ(t) ≡ 0. For clarity, solutions
are taken in the sense of equation (C.2) of (Khalil
2002, pp. 657), namely

ϕξ(t) = ξ +

∫ t

0

f(τ, ϕξ(τ), uξ(τ))dτ. (8)

�

A Tp-periodic Continuous-Hold (CH) feedback is defined
by periodic extension of uξ(t), namely,

uch(t, ξ) = uξ(t̂), t̂ = t mod Tp. (9)

Jumps are allowed at multiples of the period, with continuity
taken from the right. Due to the reset or hold-nature of the
above feedback, the stability of solutions of (6) in closed-
loop with (9) should be studied as a sampled-data system,
that is, the solutions should be evaluated at times tk = kTp.
We will not analyze its stability, however, because it will
clearly perform poorly in the face of perturbations occurring
between samples, where the system is open loop.

We proceed directly instead to a feedback controller
that allows continual updates in the state variables, and
yet, under certain conditions, can be built from the open-
loop trajectories given in Assumption A-4. To understand
the feedback controller, a thought experiment is helpful:
Suppose at time t0 = 0 the system’s initial state value is
ξ0, and the continuous-hold feedback (9) is being applied.
Then the system is evolving along the trajectory ϕξ0(t).
Suppose subsequently at time 0 < td < Tp, an “impulsive
disturbance” affects the system, displacing the system’s state
to a value x(td) 6= ϕξ0(td). What input might be applied,
given the information in A-4? If there exists a ξd ∈ B such
that x(td) = ϕξd(td), then applying the input uξd(t) for
td ≤ t < Tp will move the system toward the equilibrium in
the sense that V (ϕξd(Tp)) ≤ cV (ξd). The next result builds

Features Labels
tj xj,i = ϕξi(tj) µj,i = uξi(tj)

t0 = 0 x0,1 µ0,1

t0 = 0 x0,2 µ0,2

...
...

...
t0 = 0 x0,M µ0,M

t1 x1,1 µ1,1

...
...

...
t1 x1,M µ1,M

...
...

...
tN = Tp xN,1 µN,1

...
...

...
tN = Tp xN,M µN,M

Table 1. Conceptual arrangement of the data in A-4 from which
a controller satisfying (10) may be determined by “regression”.
In practice, not only time must be discretized, but also the initial
conditions ξi ∈ B. This is where the “curse of dimensionality”
rears its ugly head. Placing ten points per dimension leads to
10n optimizations to compute, which quickly becomes
impractical.

on this idea; see also Coron (1994); Schürmann and Althoff
(2017).

Proposition 1. Assume the open-loop system (6) satisfies

Assumptions A-1 to A-4. Assume in addition there exists an

open set Be ⊃ B and a feedback

µ : [0,∞)×Be → Rm

that is piecewise continuous in t, Tp-periodic, locally

Lipschitz continuous in x, and, such that, for 0 ≤ t < Tp and

ξ ∈ B,

µ(t, ϕξ(t)) = uξ(t). (10)

Then the origin of the closed-loop system,

ẋ = f cl(t, x) := f(t, x, µ(t, x)), (11)

is locally exponentially stable, uniformly in t, and the

trajectories in A-4 are solutions of (11). Said another way,

(11) is a realization of the trajectories in A-4. �

Returning to (4) in the Introduction, the key point is
that when a function can be found that is compatible with
the open-loop trajectories in A-4 in the sense that the
“learning condition ” (10) is satisfied, then (11) provides an
“exponentially stable realization” of the trajectories; this idea
will be extended to a lower-dimensional system in the next
subsection. Secondly, if at time 0 ≤ t ≤ Tp there exists ξ
such that x(t) = ϕξ(t), the value of the “learned function”
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is being set to
µ(t, x(t)) := uξ(t).

In practice, the trajectories will only be computed for a
finite grid of initial conditions ξj , j ∈ J . Hence, (10) is an
interpolation of the data from the trajectory optimizations.
For x(t) ∈ Be for which there does not exist ξ such that
x(t) = ϕξ(t), the function in (10) is an extrapolation of the

data. In Coron (1994), the fitting of a function to trajectory
data was done in principle in closed form and by hand; here,
the fitting is being done with Supervised Machine Learning.
Moreover, the learning algorithms available today provide
easy tools for checking the quality of a fit and hence for
checking how closely a function was found that meets the
learning condition (10).

Remark 1. Because the solutions in A-4 will be computed

via a trajectory optimization algorithm, it is useful to

understand how the assumptions on µ relate to requirements

on the trajectories.

(i) Suppose Th > Tp and that for ξ ∈ B,

uoξ : [0, Th]→ Rm minimizes a cost function of

the form

J(ξ) = min
u

∫ Th

0

L(ϕξ(t), uξ(t))dt+N(ϕξ(Th))

(12)
where, as before, ϕξ(t) is the solution of (6) with

initial condition ξ at t0 = 0, and suppose furthermore

that uξ : [0, Tp]→ Rm is the restriction of uoξ to

[0, Tp], that is,

uξ = uoξ
∣∣
[0,Tp]

.

By the principle of optimality, for 0 ≤ t0 < Tp,

uoξ
∣∣
[t0,Th]

is a minimizer of

J(x0) = min

∫ Th

t0

L(ϕξ(t), uξ(t))dt+N(ϕξ(Th)),

(13)
where, ϕξ(t) is the solution of (6) with initial

condition ϕξ(t0) at t0. Hence, the condition (10)
can be interpreted as arising from an MPC-style

controller with a shrinking horizon, [t0, Th], for 0 ≤
t0 ≤ Tp and fixed final-time Th. This control strategy

is visualized in Figure 4. The condition (10) comes

from the shrinking of the optimization horizon; it

will be essential in allowing a judiciously chosen set

Figure 4. Principle of Optimality. If the system is initialized at
ϕξ(t0) and the cost function is modified from (12) to (13), then
ϕξ : [t0, Th]→ Rn is optimal.

Figure 5. This shows the trajectories crossing one another,
which means that the mapping Ψt : B → Rn in (14) is not
injective at certain moments of time. In this case, a feedback
function cannot be extracted from the data.

of open-loop trajectories to be realized with a low-

dimensional state-variable model.

(ii) Supervised Machine Learning will be used to extract

the function µ(t, x) in Prop. 1 from the trajectories and

control inputs given in A-4 The method is sketched in

Table 1. An example is given in Sect. 4.

(iii) The local Lipschitz continuity of µ imposes conditions

on the solutions given in A-4. Indeed, for each t ∈
[0, Tp], the mapping

Ψt : B → Rn, by Ψt(ξ) := ϕξ(t) (14)

must be injective. This follows by the Gronwall-

Bellman inequality (Khalil 2002, pp. 651); see also

(Khalil 2002, Exercise 3.17). Hence, the optimization

problem must be set up so as to avoid the existence of

trajectories that cross one another, which can easily

occur as shown in Figure 5. For example, if the

user selected Th = Tp and imposed that the origin be

attained at Th, that is, dead-beat control, then a locally

Lipschitz continuous µ would not exist.

(iv) Conditions are known under which the value

function (12) meets the Lyapunov conditions in A-

3 and A-4. Roughly speaking, they require that the

terminal weight N either be replaced with finite-

time convergence to the origin or, the terminal weight

be selected as βN(x(Th)), where N(x) is positive

definite and β > 0 is sufficiently large. Hence, in

practice, the Lyapunov constraint can be replaced

by careful formulation of the trajectory optimization
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problem. In our limited experience, it is never an active

constraint.

(v) There is a long history of work in the nonlinear control

literature that relates asymptotic controllability to

an equilibrium point and the existence of stabilizing

feedback controllers. The reader is referred to Coron

(1994); Coron et al. (1995); Clarke et al. (1997); Shim

and Teel (2003) and references therein. The methods

employed are not nearly as constructive as the present

paper.

3.3 Building a Reduced-Order Target Model

To begin the construction of a reduced-order target model as
in (4), we now assume that the system (6) is decomposed in
the form

ẋ1 = f1(t, x1, x2)

ẋ2 = f2(t, x1, x2, u),
(15)

where x1 ∈ Rn1 and x2 ∈ Rn2 . For clarity of exposition, the
input is assumed not to appear in f1; the changes required to
include inputs in f1 are given in Sect. 3.5. Assumptions A-1
through A-3 are assumed to hold for (15).

Because of how the decomposition will arise in the case
of bipeds, we think of the x1-states as the “weakly actuated
part” of the system and the x2-states as the “strongly actuated
part” of the system. With the model expressed in this form, it
is clear that the x2-states are virtual controls for the x1-states.
We will continue to build open-loop trajectories by the full-
order model, except now the trajectories will be computed
for a reduced set of initial conditions defined by the x1-

subsystem.

Definition 1. An insertion map, γ : Rn1 → Rn2 , is a

function that preserves the equilibrium point, namely γ(0) =

0. �

The insertion map specifies initial conditions for x2 as a
function of x1; in other words, it specifies the surface Z0 in
the Introduction, just before (2).

A-5 There is a constant 0 ≤ c < 1, such that, for each
initial condition ξ = (ξ1, γ(ξ1)) ∈ B, there exists a
piecewise continuous input uξ1 : [0, Tp]→ Rm and a
corresponding solution of the ODE, ϕξ1 : [0, Tp]→
Rn satisfying ϕξ1(Tp) ∈ B, and

V ((ϕ1ξ1(Tp), γ(ϕ1ξ1(Tp))) ≤ cV (ξ1, γ(ξ1)), (16)

where the solution of the (n1 + n2)-dimensional
model (15) has been decomposed as

ϕξ1(t) =: (ϕ1ξ1(t), ϕ2ξ1(t)).

Features Labels
tj xj,i1 = ϕ1ξi1

(tj) νj,i = ϕ2ξi1
(tj)

t0 = 0 x0,1
1 ν0,1

t0 = 0 x0,2
1 ν0,2

...
...

...
t0 = 0 x0,M

1 ν0,M

t1 x1,1
1 ν1,1

...
...

...
t1 x1,M

1 ν1,M

...
...

...
tN = Tp xN,11 νN,1

...
...

...
tN = Tp xN,M1 νN,M

Table 2. Conceptual arrangement of the data in A-5 from which
a controller satisfying (17) may be determined by “regression”.
Since only the x1-component of the state is sampled, far fewer
optimizations are required. The number of time samples
remains the same.

�

Proposition 2. Assume the open-loop system (15) satisfies

Assumptions A-1 to A-3 and A-5, and define B1 := {ξ1 ∈
Rn1 | (ξ1, γ(ξ1)) ∈ B}. Assume in addition there exists an

open set Be1 ⊃ B1 and a function

ν : [0,∞)×Be1 → Rn2

that is piecewise continuous in t, Tp-periodic, locally

Lipschitz continuous in x1, and, such that, for 0 ≤ t < Tp

and ξ1 ∈ B1,

ν(t, ϕ1ξ1(t)) = ϕ2ξ1(t). (17)

Then the origin of the reduced-order system

ẋ1 = f clred(t, x1) := f1(t, x1, ν(t, x1)), (18)

is locally uniformly exponentially stable, and the trajectories

in A-5 are solutions of (18). �

Remark 2.

(i) Assumption A-5 and Prop. 2 represent our first result

to mitigate the curse of dimensionality. Assumption A-

5 leads to a greatly reduced training set for building

a realization than A-4 because, in many practical

examples, n1 � (n1 + n2). Proposition 2 says that

this reduced training set can encode a stabilization

goal that is a feasible action of the full-order model.
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The next section embeds the target model (18) in

the full-order model, completing our basic plan for

mitigating the curse of dimensionality.

(ii) The numerical burden of developing the “training

sets” for ν(t, x1) is exponential in the dimension of

x1, at least if a uniform grid is used to sample B1.

(iii) Table 2 shows how to extract the function ν(t, x1) from

the optimization data.

(iv) The local Lipschitz continuity of ν(t, x1) imposes

stronger conditions on the solutions given in A-5 than

those encountered in A-4. This is because the mapping

defined by, for each t ∈ [0, Tp],

Ψ1t : B1 → Rn1 , Ψ1t(ξ1) := ϕ1ξ1(t) (19)

being injective is stronger than the mapping

Ψt : B1 → Rn, Ψt(ξ1) :=

[
ϕ1ξ1(t)

ϕ2ξ1(t)

]
(20)

being injective. If Ψt is continuously differentiable and

full rank, then there does exist a new choice of x1-

coordinates for which the corresponding mapping Ψ1t

is full rank and hence is locally injective. This will be

illustrated on the cart-pendulum model in Sect. 4.

(v) Under the assumptions of Prop. 2, for each t ∈ [0, Tp),

Ψt : B1 → Rn is a homeomorphism onto its image. It

follows that Ψe : [0, Tp)×B1 → Rn+1, by

Ψe(t, ξ1) :=

[
t

Ψt(ξ1)

]
,

is also a homeomorphism onto its image. After

augmenting the state with time in the usual manner,

the low-dimensional model (4) discussed in the

Introduction can be seen as evolving on the surface

ZTp
:= Ψe([0, Tp)×B1), (21)

with the dynamics and output given by

τ̇ = 1

ẋ1 = f1(τ, x1, ν(τ, x1))

x =

[
x1

ν(τ, x1)

]
.

(22)

At this point, the direct relation with trajectories of the

original model is only true for 0 ≤ t < Tp.

(vi) In Sect. 3.6, we will provide a concrete way to select

the insertion map. For now, we propose an insertion

map inspired by backstepping

γ(x1) := Kx1, (23)

that the equilibrium of the reduced-order model,

ẋ1 = f1(t, x1, γ(x1)) (24)

is stable. Other relations to backstepping are noted in

Appendix D.

(vii) Suppose the system (15) is time invariant, so that

one is stabilizing a trivial periodic orbit (i.e.,

an equilibrium). Then Tp > 0 is a free parameter

available to the designer. How to choose it? If the

insertion map actually stabilizes the equilibrium of the

reduced-order model (24), then in principle, Tp can be

taken to be arbitrarily small, subject to choosing c > 0

and the positive function in (16) properly. Otherwise,

if the system is locally asymptotically controllable to

the origin Clarke et al. (1997), a larger Tp makes it

easier to meet the Lyapunov contraction condition.

3.4 Embedding the Target Dynamics in the
Original System

Consider the system (15) with the assumptions and notation
of Prop. 2. Assume there exists a feedback u(t, x1, x2) such
that in the coordinates

y := x2 − ν(t, x1), (25)

the closed-loop system has the form

ẋ1 = f1(t, x1, ν(t, x1) + y)

ẏ = Ay,
(26)

with A Hurwitz. Then the surface y ≡ 0 is invariant and
the restriction dynamics is given by (18). While ν(t, x1) is
Tp-periodic, its limits from the left and the right are not
necessarily equal at Tp, and y in (25) inherits this property.
Hence, without further assumptions, it cannot be a solution
of the ODE (26), in the usual sense (Khalil 2002, pp. 657),
namely

y(t) = y(t0) +

∫ t

t0

Ay(τ)dτ.

In the following, we impose continuity in t on ν(t, x1),
and then after the theorem, analyze what this means in terms
of the trajectories coming out of the optimizer.

Theorem 1. Assume the open-loop system (15) satisfies

Assumptions A-1 to A-3, and A-5, and define B1 := {ξ1 ∈
Rn1 | (ξ1, γ(ξ1)) ∈ B}. Assume in addition there exists an
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open set Be1 ⊃ B1 and a feedback

ν : [0,∞)×Be1 → Rn2 (27)

that is continuous in t, Tp-periodic, locally Lipschitz

continuous in x1, and, such that, for 0 ≤ t < Tp and ξ1 ∈
B1,

ν(t, ϕ1ξ1(t)) = ϕ2ξ1(t). (28)

Then any feedback u(t, x1, x2), piecewise continuous in t

and locally Lipschitz continuous in x1 and x2 that transforms

the system to (26), withAHurwtiz, renders the origin of (26)
locally uniformly exponentially stable. Moreover, the surface

defined by

Ze := {(t, x1, x2) | (t mod Tp, x1, x2) ∈ ZTp
}, (29)

is invariant with restriction dynamics given by (22). �

Remark 3.

(i) In fact, (29) is the Isidori-Byrnes Isidori (1995) Zero

Dynamics Manifold and the Zero Dynamics is given by

τ̇ = 1

ẋ1 = f1(τ, x1, ν(τ, x1)).

The output that is being “zeroed” is

y = x2 − ν(t, x1)

as long as the domain is properly specified.

(ii) If ν in (27) is continuous in t, then for all x1 ∈
Be1 , ν(Tp, x1) = ν(0, x1). How does this relate to

the trajectories in the training set used to generate

ν? Because V in (16) is positive definite, and V

decreases after Tp seconds, there exists an open ball

B2 contained in B1 such that ξ1 ∈ B2 ⇒ ϕ1ξ1(Tp) ∈
B1. Because ξ̂1 := ϕ1ξ1(Tp) ∈ B1,

ϕ2ξ̂1
(0) = γ(ξ̂1) := γ(ϕ1ξ1(Tp)). (30)

From (17), because ξ̂1 ∈ B1,

ν(0, ϕ1ξ̂1
(0)) = ϕ2ξ̂1

(0), (31)

and because ϕ1ξ̂1
(0) = ξ̂1, we have

ν(0, ϕ1ξ̂1
(0)) = ν(0, ξ̂1). (32)

From the continuity of ν and using the definition of ξ̂1,

ν(0, ϕ1ξ1(Tp)) = ν(Tp, ϕ1ξ1(Tp)). (33)

From (17) again,

ν(Tp, ϕ1ξ1(Tp)) = ϕ2ξ1(Tp). (34)

Putting these together, the corresponding condition on

the trajectories used in the training set for ν is given

in A-6.

A-6 The solutions in A-5 also satisfy

γ(ϕ1ξ1(Tp)) = ϕ2ξ1(Tp). (35)

�

Section 4 will illustrate these ideas on a simple low-
dimensional example to make it easy for the interested reader
to reproduce the results. The true benefits of the approach
will not be clear until Sect. 6, where it will be applied
to a high-dimensional hybrid model of a bipedal robot,
and subsequently implemented in hardware on the robot of
Figure 17.

3.5 Extended class of models

We discuss the case with the input appearing in both blocks.
To keep the presentation brief and simple, it is supposed that
the model has the form

ẋ1 = f1(t, x1, x2, u)

ẋ2 = f2(t, x1, x2, u),
(36)

with

x2 =

[
x2a

x2b

]
and f2 =

[
x2a

u

]
.

Corollary 1. Assume the open-loop system (36) satisfies

Assumptions A-1 to A-3, A-5, and A-6, and define B1 :=

{ξ1 ∈ Rn1 | (ξ1, γ(ξ1)) ∈ B}. Assume in addition there

exists an open set Be1 ⊃ B1, a function

ν : [0,∞)×Be1 → Rn2 (37)

satisfying the conditions of Theorem 1, and a second function

µ : [0,∞)×Be1 → Rm (38)

that is piecewise continuous in t, Tp-periodic, locally

Lipschitz continuous in x1, and such that, for 0 ≤ t < Tp and

ξ1 ∈ B1,

µ(t, ϕ1ξ1(t)) = uξ1(t). (39)

Prepared using sagej.cls



Da and Grizzle 11

Then for all n2/2 × n2/2 positive definite matrices Kp and

Kd, the origin of

ẋ1 = f1(t, x1, x2, u)

ẋ2 = f2(t, x1, x2, u)

u = µ(t, x1)− [Kp Kd]
(
x2 − ν(t, x1)

) (40)

is locally exponentially stable, uniformly in t0. Moreover, the

surface defined by (29) is invariant with restriction dynamics

given by
τ̇ = 1

ẋ1 = f1(t, x1, ν(t, x1), µ(t, x1))

x =

[
x1

ν(τ, x1)

]
.

(41)

�

Remark 4.

(i) There is no extra boundary condition, such as A-6,

associated with (28) because the term µ arises from

the inputs instead of the states of the ODE, as in the

case of ν. In particular, µ can be piecewise continuous

in t. The learning of µ is done the same as for ν in

Table 2.

(ii) Most systems will require a pre-feedback to arrive at

the form (36); this must be taken into account when

implementing the feedback indicated in (40).

3.6 Orbit Library and Design of the Insertion
Map

The objective of this section is to provide a systematic means
for designing the insertion map in a way that takes into
account the “physics” of a model.

Definition 2. An orbit library L is a set of periodic

trajectories of the model (36) that are parameterized by the

x1-states. We denote the library consisting of the periodic

solutions by

L := {ϕξ1 : [0, Tp]→ Rn | ξ1 ∈ B1}, (42)

with B1 as A-5. �

Definition 3. An insertion map associated to an orbit

library (42) is a function γL : B1 → Rn2 such that

γL(ξ1) := ϕ2ξ1(0). (43)

�

One should think of the above insertion map as taking
the states of the x1-coordinates, associating them to periodic

orbits of the full model, and then defining the initial condition
of the x2-coordinates (in the trajectory optimization) to
be its value at a point on the associated periodic orbit.
Hence, the overall model is being initialized in a physically
meaningful manner. Moreover, the trajectories in A-6 can
now be interpreted as affecting a transition from a family
of periodic solutions to a desired periodic solution in a way

that leads to stabilization of the desired periodic solution, via
Theorem 1 or Corollary 1. The authors have found this to be
very useful on bipedal robots.

4 Inverted Pendulum on a Cart

This section will illustrate the controller designs of Section 3
on the well-known inverted pendulum on a cart model.
The MATLAB code for the calculations is available for
download in Extension 1. The optimization setup and the
learning method used here are nearly identical to what will
be implemented on a bipedal robot in Section 6; the only
significant change involves the hybrid aspect of a biped
model.

4.1 System Model

The system consists of a unit length, uniformly distributed
unit-mass pendulum attached via a revolute joint to a planar
unit-mass cart, shown in Figure 6. A driving force is applied
on the cart, and there is no torque acting on the revolute joint
of the pendulum. The motion of the cart and the pendulum
are free of friction forces. The configuration variable q :=

(p, θ) consists of the cart position and the pendulum angle.
The system is written in state variable form as

ẋ1 =

[
ṗ

2 sin(θ)θ̇2−3g cos(θ) sin(θ)−4u
3 cos(θ)2−8

]

ẋ2 =

[
θ̇

3 cos(θ) sin(θ)θ̇2−12g sin(θ)−6 cos(θ)u
3 cos(θ)2−8

]
,

(44)

where u is the force acting on the cart and the system
state x is decomposed into x1 = (p, ṗ) and x2 = (θ, θ̇).The
equilibrium point of the upright pendulum is x∗ = 0 and
u∗ = 0. Assumptions A-1 and A-2 are then trivially satisfied.

The overall control objective will be to locally exponen-
tially stabilize a continuum of periodic motions with a com-
mon period Tp = 2 seconds. We first illustrate the control
design method on a trivial periodic orbit corresponding to
the pendulum upright and the cart at the origin.
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Figure 6. An inverted pendulum on a cart model is used to
illustrate the controller designs of Sect. 3. The objective is to
stabilize a continuum of periodic motions, including a trivial
periodic orbit corresponding to the pendulum upright and the
cart at the origin. In part of the analysis, a barrier is imposed.

4.2 Stabilizing the Upright Equilibrium While
Respecting a Barrier

The presentation follows the basic steps of the design, from
learning a full-state feedback as in Prop. 1 to embedding a
target model as in Corollary 1.

4.2.1 Trajectory Generation and Learning for the Full-

Order Model The set B and positive definite function of A-
3 are discussed shortly. For an initial state ξ ∈ B, the direct
collocation algorithms of Jones (2014); Hereid et al. (2016a)
are used to generate a trajectory ϕξ(t) and corresponding
input uξ(t) over an interval [0, Tp] to meet the conditions
of A-4. To emphasize the ability to handle interesting
constraints in the control design, the cart position is heavily
penalized if it moves out of a “safe region” [−pb, pb], with
pb = 2.

The cost function for determining the trajectories is a
standard quadratic form with an additional penalty for the
safety region:

J(ξ) = min
u

∫ Th

0

(
||x||2Q + ||u||2R + L(p, pb)

)
dt

L(p, pb) = wp2(ep−pb + e−p−pb).

(45)

The weights Q and R are taken as identity matrices
and the penalty weight is w = 10. The optimization is
subjected to the system dynamics constraints(44) and the
terminal constraint x(Th) = 0, with Th = 3Tp = 6 seconds.
One could also use a terminal cost N(x(Th)) in place of
the terminal constraint. Even though a terminal constraint
may make the optimization problem infeasible for some
initial conditions, we have found it to be quite practical in
bipedal robots. As discussed earlier, the cost function in
(45) can often used as a Lyapunov function meeting the
conditions in A-4. Here, we do not add this as a constraint

Figure 7. A slice of the function µ(t, p, ṗ, θ, θ̇), with t = 0,
θ = 0 and θ̇ = 0. The presence of the (soft-penalty) barrier is
most evident near p = −2 and ṗ = −3. The circles are training
and validation data. Both interpolation and extrapolation can be
seen in the surface.

Table 3. MATLAB Neural Network Fitting Parameters

Hidden neurons 50

Training Ratio 80%

Validation Ratio 20%

Training Algorithm Bayesian Regularization

Max Iteration 4000

to the optimization and will illustrate the satisfaction of the
Lyapunov condition.

The function µ(t, x) in Prop. 1 is learned for the ball of
initial conditions

B ={−1 ≤ p ≤ 1,−π
6
≤ θ ≤ π

6
,

− 2 ≤ ṗ ≤ 2,−2 ≤ θ̇ ≤ 2},
(46)

with samples ξi ∈ B selected from a uniform grid of the
state. Five points are used in each dimension, for a total of
625 input sequence uξi(t) and solutions ϕξi(t). At each time

tj ∈ {t | j
Tp
40
, j = 0, 1, . . . , 40}, (47)

the time-state pair (tj , x
j,i) is a feature and the input uj,i

is a label. The complete list of features and labels is shown
in Table. 1 in Section 3.2. We use the MATLAB Neural
Network Fitting Toolbox to approximate µ. The fitting setup
is shown in Table 3. The mean squared error of the validation
set is around 10−4.

We show there exists a Lyapunov function

V (x) := x>Px (48)
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Figure 8. The plot shows the typical evolution of the
optimization-cost function, confirming that it serves as a
Lyapunov function. It is to be noted that V (t) is only required to
monotonically decrease from sample to sample, that is, from
kTp to (k + 1)Tp, with Tp = 2.

as required in A-4 that is built from the cost function in (45).
The matrix

P =


0.04 −0.11 0.03 −0.03

−0.11 0.94 −0.12 0.18

0.03 −0.12 0.03 −0.03

−0.03 0.18 −0.03 0.04

 (49)

is from a regression of J(x). The matrix is positive definite.
We next find the constant c in A-4 using the data set to train
µ(t, x) that c satisfies

c ≥ max
i

V (ϕξi(Tp))

V (ϕξi(0)
. (50)

The maximum ratio over 625 points of ξi is 0.22, then
we set c = 0.25. Notice when ξi is the equilibrium point,
V (ϕξi(Tp) = V (ϕξi(0)) = 0, which has to be ignored when
finding c. Figure 8 shows that V (ϕξ(kTp)) in the simulation
is exponentially decreased.

4.2.2 Comparison of Continuous Hold vs Learned

Feedback Figure 9 compares uch in (9) and µ in (10). The
continuous-hold feedback uch updates the state every Tp = 2

seconds. This type of MPC-style controller is guaranteed to
perform poorly in the face of disturbances occurring within
the sample period. Figure 9-(a) shows the continuous-hold
controller stabilizing the system from the initial condition

(p, ṗ, θ, θ̇) = (−1, 0, π/12, 0). (51)

Figure 9-(b) shows that the learned feedback µ performs
identically to uch given the same initial condition and a
perfect model. The difference is obvious when it comes to
disturbance rejection. A constant external force d = 1N is

applied to the cart for t ∈ [11.5, 12]. The continuous-hold
feedback uch has to wait till t = 12 to update the state and
respond to the disturbance; on the other hand, the learned
feedback µ updates the state continuously and hence reacts
to the disturbance immediately.

4.2.3 Building a Reduced-Order Target Model The
previous subsection illustrated how feedback is extracted
from data via Supervised Machine Learning and will provide
a benchmark for later designs. Because the cart-pendulum
system has only four states, the number of trajectories
required for training in the previous subsection was quite
manageable, and with random sampling techniques Parisini
and Zoppoli (1995), it could be further reduced. Eventually,
however, the number of required optimizations will become
untenable. Here we illustrate Prop. 2 for a two-dimensional
subsystem of the cart-pendulum system.

Recall that the system state decomposition was already
shown in (44). The insertion map used here is inspired by
backstepping as in Remark 2. Linearizing the x1-subsystem
with u = 0 and selecting x2 as a stabilizing linear feedback
yields

γ(x1) =

[
0.03 0.1

0 0

][
p

ṗ

]
. (52)

We do not further explore the choice of γ because we will
primarily use the orbit library γL of Definition 3 in the
remainder of the paper, including the bipedal robot section.

With this insertion map, the trajectories required by A-5
are determined via optimization with

B1 = {−1 ≤ p ≤ 1,−2 ≤ ṗ ≤ 2}. (53)

In anticipation of using the results here in Corollary 1, the
boundary condition of A-6 is also imposed.

The set of initial conditions ξj1, j ∈ J now has 25 points
instead of 625 points. The mapping (19) is checked to be
injective by evaluating the numerical rank of the x1-features
in Table 2 via SVD. Just as before, the function ν(t, x1) is
obtained from the data via the MATLAB Neural Network
Fitting Toolbox, again with the parameters indicated in
Table 3. The same holds for the function µ(t, x1). An
example of the fitting of ν is shown in Figure 10.

The evolution of the target model is shown in the next
subsection when a disturbance is applied after y = x2 −
ν(t, x1) has nearly converged to zero.

4.2.4 Embedding the Target Dynamics in the Original

System The learned functions from the reduce-order
optimization are now used to stabilize the full-order system
based on Theorem 1 and Corollary 1. To place the system in
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(a) Continuous-hold controller uch
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(b) Learned feedback µ

Figure 9. Comparison of the continuous-hold controller in (a), versus the learned controller in (b). In both cases, the initial condition
is (p, ṗ, θ, θ̇) = (−1, 0, π/12, 0). A disturbance is applied for t ∈ [11.5, 12] seconds. The classical MPC plot is in an Appendix-E

Figure 10. A slice of the function ν(t, p, ṗ), with t = 0. This is
the ν associated with x2 coordinate θ. The circles are training
and validation data. The interpolation is smooth while the
extrapolation may be not.

the form (36), a pre-feedback is applied

ū :=
3 cos(θ) sin(θ)θ̇2 − 12g sin(θ)− 6 cos(θ)u

3 cos(θ)2 − 8
(54)

resulting in
θ̈ = ū.

The original input u can be computed from ū because (54)
is invertible in the operational range of interest, namely
−π/2 < θ < π/2. While the function µ̄(t, x) of Corollary 1
can be recovered from µ(t, x1) and (54), it is just as easy to
learn it with the features (tj , x

j,i
1 ) and label ūj,i. In the full

model,

ū = µ̄(t, x1)− [Kp Kd]
(
x2 − ν(t, x1)

)
, (55)

with Kp = 50 and Kd = 15.

Figure. 11 shows the response of the closed-loop system
with the same initial condition and perturbation of Figure. 9.
The settling time and disturbance rejection performance is
similar to the full state learned feedback. Figure 12 illustrates
the attractiveness of the surface x2 = ν(t, x1) by showing
that the output error in (25) of the full-order system decays
exponentially to zero. When the disturbance is applied for
11.5 ≤ t < 12, the output is driven away from zero and then
decays back quickly when the disturbance is removed.
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Figure 11. Response of the reduced-order model (41). The
states of the model are p and ṗ, while θ and θ̇ are outputs. The
initial condition and disturbance are as in Figure 9.
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Figure 12. Showing the convergence of the output error in (25).
Comparing this figure with Figure 11 shows that the system
converges to the zero dynamics surface more quickly than it
converges to the periodic orbit. The disturbance initially drives
the system away from the surface.

4.3 Orbit Library and Transitioning Among
Periodic Orbits

The last subsection has gone through the control design
process for a trivial periodic orbit where the pendulum
is upright, and the cart is at the origin. This subsection
designs a controller for a set of periodic orbits, illustrate an
insertion map γL arising from an orbit library, and shows
the possibility of the mapping (19) not being injective. To

simplify matters, we work directly with the cart-pendulum
system after the pre-feedback (54) has been applied.

4.3.1 Orbit Library For Tp = 2 seconds, define a set of
periodic motions of the cart by

p(t) = p0 +
ṗ0

π
sin(πt),

for (p0, ṗ0) ∈ B1 in (53). The trajectory for p(t) fixes the
acceleration of the cart, which in turn gives trajectories for
θ(t), θ̇(t), and u(t). Moreover, imposing −π/2 < θ < π/2

selects among the two possible solutions for the model.
These considerations define an orbit library L, with solutions
indexed by (p0, ṗ0). Denote the set of initial conditions of the
orbit library as (ξL1 , ξ

L
2 ). Recalling Definition 3, an insertion

map associated to the orbit library is

γL(ξL1 ) = ξL2 .

To make it more explicit, for this example, we use linear
regression to find γL : R2 → R2 as[

θ0

θ̇0

]
=

[
0 0

0 0.5911

][
p0

ṗ0

]
. (56)

Remark 5. The reader may be wondering why we bring

up the orbit library as a means of computing a new

insertion function, especially when the ‘backstepping-

inspired’ insertion map worked so well? The point is that for

a robot, where the dimension of x2 may be twenty, one has no

idea how to design a ‘backstepping-inspired’ insertion map,

whereas the concept of an orbit library extends naturally as

will be seen later in the paper.

4.3.2 Loss and Recovery of Injectivity Using the new
insertion function (56), trajectory generation is performed
exactly as in Sect. 4.2, with x1 and x2 as given in (44).
The mapping (19) is checked not to be injective. Indeed, for
t ' 1.8, the cart trajectories pass through a one-dimensional
surface as shown in Figures 13 and 14, while the mapping
(20) remains injective. Hence, one expects the existence of a
set of coordinates in which the design can proceed. It can be
checked that the new coordinates2

x̃1 = (p− θ, ṗ− θ̇)

are “full rank” as shown in Figure 13. It is not necessary
to redo the optimization because the new coordinates
correspond to a new B̃1 and a new insertion map, γ̃L, and
these are not explicitly required in the computation of ν and
µ. The important thing is the feature set for the Supervised
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Figure 13. The singular values of the matrix formed by the
sampled trajectories versus time the insertion function is given
by (56). The solid lines are for (p(t), ṗ(t)), with ∆t = 0.05, while
the dashed lines are for (p(t)− θ(t), ṗ(t)− θ̇(t)) for the same
time samples. For the choice of the insertion function arising
from backstepping in (52), the minimum value of σ2 was 0.58.
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Figure 14. Another perspective on the information in Figure 13.
The initial conditions are taken from a grid, as can be seen at
t = 0. At subsequent times, the grid is transformed into a
parallelogram at t = 0.95 and a line at t = 1.7, where the
mapping Ψ1t : B1 → Rn1 in (19) loses rank. We have not yet
observed this problem in the case of bipedal robots.

Machine Learning is now indexed by (tj , x̃
j,i
1 ) rather than

(tj , x
j,i
1 ).

4.3.3 Transitioning Between Periodic Orbits Next, we
use the library insertion map γL and the new state x̃1 to
design a controller for transitioning between periodic orbits;
this is analogous to transitioning between walking gaits of
various speeds or direction for a bipedal robot. The cost
function used in A-5 is modified to include the target orbit

A := (p0, ṗ0) ∈ B1, per (57) to

J(ξ1, A) = min
u

∫ Th

0

(
||x− ϕA||2Q + ||u− uA||2R

)
dt

(57)
subject to x(Th) = ϕA(Tp) and x(0) = (ξ1, γL(ξ1)). The
boundary condition A-6 is also applied as γL(x1(Tp)) =

x2(Tp). Here, the target trajectory and its corresponding
input are denoted as ϕA(t) and uA(t). To simplify the
problem, the cost function excludes the barrier penalty
L(p, pb) in (45). The set B1 is still given by (53).

With this choice of the insertion map, the boundary
condition A-6 means that each cycle in the transition moves
the cart-pendulum from one periodic orbit to the next; this
is because (ϕ1ξ1(Tp), γL(ϕ1ξ1(Tp)) is an initial condition
for a periodic solution of the model. Denote the family of
solutions to the optimization problem by

x̃i,j,k1 := ϕAk

1ξi1
(tj)− ϕAk

2ξi1
(tj)

νi,j,k := ϕAk

2ξi1
(tj)

µ̄i,j,k := ūAk

ξi (tj).

(58)

The feature set for the Supervised Machine Learning is taken
as (tj , x̃

i,j,k
1 , Ak) and the labels are (νi,j,k, µ̄i,j,k). Figure 15

shows a orbit transition

(−1, 0.5)→ (0, 0)→ (0, 1.2) (59)

of the target orbit (p0, ṗ0) at t = 20 and t = 40. A constant
external force d = 20N is applied to the cart for t ∈
[69.5, 70].

Remark 6.

(i) Orbit transition from set B1 to a target orbit A can

also be reviewed as rejecting state disturbances in B1.

The distance from a state in B1 to A is not necessarily

“small”, indicating the region of attraction for this

controller could be “large”.

(ii) There may exist two orbitsAm andAn inB1 for which

a transition cannot be achieved over [0, Th]. However,

one may think of transitions in B1 as a graph so that if

there exists an orbit Ak such that

Am → Ak → An

is possible, then the orbits are connected.

(iii) If the target orbit is modified at multiples of Tp, there

are no jumps in ν; this is because the orbit-library

insertion map transitions the system from one periodic

orbit to another as shown in Figure 16.
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Figure 15. Plots of p(t) (top) and ṗ(t) (bottom) as the
closed-loop system transitions from one periodic orbit to
another, as given in (59), with a disturbance applied for
t ∈ [69.5, 70].
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Figure 16. This shows that there is no jump in the output when
the transition point takes place at a multiple of Tp. The jump
corresponds to the disturbance in Figure 15. Only the first
component of (25) is shown as the other component is the
derivative of this one.

5 Hybrid Model and Control

This section describes an extension of the control policy
developed in Sect. 3 to systems with impulse effects Grizzle
et al. (2014); Westervelt et al. (2007); Bainov and Simeonov
(1989), a special class of hybrid models that arises in bipedal
robots. The control goals for the hybrid system corresponds
to stabilizing periodic walking gaits for various speeds, and
to transitioning among these gaits. The robot should also be
able to reject a range of force perturbations.

5.1 Hybrid Model

We consider a hybrid system with one continuous-time phase
as follows

Σ :

{
ẋ = f(x, u) x− /∈ S
x+ = ∆(x−) x− ∈ S,

(60)

in which x ∈ X and X ⊂ Rn denote the vector of state

variables and n-dimensional state manifold, respectively.
The continuous-time control input is represented by u ∈ U ,
where U ⊂ Rm is an open set of admissible control values.
In addition, f : X × U → TX is assumed to be continuously
differentiable ( C1 ) so that a Poincaré map can be computed
later when checking stability. For each u ∈ U , f(·, u) is a
vector field in TX , the tangent bundle of the state manifold
X .

The switching hypersurface S is an (n− 1)-dimensional
manifold

S := {x ∈ X | p(x) = 0} , (61)

on which the state solutions are allowed to undergo a sudden
jump according to the re-initialization rule x+ = ∆(x−).
Here, p : X → R is a C1-switching function which satisfies
∂p
∂x (x) 6= 0 for all x ∈ S. Moreover, ∆ : X → X denotes
the C1 reset map. x−(t) := limτ↗t x(τ) and x+(t) :=

limτ↘t x(τ) represent the left and right limits of the state
trajectory x(t), respectively. As in Westervelt et al. (2003),
the solution of the hybrid system (60) is assumed to be right
continuous. In particular, it is constructed by piecing together
the flow of ẋ = f(x, u) such that the discrete transition takes
place when this flow intersects the switching hypersurface S.
The new initial condition for ẋ = f(x, u) is then determined
by the reset map x+ = ∆(x−).

5.2 Setting up the Optimization Problem

We now start the translation of the Assumptions A-1 to
A-6 to the hybrid setting for the purpose of designing
a feedback controller to locally exponentially stabilize a
periodic solution. For bipedal robots, mid-step is a good
time to make adjustments to the gait: (a) impact transients
have had a chance to settle out; (b) the swing foot is safely
away from the ground; and (c) there is still adequate time to
steer the swing leg to a favorable configuration for impact.
Hence, we will use mid-step of the periodic orbit understudy
for setting the beginning and end of the trajectories that we
compute via optimization.

The hybrid model (60) is assumed to satisfy the following
conditions.
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H-1 f : X × U → TX and the reset map ∆X → S are
Lipschitz continuous. This will allow the stability
analysis tools of Ames et al. (2014) to be applied later
on.

H-2 There exists Tp > 0, x∗m ∈ Rn, a piecewise continuous
input u∗ : [0, Tp]→ U and a solution ϕ∗(t) of (60)
satisfying:

a) ϕ∗+(0) = x∗m;
b) ϕ∗−(Tp/2) ∈ S, (swing foot touches the ground);
c) ∀ t 6= Tp/2, ϕ

∗(t) 6∈ S, (does so only once); and
d) ϕ∗−(Tp) = x∗m (periodicity).

It is noted that by the definition of S, the periodic
solution is transversal to S, namely d

dtp(ϕ
∗−(Tp/2)) <

0. And yes, the motion is being “clocked” with the
middle of the step.

�

The point x∗m is the midpoint of the periodic trajectory,
as measured by time. The controller we build will start from
mid-stance, follow the Lagrangian model, undergo impact,
and then once again evolve according to the Lagrangian
model. To formulate the trajectory designs and the closed-
loop system, we need to split the continuous phase of the
model (60) into part-(i), after mid-stance, and part-(ii), the
first half of the ensuing stance phase.

Σi :



τ̇ = 1,

ẋ = f(x, u), x− /∈ S

τ+ = τ−

x+ = ∆(x−), x− ∈ S

Σii :



τ̇ = 1, τ− < Tp

ẋ = f(x, u),

τ+ = 0 τ− = Tp

x+ = x−.

(62)

The guard condition on the phase-i depends only on the state
x, whereas the guard condition on the phase-ii depends only
on “time” as measured by τ .

H-3 The user has selected an open ball B ⊂ Rn about
x∗m, a positive-definite, locally Lipschitz-continuous
function V : B → R, and constants 0 < α1 ≤ α2 such
that, V (x∗m) = 0 and ∀ x ∈ B,

α1(x− x∗m)>(x− x∗m) ≤
V (x) ≤ α2(x− x∗m)>(x− x∗m).

H-4 There is a constant 0 ≤ c < 1, such that, for each
initial condition ξ ∈ B, there exists a piecewise con-
tinuous input uξ : [0, Tp]→ Rm and a corresponding
solution ϕξ : [0, Tp]→ Rn of the hybrid model (62)
satisfying

a) ϕ+
ξ (0) = ξ,

b) ϕ−ξ (Tp/2) ∈ S,
c) ∀ t 6= Tp/2, ϕξ(t) 6∈ S,
d) ϕ+

ξ (TP ) ∈ B and there is exponential conver-
gence toward the periodic orbit, namely,

V (ϕ+
ξ (TP )) ≤ cV (ξ), (63)

and
e) ξ = x∗m ⇒ uξ = u∗.

�

Proposition 3. Assume the open-loop hybrid model (60)
satisfies Assumptions H-1 to H-4. Assume in addition there

exist open sets Bei and Beii that contain B, a δ > 0, and two

feedbacks

µi : [0, Tp/2 + δ]×Bei → Rm

µii : [Tp/2 − δ, Tp]×Beii → Rm

that are piecewise continuous in t, locally Lipschitz

continuous in x, and, such that, for 0 ≤ t < Tp and ξ ∈ B,

µi(t, ϕξ(t)) = uξ(t), 0 ≤ t < Tp/2

µii(t, ϕξ(t)) = uξ(t),
Tp/2 ≤ t < Tp.

(64)

Then ϕ∗ : [0, Tp]→ Rn is a locally exponentially stable

periodic solution of the closed-loop system

Σcui :



τ̇ = 1,

ẋ = f(x, µi(τ, x)), x− /∈ S

τ+ = τ−

x+ = ∆(x−), x− ∈ S

Σcuii :



τ̇ = 1, τ− < Tp

ẋ = f(x, µii(τ, x)),

τ+ = 0 τ− = Tp

x+ = x−.

(65)

�
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5.3 Generalized Hybrid Zero Dynamics

Following Appendix-B, assume now that the continuous
phase of the hybrid model has been decomposed as

ẋ1 = f1(x1, x2, u)

ẋ2 = f2(x1, x2, u),
(66)

with

x2 =

[
x2a

x2b

]
and f2 =

[
x2b

u

]
.

Let γ : Rn1 → Rn2 be a locally Lipschitz continuous
insertion function that preserves the periodic orbit, namely,
writing x∗m =: (x∗1m;x∗2m), it follows that γ(x∗1m) = x∗2m.

H-5 There is a constant 0 ≤ c < 1, such that, for
each initial condition ξ = (ξ1, γ(ξ1)) ∈ B, there
exists a continuous input uξ1 : [0, Tp]→ Rm and
a corresponding solution ϕξ1 : [0, Tp]→ Rn of the
hybrid model (62) satisfying,

a) ϕ+
ξ1

(0) = (ξ1; γ(ξ1)),
b) ϕ−ξ1(Tp/2) ∈ S,
c) ∀ t 6= Tp/2, ϕξ1(t) 6∈ S,
d) ϕ+

ξ (TP ) ∈ B and there is exponential conver-
gence toward the periodic orbit, namely,

V ((ϕ+
1ξ1

(Tp), γ(ϕ+
1ξ1

(Tp))) ≤ cV (ξ1, γ(ξ1)),

(67)
and

e) (ξ1, γ(ξ1)) = x∗m ⇒ uξ1 = u∗.

where a solution of the (n1 + n2)-dimensional
model (66) has been decomposed as ϕξ1(t) =:

(ϕ1ξ1(t), ϕ2ξ1(t)).

�

The following result generalizes the hybrid zero dynamics
defined in Westervelt et al. (2003); Morris and Grizzle
(2009); Westervelt et al. (2007). Even in the case of one
degree of underactuation, one is able to achieve exponential
stability with this method for gaits that could not be rendered
stable with the previous formulation of virtual constraints.
See Appendix D.2 for an example. More important that
this fact, however, the new formulation allows a systematic
approach to robot models with more than one degree of
underactuation. This is illustrated in Sect. 6.

Proposition 4. Assume the open-loop hybrid system (60)
with f given by (66) satisfies Hypotheses H-1 to H-3 and H-

5, and define B1 := {ξ1 ∈ Rn1 | (ξ1, γ(ξ1)) ∈ B}. Assume

in addition there exist open sets Be1.i and Be1.ii that contain

B1, a δ > 0, and two feedbacks

νi : [0, Tp/2 + δ]×Be1.i → Rn1

νii : [Tp/2 − δ, Tp]×Be1.ii → Rn1

and

µi : [0, Tp/2 + δ]×Be1.i → Rm

µii : [Tp/2 − δ, Tp]×Be1.ii → Rm

that are piecewise continuous in t, locally Lipschitz

continuous in x, and, such that, for 0 ≤ t < Tp and ξ ∈ B,

νi(t, ϕ1ξ1(t)) = ϕ2ξ1(t), 0 ≤ t < Tp/2

νii(t, ϕ1ξ1(t)) = ϕ2ξ1(t), Tp/2 ≤ t < Tp
(68)

and
µi(t, ϕ1ξ1(t)) = uξ1(t), 0 ≤ t < Tp/2

µii(t, ϕ1ξ1(t)) = uξ1(t), Tp/2 ≤ t < Tp.
(69)

Then x∗1 : [0, Tp]→ Rn1 is a locally exponentially stable

periodic solution of the reduced-order hybrid system

Σi :



τ̇ = 1,

ẋ1 = f1(x1, νi(τ, x1), µi(τ, x1)),

when

[
x−1

νi(τ
−, x−1 )

]
/∈ S

τ+ = τ−,

x+
1 = ∆1(x−1 , νi(τ

−, x−1 )),

when

[
x−1

νi(τ
−, x−1 )

]
∈ S

Σii :



τ̇ = 1, τ− < Tp

ẋ1 = f(x, νii(τ, x1), µii(τ, x1)),

τ+ = 0, τ− = Tp

x+ = x−.

(70)

�

Remark 7.

(i) In principle, τ∗ : [0, Tp]→ R needs to be defined to

complete the periodic orbit, but clearly, the trivial

solution, τ∗(t) = t, is the only possibility.

(ii) As in the non-hybrid case, using the trajectories in H-

5, define

Ψt : B1 → Rn, Ψt(ξ1) :=

[
ϕ1ξ1(t)

ϕ2ξ1(t)

]
(71)
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and Ψe : [0, Tp)×B1 → Rn+1 by

Ψe(τ, ξ1) :=

[
τ

Ψτ (ξ1)

]
. (72)

By H-5-b), ∀ ξ1 ∈ B1, Ψ−e (Tp/2, ξ1) ∈ S. Hence, the

loss of dimension is in the τ -component, and therefore

dim
(
Ψ−e (Tp/2, B1) ∩ S

)
= dim(B1).

(iii) The Generalized Hybrid Zero Dynamics Manifold (G-

HZD) is therefore3

Ze := Ψe([0, Tp), B1), (73)

which has two components,

Ze,i := Ψe([0,
Tp/2), B1)

and

Ze,ii := Ψe([
Tp/2, Tp),Ψ

−
e (Tp/2, B1) ∩ S).

(iv) The corresponding restriction dynamics is given by

(70), which is then the G-HZD.

5.4 Stabilizing the Original Model

We can now obtain and explain the controller we use on
bipeds. Similar to Sect. 3.5, assume the continuous phase of
the hybrid model has the form

ẋ1 = f1(x1, x2, u1)

ẋ2 = f2(x1, x2, u2),
(74)

with

x2 =

[
x2a

x2b

]
and f2 =

[
x2b

u2

]
,

and u = (u1, u2). The reason to split the input and not allow
the u2-component to enter the x1-dynamics will be clear
shortly. We allow the u1-component to be empty.

H-6 The solutions in H-5 also satisfy

γ(ϕ1ξ1(Tp)) = ϕ2ξ1(Tp). (75)

�

Theorem 2. Assume the open-loop hybrid system (60) with

f given by (74) satisfies Hypotheses H-1 to H-3, H-5 and

H-6. Define B1 := {ξ1 ∈ Rn1 | (ξ1, γ(ξ1)) ∈ B}. Assume in

addition there exist open sets Be1.i and Be1.ii that contain B1,

a δ > 0, and feedbacks

νi : [0, Tp/2 + δ]×Be1.i → Rn1

νii : [Tp/2 − δ, Tp]×Be1.ii → Rn1

and

µi : [0, Tp/2 + δ]×Be1.i → Rm

µii : [Tp/2 − δ, Tp]×Be1.ii → Rm

that are piecewise continuous in t, locally Lipschitz

continuous in x, and, such that, for 0 ≤ t < Tp and ξ1 ∈ B1,

νi(t, ϕ1ξ1(t)) = ϕ2ξ1(t), 0 ≤ t < Tp/2

νii(t, ϕ1ξ1(t)) = ϕ2ξ1(t), Tp/2 ≤ t < Tp
(76)

and
µi(t, ϕ1ξ1(t)) = uξ1(t), 0 ≤ t < Tp/2

µii(t, ϕ1ξ1(t)) = uξ1(t), Tp/2 ≤ t < Tp.
(77)

Then for all n2

2 ×
n2

2 positive definite matrices Kp and Kd,

∃ ε∗ > 0, such that ∀ 0 < ε ≤ ε∗, x∗ : [0, Tp]→ Rn1+n2 is a

locally exponentially stable periodic solution of the closed-

loop hybrid system

Σi :



τ̇ = 1

ẋ = f(x1, x2, u1, u2) x− /∈ S

u1 = µ1i(τ, x1)

u2 = µ2i(τ, x1)−
[
Kp

ε2
Kd

ε

] (
x2 − νi(τ, x1)

)
τ+ = τ−

x+ = ∆(x−), x− ∈ S

Σii :



τ̇ = 1 τ− < Tp

ẋ = f(x1, x2, u1, u2)

u1 = µ1ii(τ, x1)

u2 = µ2ii(τ, x1)−
[
Kp

ε2
Kd

ε

] (
x2 − νii(τ, x1)

)
τ+ = 0 τ− = Tp

x+ = x−.
(78)

Moreover, the closed-loop system possesses a G-HZD and it

is given by (70).

Remark 8. The control was split so that the high-gain part

of the feedback does not directly enter the states of the zero

dynamics, namely x1. This allows the system to conform

with existing theorems Ames et al. (2014) for establishing

the exponential stability of the periodic orbit — in the full-

order hybrid model — on the basis of its stability in the
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Figure 17. Based on (Da et al. 2017, Figure 2). Coordinate
representation for MARLO, the Michigan copy of an
Atrias-series robot.

zero dynamics, (70). Isolating the action of the high-gain

controller to the x2-dynamics was not necessary in the case

of ODEs.

6 Bipedal Walking Gaits

This section applies the Generalized Hybrid Zero Dynamics
(G-HZD) developed in Section 5 to a bipedal robot, namely,
the University of Michigan copy of an ATRIAS-series 3D
robot that we call MARLO Ramezani et al. (2014); see
Figure 17. As shown in Buss et al. (2016); Griffin and Grizzle
(2016); Da et al. (2017); Hartley et al. (2017), the robot is
capable of walking forward and backward at various speeds
and over challenging terrain, both indoors and outdoors. The
robot can step in place, but it cannot stand in place because
its feet are passive. In the experiments, shoes are placed over
the passive feet to prevent excessive yawing about the point
of contact. The robot’s hips have 2 DoF (pitch and roll).
Because the hips lack yaw motion, turning is not one of the
robot’s strengths!

The control laws developed here will illustrate stepping in
place, walking forward and backward, and transitions among
such gaits. The work illustrates a theoretically sound method
for gait design that unifies and significantly extends many
of our previous results. The first control designs will rely on
the optimization package in Jones (2014), which can only
handle a planar model of the robot. For these designs, lateral
stability is achieved via a heuristic foot placement policy.
Since March of 2017, we have had access to the trajectory
optimization package Hereid et al. (2016a), which easily
handles the full 3D model of the robot. Figure 18 summarizes
our control design process.

Step 1: Generate periodic gaits

Step 2: Design transient gaits between periodic gaits; here,
we are showing three-step transitions. Similar to MPC, only
the first step of the transition is retained for the learning set.
From this set of trajectories, Supervised Machine Learning
is used to extract the controller

Step 3: The hollow dot is the target periodic gait. It can be
reached in three steps, though the learned controller re-plans
at each step to reach the target in three additional steps,
leading to exponential convergence.

Figure 18. This can be thought of as an alternative
representation of Figure 1 when the surface Z0 is built from
periodic solutions of the full-order model. The light dots
represent transient trajectories while the other dots (solid or
hollow) are periodic orbits.

6.1 MARLO

The robot is described in detail in Ramezani et al. (2014). For
the planar model, the configuration variables are joint angles
and one absolute coordinate. The angle θ, the absolute stance
leg angle, is unactuated because the feet are passive. Hence,
we define

x1 =

[
θ

θ̇

]
.

Prepared using sagej.cls



22 Journal Title XX(X)

For the purposes of controller design, the regulated quantities
are qa = (qx, qsw,LA, qst,KA, qsw,KA), that is, the torso,
stance knee, swing leg, and swing knee angle, and hence

x2 =

[
qa

q̇a

]
.

In the simulation and control design, we constrain the stance
foot to remain in contact with the ground with no foot slip.
In the experiments, we estimate the ground reaction forces
through the deflection of the leaf springs to decide whether
to control the torso angle or the stance leg angle qst,LA, as in
Rezazadeh et al. (2015). The model decomposition is done
as in Appendix B.

6.2 Design of Planar Periodic Gaits and
Transition Trajectories via Optimization

For robots, an orbit library is called a gait library. We first
design a gait library

L := {v̄ | − 0.8 ≤ v̄ ≤ 0.8} (79)

consisting of periodic gaits for various average walking
speeds satisfying H-2. In this example, we reuse the gaits
described in Da et al. (2017), where each gait has period
Tp = 0.4, and the cost function is

J =

∫ Tp/2

−Tp/2

||u(t)||2dt. (80)

Denote the trajectory of the periodic gait and the
corresponding input as ϕv̄(t) and uv̄(t), respectively, and
the midpoint of the periodic trajectory as xv̄m. The insertion
function is built from the gait library and is denoted γL.

For a given periodic orbit in L, we define

Bv̄1 = {ξ1 := (θ, θ̇) | − π

12
≤ |θ − θv̄m| ≤

π

12
,

−0.8 ≤ |θ̇ − θ̇v̄m| ≤ 0.8},
(81)

a sliding window4 about the target speed v̄. For ξ1 ∈ Bv̄1 ,
trajectories are generated as in H-5 using optimization with
cost function

J(ξ1, v̄) =

6∑
k=1

∫ k
Tp
2

(k−1)
Tp
2

(
||x− ϕv̄||2Q + ||u− uv̄||2R

)
dt

(82)
for a horizon of length Th = 3Tp. The optimization
is performed subject to the hybrid dynamics describing
MARLO, the physical constraints shown in Table. 4, and the
terminal constraint x(3Tp) = ϕv̄(Tp). So that the trajectories

Table 4. Optimization constraints

Motor Toque |u| < 5 Nm

Step Duration T = 0.4 s

Friction Cone µ < 0.6

Impact Impulse Fe < 15 Ns

Vertical Ground Reaction Force > 300 N

Mid-step Swing Foot Clearance > 0.15 m

can be used to stabilize the full-order model, the boundary
constraints in H-6 is also imposed. The resulting trajectory
and input for the given v̄ and selected ξ1 are denoted ϕv̄ξ1(t)

and uv̄ξ1(t), respectively.

Remark 9. The initial condition set Bv̄1 is related to the

notion of 3-step capture region defined in Koolen et al.

(2012); Zaytsev et al. (2015). In our experience, three-

steps is a reasonable balance between planning horizon and

computational burden.

6.3 Controller Design via Machine Learning

The gait library (79) is assumed to be discretized by 5 evenly
spaced average speeds v̄k, each ξi1 =: (θi, θ̇i) is drawn from
a uniformly spaced gird of 25 points, and time interval [0, Tp]

is evenly sampled into 21 points, tj . The combined training
and validation data set is therefore denoted by

xi,j,k1 := ϕv̄k
1ξi1

(tj)

νi,j,k := ϕv̄k
2ξi1

(tj)

µi,j,k := uv̄kξi (tj).

(83)

Any infeasible optimization problems5 are removed from
the data set before processing it by Supervised Machine
Learning.

We next learn the functions in Theorem 2. The features are
(tj , x

i,j,k
1 , v̄k) and the labels are (νi,j,k, µi,j,k) and the data

base is split at t = Tp/2 so that the functions

νi(t, x1, v̄)

νii(t, x1, v̄)

µi(t, x1, v̄)

µii(t, x1, v̄)

are learned individually. Part of the fitting is shown in
Figure 19. These functions are enough to construct the G-
HZD in (70). To complete the control design as in (78),
the feedback gains Kp, Kd and ε must be selected. While
in principle these last gains may have to vary with v̄, for
MARLO, we have found that a single set of gains6 suffices.
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Figure 19. The fitting results of the Supervised Machine
Learning. The features θ = θv̄m and v̄ = 0 are fixed at constant
values, while τ ∈ [0, 0.2] is from mid-step to ground contact.
The plots show four of the components in νi(t, x1, v̄).
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Figure 20. The target speed v̄ changes from 0.3 m/s to
−0.5 m/s and to 0 m/s. The gait transition takes less than five
steps to reach the target speed. The error between target and
average speed is small.

The transition among different target speeds are shown in
Figure 20.

6.4 Example Performance Analysis

6.4.1 Stability Analysis We know that the periodic orbits
in the full-order model should be locally exponentially
stable by the results in Sect. 5. We formally verify this by
numerically evaluating the Jacobian of the Poincaré map
for twenty evenly-spaced points in the interval −0.8 ≤ v̄ ≤
0.8. The magnitude of the largest eigenvalue is shown in
Figure 21, which proves local exponential stability for each
fixed target speed v̄. Note that only five of these points were
in the training data. The learned feedback functions have
provided stable gaits for a continuum of target speeds.

The stability of the overall closed-loop system is further
illustrated by applying force perturbations, which is a more
“realistic” test. We apply a longitudinal force on the hip at
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Figure 21. The largest eigenvalue of the Poincaré map is given
for some target speeds. This indicates the target speed in the
gait library (79) is exponentially stable.
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Figure 22. A perturbation is applied from 1.2 seconds to 2
seconds in a magnitude of 150 N. The maximum speed is larger
than the maximum speed (0.8 m/s) in the training set. The
extrapolation may be the cause of the speed oscillation. Even
though, the speed convergence near the target speed in less
than five steps.

1.2 seconds for 0.8 second (i.e., 2Tp) and examine the time
to recover the nominal gait. For the stepping-in-place gait
v̄ = 0, the largest force from which the robot can recover
without violating the physical constraints is 150 N. Figure 22
shows the resulting longitudinal velocity of the robot. The
peak speed is approximately 1.5 m/s, which is beyond the
maximum training speed of 0.8 m/s. The speed is once again
less than 0.05 m/s within five steps. The convergence rate is
relatively fast given that the optimizer uses a horizon of three
steps.

6.4.2 Interpretation of the posture changes employed by

the controller We now provide some physical intuition for
how the controller coordinates the links to achieve stability.
In fact, we evaluate ν(Tp/2, x1) with x1 = (π/12, θ̇), −0.8 ≤
θ̇ ≤ 0.8. Figures 23 and 24 show the changes in the swing
leg angle and the stance knee angle at touchdown. The swing
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Figure 23. Change in swing leg angle vs change in velocity.
One part of the learned-optimal strategy is a standard linear
leg-angle adjustment policy as in Pratt and Tedrake (2006);
Dunn and Howe (1996).
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Figure 24. Change in stance knee angle vs change in velocity.
This is not part of the standard recommendations in Pratt and
Tedrake (2006); Dunn and Howe (1996).

leg is seen to obey an approximately linear relationship with
respect to velocity, just as in the foot placement controllers in
Pratt and Tedrake (2006); Dunn and Howe (1996) designed
on the basis of an inverted pendulum model or a linear
inverted pendulum model, viz

∆qsw,LA = K1∆v,

and the scalar K1 is constant. Denote the regressed linear fit
in Figure 23 by K∗1 . We add ±10% to K∗1 and compare the
resulting foot placement strategies in Figure 25. It is seen
that with the smaller gain the velocity takes longer to settle
whereas with the larger gain, there is overshoot.

The learned controller is more than just providing foot
placement. Figure 24 also shows a quadratic relationship for
knee angle versus velocity just before touchdown, viz

∆qst,KA = K2(∆v)2.
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Figure 25. When the effective linear policy from the
learned-optimal strategy is modified by ±10%, the convergence
to the nominal speed of zero either slows down or overshoots.

Figure 26. Stick figure showing the coordinated action of torso
angle, knee bend, and leg angle provided by the
learned-three-step optimization.

As the velocity moves away from zero in either direction,
the stance knee angle increases. Perhaps this is to lower
the center of mass and to make it easier for the swing foot
to touch the ground. Furthermore, in addition to changing
the swing leg angle, the learned controller also straightens
the swing knee angle, thereby extending the foot further
out. Finally, it also leans the torso backward, keeping the
center of mass over the stance toe, as shown in Figure 26.
These adjustments are all coordinated by the optimization
and automatically extracted from the transition trajectories
by the supervised learning. Unlike a classical foot placement
controller that adjusts only swing leg angle, the learned
controller uses the many degrees of freedom of the robot to
achieve better performance.

7 Experiments on a 3D Bipedal Robot

This section extends the learning controller of the last section
to the full-3D model of MARLO. Hence, both the sagittal
and lateral planes of the robot are included, while yaw
rotations are assumed to be small due to the foot. This control
design will allow the physical 3D-robot to walk and step
in place. The 3D-controller design will mostly follow the
process of the planar example that was illustrated through
simulations, though some modifications have been made
during the experimental implementation to deal with model
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uncertainty, impact model uncertainty, and signal noise;
these will be clearly explained and justified.

7.1 3D-MARLO Configuration

We still use Figure 17 to describe the generalized coordinates
on the 3D robot. Let (px, py) denote the sagittal and lateral
position of the center of mass, and be (vx, vy) be the
corresponding velocities. We define

x1 =


px

py

vx

vy


as the “weakly actuated” states. The regulated angles
are qa = (qy, qx, qsw,3, qsw,LA, qst,KA, qsw,KA), that is, the
torso roll and pitch, swing hip, swing leg, stance knee and
swing knee angles, and hence the “strongly actuated” states
are

x2 =

[
qa

q̇a

]
.

We note that the coordinates (x1, x2) describe the robot
dynamics in (66), or (94) after a coordinate change.

7.2 Optimization

We first use optimization, with a cost function as in (80), to
build a periodic gait library

L := {(v̄x, v̄y) | − 0.6 ≤ v̄x ≤ 0.6,

−0.4 ≤ v̄y ≤ 0.4},
(84)

as a grid in two-dimensional Cartesian space; i.e.,
longitudinal and lateral speed of the robot. The gaits are
designed, without loss of generality, such that the associated
2D-Cartesian positions (px, py) are equal to the origin at a
nominal point in each of the gaits. The insertion function
associated to the gait library is constructed using linear
regression as in the pendulum model (56) and in the planar
biped examples; specifically,

x2 = γL(x1) = a0 + a1x1, (85)

where a0 and a1 are constant vectors. A linear fitting
is good enough for 3D MARLO. While one could do a
more sophisticated fit, the maximum root-mean-square-error
(RMSE) for all joints is less than 1 degree, and for all joint
velocities it is less than 4 degrees per second, even with the
linear fit. In part, this is a benefit of using the middle of the
gait for building the controller.

The next step is to design transition trajectories from
periodic orbits in the library L to a target periodic orbit.
In this paper, we will only illustrate the target orbit as the
stepping-in-place gait, that is, (v̄∗x, v̄

∗
y) = 0. Further details

are not given because they follow the planar example of the
last section. One can also refer to work in Da et al. (2017) for
the design of transition gaits for different ground slopes.

We perform three-step trajectory optimizations as in (82)
and denote the collection of transition trajectories to the
target speed of zero as ϕL→0. The orbit library is evenly
sampled per v̄x = {−0.6,−0.4,−0.2, . . . , 0.6} and v̄x =

{−0.4,−0.3,−0.2, . . . , 0.4}, so that the total number of
transition trajectories ϕiL→0 is 63. The time interval [0, 0.4]

is evenly sampled into 21 points, tj .

7.3 Machine Learning

For the 3D robot, we illustrate a different philosophy in
building the feature set. Recall that in the planar examples,
we included time and all of x1-coordinates in the feature
vector. Here, we ill select the feature vector as simply time
and the velocity coordinates, namely,

(t, vx, vy),

and leave out the Cartesian positions (px, py). There are
several reasons for this:

1. The impact map in the hybrid model (62) resets the
Cartesian position variables to a constant, assumed to
the origin. Hence, these variables do not need to be
stabilized.

2. On the robot MARLO, we are placing the torso
sagittal and roll angles in the x2-coordinates, and
hence if these are kept upright, the position of the
center of mass does not provide significant additional
information.

3. It keeps the dimension of the feature set as low as
possible, which allows a smaller training data set.

On 3D MARLO, the labels are taken as

ν = ϕ2,L→0,

which represents the x2-coordinates of the optimized
trajectories. The control input µ is not learned because, as
in previous experiments Griffin and Grizzle (2016); Da et al.
(2017) on this robot, we use PD control

uPD = [Kp,Kd]
(
x2 − ν(t, vx, vy)

)
(86)
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to regulate the joint angles, without a feedforward term. The
feedforward torque is not applied because of uncertainty
in the model. Specifically, the model does not include the
motor drive friction, which consumes about 20% of the
torque in nominal operation (stepping in place and walking),
nor does the model include backlash or compliance in the
harmonic drives. Finally, the leaf springs in Figure 17 are
excluded from the model; they deflect about 5 degrees when
supporting the robot’s weight.

Since the impact happens at Tp/2 = 0.2, the functions

νi(t, vx, vy)

νii(t, vx, vy)

are learned individually.

7.4 Experimental Implementation

Another difference between the model and the physical
robot occurs in the velocity signal. Due to spring deflection,
impacts, and joint compliance, the estimated Cartesian
velocities (vx, vy) are noisy even if each of the individual
joint angular velocity signals is relatively “clean”. We thus
use a strong7 first-order filter to clean up the Cartesian
velocity signals (vx, vy) appearing in ν(t, vx, vy), the
reference for low-level PD controllers (86).

The filtered signal, shown in Figure 27, is relatively clean,
but causes phase lag. Moreover, the energy loss at impact is
less on the robot than in the design model because the springs
store energy at impact release it throughout a step. This
two factors lead the learned controller to generate overshoot
in the Cartesian velocities. We mitigate the overshoot by
introducing a speed-damping term on the torque of the swing
leg and the swing hip,

usw,LAd = Nx,d(vx − vkx)

usw,3d = Nx,d(vy − vky ),
(87)

which is the same term used in Rezazadeh et al. (2015). The
overall torque is

u = uPD + ud. (88)

7.5 Results

The learned controller for stabilizing the stepping-in-place
gait was implemented on MARLO. The nominal Cartesian
velocities are thus zero. Forces were applied in the sagittal
and lateral directions, or a mix of the two, by the
experimenter applying a push or a kick to the robot. The
amount of force has not been estimated, but the reader can
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Figure 27. A perturbation is applied from 1.2 seconds to 2
seconds in a magnitude of 150 N. The maximum speed is larger
than the maximum speed (0.8 m/s) in the training set. The
extrapolation may be the cause of the speed oscillation. Even
though, the speed convergence near the target speed in less
than five steps.

judge of his-or-herself based on the experiment video (see
also Extension 2).

In the first experiment, five successive kicks were applied
to MARLO in the forward (sagittal) direction. MARLO
consistently recovered from the disturbances. The peak
speed varied from 0.8 to 1 m/s, as shown in Figure 28.
A harder kick was not applied since the training set only
includes speed up to 0.6 m/s. After reaching the peak speed,
MARLO slowed down to 0.1 m/s in less than 5 seconds.
The robot acted as an underdamped spring-load system.
This may be caused by the leg springs in the physical
which compressed and unloaded on the second step, while
the model did not include this effect. We have added the
damping term in (87) to mitigate the overshoot effect. A
larger derivative gain will further reduce the overshoot, but
will so increase the settling time. Still, the speed slowed
down to 0.1 m/s in less than 5 seconds. The leg motor torque
is shown in Figure 28. The torque bound (5 Nm) was reached
when robot moved around the peak speed. This could explain
why the optimization can only find the solution of transition
gait from 0.6 m/s to zero.

The second experiment was to push MARLO in the lateral
direction. Because of the parallelogram shape of the legs, one
foot cannot place across the other, which limits the available
range of foot placement. Plus the weaker motor on the hip,
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Figure 28. An example of the velocity response for a kick in the
forward (sagittal) direction. The perturbation is applied at
around 1 second driving the robot to peak speed of 0.9 m/s.
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Figure 29. The leg torques are applied before a 1:50 gear
transmission. The torques (u1R, u2R, u2L, u2L) are associate
with the leg joints (q1R, q2R, q1L, q2L) in the robot configuration,
Figure 17.

the lateral stability of MARLO is weaker than the sagittal
direction. The push drove the lateral speed to 0.6 m/s, which
is higher than the training speed 0.4 m/s. The push was
applied on both left and right sides, shown in Figure 30. The
hip motor torque is shown in Figure 31. The torque bound is
3 Nm.

Random direction pushes and kicks were included in the
last part of the experiment video. We applied force to move
MARLO backward and to turn around.

8 Discussion and Conclusions

8.1 Strategy

This paper is building on the recent revolution in open-
loop trajectory optimization. It is now possible to compute
in minutes gaits that used to take us hours or more.
Armed with a set of open-loop trajectories, the question we
posed was, how to turn them into a feedback controller?
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Figure 30. An example of the velocity response for multiple
pushes in the lateral direction. The positive sign is the right
direction whereas the negative is the left.
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Figure 31. The hip torques are applied before a 1:27.5
gear-belt drive. The positive torque is to move leg inward
whereas the positive torque is to move leg outward.

Our strategy was to attempt to build a surface from the
trajectories and to induce a vector field on that surface that
had desirable properties, such as (1) it contained a periodic
solution of the model that met important physical constraints;
(2) trajectories on the surface, by design, converged to
the periodic solution; and (3), we could find a feedback
controller for the complete model of the system that would
render this surface exponentially attractive.

We have used Supervised Machine Learning as a
“universal” function approximation, in other words, glorified
regression. The functions we sought were implicitly
contained in the data, and to our knowledge, closed-form
solutions seem unlikely to exist. Hence, they had to be
computed numerically in one fashion or another, and we
believe an important contribution of the paper is to show how
the functions needed to build a feedback controller can be
extracted from a set of trajectories over a fixed time interval.
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8.2 Curse of Dimensionality

The method we use to build a vector field from open-loop
trajectories works, at least in principle, in large dimensions.
Even with the large strides made in optimization, high-
dimensional state spaces are still the bottleneck, at least with
our approach. Hence, it was important to find a structural
property in our robot models that would allow us to focus
the optimization effort on a low-dimensional portion of
the system. We chose to exploit the local input-output
linearizability of the actuators associated with knees and hips
for example and put into the “weakly-actuated category”
things like the global orientation of the body and possibly
ankle joints. This allowed us to build trajectories of the
full-model parameterized by initial conditions of a small
subsystem, without making any approximations. In the end,
we do build the control law for the full model around a low-
dimensional model, just as advocates of pendulum models
do, however, and this is important, all of the solutions of our
low-dimensional model are feasible solutions of the robot
itself and they meet whatever constraints were included in
the design of the trajectories.

8.3 Original HZD vs G-HZD

Once one understands how the G-HZD tool works, it’s hard
to believe how much the previous method could accomplish
with a single optimization. The work presented in Westervelt
et al. (2007) uses a single optimization to design the
periodic orbit. And that is it. For robots with one degree of
underactuation and for which a “mechanical phase variable”
can be found, that is a strictly monotonically increasing
generalized coordinate along the periodic orbit, the basic
HZD result in Westervelt et al. (2007) shows how to build
an invariant surface, relate stability of the periodic orbit in
the surface to a physical property of the periodic orbit8,
and how to render the surface exponentially attractive. G-
HZD can handle more than one degree of underactuation.
As in Reher et al. (2016a,b); Kolathaya and Ames (2017),
G-HZD includes “time” as a monotonically increasing
generalized coordinate. What makes it quite distinct from
these references is that the equivalent of “G-HZD virtual
constraints”, the function ν(t, x1), depends on time and the
full state of the zero dynamics, thereby enriching the set of
possible closed-loop behaviors.

With the previous work on HZD and its extensions in Buss
et al. (2016); Hamed et al. (2016); Griffin and Grizzle (2016),
we were unable to handle challenging terrain such as the
Michigan Wave Field . This motivated the introduction of
a family of periodic orbits in Da et al. (2016) and a first

attempt at including transitions among the periodic orbits in
Da et al. (2017) as a means of building in stability. While
this latter paper also used Supervised Machine Learning
to design a feedback function, it also made some false
steps relying on analogies with model predictive control that
were not supported by deeper analysis. The present paper
is our attempt to provide a consistent design framework.
An attractive feature of the original HZD approach is that
it has an easily verifiable set of sufficient conditions for its
many results. We hope in some future paper, a similarly clean
analytical framework will be developed for G-HZD.

8.4 Stability Mechanism

Not only do the new results handle higher degrees of
underactuation but even in the case of one degree of under
actuation, the way stability is achieved is quite different in
G-HZD vs. HZD. As discussed in the Introduction, with G-
HZD, one does not have to count on the impacts to create
stability. More general stability mechanisms, such as foot
placement, or as shown in Figure 24, lowering the center of
mass, naturally arise.

8.5 Future Work

We see this paper as a first cut in developing a happy
marriage among trajectory optimization, machine learning,
and geometric nonlinear control. We hope the results in
the paper can be reinforced with easy-to-check sufficient
conditions for our many assumptions. Beyond these
technical considerations, we also see several other directions.
The recent work in Consolini et al. (2016) may provide
a geometric formulation for building the invariant surface,
which would also clarify the choice of coordinates for
making the mapping Ψ in (20) and its projection to be
full rank. We believe the feedback linearization assumption
on the “strongly actuated” part of the dynamics can be
weakened considerably. Replacing the terminal condition in
the optimization with a terminal penalty is another direction
that needs to be investigated.
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Notes

1. Z0 only contains the initial conditions for the trajectories. The

evolution of the trajectories will determine Z. The vector field

and output map in (4) will be computed through a combination

of Supervised Machine Learning and model structure.

2. Almost any linear combination of x1 and x2 works because it

takes rows from the bottom of (20) and adds them to the top

rows, making (19) full rank, and hence locally injective. There

is nothing magic about our choice.

3. Modulo Tp is not required here because τ is reset at Tp, whereas

in the non-hybrid case, it was required in (29).

4. Because the legs are 1 m long, average walking speed and

angular rate at the middle of the step are nearly the same.

5. For example, due to torque limits, there is no solution for

v̄ = 0.8 and ξ1 = (θv̄m + π/12, 0.8 + θ̇v̄m).

6. They essentially correspond the low-level PD gains which are

straightforward to tune on MARLO. In simulation, Kp = 800,

Kd = 40 and ε = 1

7. The time constant is 0.2 second.

8. The velocity of the robots center of mass should point

downward at the end of the step.
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Appendix A Index to Multimedia
Extensions

Extension Type Description

1 Code Inverted pendulum example

2 Video 3D robot experiments
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Appendix B Normal Forms for Mechanical
Models

Consider a standard mechanical model

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu

and let
Ω(q, q̇) := C(q, q̇)q̇ +G(q).

We suppose the system is underactuated, that is, there are
fewer independent actuators than generalized coordinates. In
fact, we suppose there exists a partition of the coordinates in
which the model takes the form

D11(q)q̈1 +D12(q)q̈2 + Ω1(q, q̇) = 0

D21(q)q̈1 +D22(q)q̈2 + Ω2(q, q̇) = B2u,
(89)

with B2 square and invertible. Because D(q) is positive
definite, by the Shur Complement Lemma, D11(q), D22(q),
and

D̄(q) := D22(q)−D21(q)D−1
11 (q)D12(q) (90)

are all positive definite as well.

Following Spong (1994), define

Jnorm(q) := D−1
11 (q)D12(q)

Ω̄1(q, q̇) := −D−1
11 (q)Ω1(q, q̇)

Ω̄2(q, q̇) := Ω2(q, q̇)−D21(q)D−1
11 (q)Ω1(q, q̇),

(91)

Then the (regular) feedback

u = B−1
2 (q)

(
D̄(q)v + Ω̄2(q, q̇)

)
, (92)

results in the Spong normal form:

q̈1 = Ω̄1(q, q̇)− Jnorm(q)v,

q̈2 = v.
(93)

Defining x1 = (q1, q̇1), x2a = q2, and ẋ2b = q̇2, it follows
that the model can be expressed as

ẋ1 = f1(x1, x2, v)

ẋ2a = x2b

ẋ2b = v.

(94)

An alternative form is developed in (Westervelt et al. 2007,
pp. 62), which uses the conjugate momenta that arises from
Lagrange’s equations. It has the advantage that the input only

appears in the second row of the model. Define

σ1 := D11(q)q̇1 +D12(q)q̇2 (95)

Ḋ(q, q̇) :=
d

dt
D(q) (96)

Then the model can also be written as

q̇1 = D−1
11 (q) [σ1 −D12(q)q̇2]

σ̇1 = κ1(q, σ1, q̇2)

q̈2 = v

(97)

where

κ1(q, σ1, q̇2) :=
(
Ḋ11(q, q̇)q̇1 + Ḋ12(q, q̇)q̇2−

Ω1(q, q̇)
)∣∣∣ q̇1=D−1

11 (q)[σ1−D12(q)q̇2].
(98)

With x2 defined as above and x1 := (q1, σ1), the model takes
the form

ẋ1 = f1(x1, x2)

ẋ2a = x2b

ẋ2b = v.

(99)

Various authors prefer one of (94) and (99) to the other; both
are useful.

Appendix C Proofs

C.1 Proof of Proposition 1

The proof is most easily done using the method of Poincaré
sections Parker and Chua (1989). By A-1 and the assumption
on ucu, the closed-loop system (11) has period Tp > 0 and
the origin is an equilibrium point. Due to the time-varying
nature of the closed-loop system, we make time a state
variable, and because the system is Tp-periodic, we add in
a time-based reset map

τ̇ = 1, τ− < Tp

ẋ = f cu(τ, x) := f(τ, x, ucu(τ, x)),

τ+ = 0 τ− = Tp

x+ = x−.
(100)

The notation τ−, τ+, x− and x+ is explained in Section 5.
Because the state reset map is trivial, namely x+ = x−, the
solutions of (11) and (100) are identical. Define a Poincaré
section by

Sn := {(τ, x) ∈ Rn+1 | τ = Tp, x ∈ B}, (101)

which is an n-dimensional hypersurface in the state space of
the model. Then, by construction of the closed-loop system,
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for ξ ∈ Sn, the Poincaré map P : Sn → Sn is given by

P (ξ) = ϕξ(Tp). (102)

Indeed, for ξ ∈ B,

ϕξ(t) = ξ +

∫ t

0

f(ϕξ(s), uξ(s))ds

= ξ +

∫ t

0

f(ϕξ(s), u
cu(s, ϕξ(s))ds,

due to (10). By A-4, ξ∗ = 0 is a fixed point of the Poincaré
map. Also by A-4, P is a contraction because for each ξ ∈ B,
V ◦ P (ξ) ≤ cV (ξ), and hence by induction,

V ◦ P k(ξ) ≤ ckV (ξ),

and by A-3,

||P k(ξ)||2 ≤ ckα2

α1
||ξ||2 −−−−→

k→∞
0,

proving local exponential stability of the fixed point. The
uniformity in t0 follows from periodicity. �

C.2 Proof of Proposition 2

Without loss generality, we assume that B1cu is bounded so
that its closure is compact. Then there exists L, a Lipschitz
constant, such that

||γ(x1)||2 ≤ L||x1||2

for all x1 ∈ B1cu. Define V1 : B1 → R by V1(x1) :=

V (x1, γ(x1)). It follows that

α1x
>
1 x1 ≤ V1(x1) ≤ α2(1 + L2)x>1 x1,

and hence V1 is positive definite, with quadratic lower and
upper bounds. From (16),

V1(ϕ1ξ1(Tp)) ≤ cV1(ξ1).

From here, the proof of Prop. 1 can be repeated and the result
follows. �

C.3 Proof of Theorem. 1

From the hypotheses of the Theorem and Prop. 2, the closed-
loop system (26) is a cascade of two locally exponentially
systems, namely, the second row of (26) and the reduced-
order system (18). By standard results, the overall system
is locally exponentially stable. By (Vidyasagar 2002, Thm.

43, Section 5.1, pp. 143), because the system is periodically
time-varying, the stability is uniform in t0.

�

C.4 Proof of Corollary. 1

Defining y as in (25) results in the closed-loop system having
the form

ẋ1 = f1(t, x1, ν(t, x1) + y, µ(t, x1)− [Kp Kd]y)

ẏ = Ay,
(103)

with A Hurwitz. Hence, the proof of Theorem 1 can be
repeated and we are done.

�

C.5 Proof of Proposition 3

The proof is very similar to that of Prop. 1. Define a Poincaré
section by

Sn := {(τ, x) ∈ Rn+1 | τ = Tp, x ∈ B}, (104)

which is an n-dimensional hypersurface in the state space of
the model. Then, by construction of the closed-loop system,
for ξ ∈ Sn, the Poincaré map P : Sn → Sn is given by

P (ξ) = ϕξ(Tp). (105)

By H-4, ξ∗ := x∗m is a fixed point of the Poincaré map.
Also by H-4, P is a contraction because for each ξ ∈ B,
V ◦ P (ξ) ≤ cV (ξ), and hence by induction,

V ◦ P k(ξ) ≤ ckV (ξ),

and by H-3,

||P k(ξ)||2 ≤ ckα2

α1
||ξ − ξ∗||2 −−−−→

k→∞
0,

proving local exponential stability of the fixed point. Because
the closed-loop system is locally Lipschitz continuous, local
exponential stability of the fixed point implies exponential
attractivity of the orbit

O := {(τ, ϕξ∗(τ) | 0 ≤ τ < Tp}.

Because τ(t) = t, we have local exponential stability of the
periodic solution. �

C.6 Proof of Proposition 4

Without loss generality, we assume that B1cu is bounded so
that its closure is compact. Then there exists L, a Lipschitz
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constant, such that

||γ(x1 − x∗1)||2 ≤ L||x1 − x∗1||2

for all x1 ∈ B1cu. Define V1 : B1 → R by V1(x1) :=

V (x1, γ(x1)). It follows that

α1(x1 − x∗1)>(x1 − x∗1) ≤ V1(x1) ≤
α2(1 + L2)(x1 − x∗1)>(x1 − x∗1),

and hence V1 is positive definite, with quadratic lower and
upper bounds. From (16),

V1(ϕ1ξ1(Tp)) ≤ cV1(ξ1).

From here, the proof of Prop. 3 can be repeated and the result
follows. �

C.7 Proof of Theorem. 2

The Poincaré section is defined as in (104). References
Grizzle et al. (2014) and (Westervelt et al. 2007, Chap. 4)
show how to reduce the stability analysis of a hybrid
model with two continuous phases to that of an equivalent
hybrid system with a single continuous phase. We build the
equivalent hybrid system with the continuous phase from Σii

and a reset map ∆eq that captures the flow of Σi, viz

τ̇ = 1 τ− < Tp

ẋ = f(x1, x2, u1, u2)

u1 = µ1ii(τ, x1)

u2 = µ2ii(τ, x1)−
[
Kp

ε2
Kd

ε

] (
x2 − νii(τ, x1)

)
[
τ

x

]+

= ∆eq(τ
−, x−), τ− = Tp

(106)
With this construction and Prop. 4, the zero dynamics
manifold is

Z := {(τ, x1, x2) | x2 = νii(τ, x1)},

and the restricted Poincaré map ρ : Se ∩ Z → Se ∩ Z has x∗1
as a locally exponentially stable fixed point. The equivalent
hybrid system (106) therefore satisfies all the hypotheses of
(Ames et al. 2014, Thm. 2), and hence the periodic orbit

O := {(τ, ϕξ∗1 (τ) | 0 ≤ τ < Tp}

is locally exponentially stable. �

Appendix D Relation to Backstepping,
Zero Dynamics, and
Immersion and Invariance

For definiteness, consider a standard Lagrangian dynamical
model where q ∈ Rn is a set of generalized coordinates and
u ∈ Rm is a vector of torques,

D(q)q̈ +H(q, q̇) = B(q). (107)

Assume the system is underactuated, that is, n > m, and that
the coordinates have been decomposed as

q :=

[
q1

q2

]
, (108)

in which the model takes the form

D11(q)q̈1 +D12(q)q̈2 +H1(q, q̇) = 0

D21(q)q̈1 +D22(q)q̈2 +H2(q, q̇) = B2(q)u.
(109)

with B2(q) square and full rank. References Spong (1996);
Reyhanoglu et al. (1999); Westervelt et al. (2002) show that
there is a regular feedback that places the system in the form

ẋ1 = f1(x1, q2, q̇2)

q̈2 = v,
(110)

with

x1 :=

[
q1

σ1

]
and σ1 := D11(q)q̇1 +D12(q)q̇2,

the generalized momentum conjugate to q1.

D.1 Backstepping

To begin the backstepping process in (110), one needs a
feedback [

q2

q̇2

]
=

[
νa(x1)

νb(x1)

]
that renders the origin of the reduced-order system

ẋ1 = f1(x1, νa(x1), νb(x1)) (111)

locally exponentially stable with a known Lyapunov
function. However, to pull this feedback through the double
integrator, it must be true that νb(x1) = d

dtνa(x1), that is

νb(x1) =

[
∂

∂x1
νa(x1)

]
f1(x1, νa(x1), νb(x1)). (112)
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Backstepping does not provide any systematic means to meet
the required integrability condition. Of course, if the system
has the form

ẋ1 = f1(x1, q2)

q̈2 = v,
(113)

then there is no integrability constraint and backstepping can
be done, assuming one is clever enough to find a feedback
q2 = νa(x1) that renders the origin of

ẋ1 = f1(x1, νa(x1))

locally exponentially stable. The solution we presented in
Sect. 3.4 uses trajectory optimization to automatically build
a feedback that satisfies the integrability condition (112) and
provides for local exponential stability. Moreover, bounds on
inputs and other constraints can potentially be included in the
trajectory optimization process, whereas they are challenging
to incorporate into backstepping.

D.2 Zero Dynamics

The method of Hybrid Zero Dynamics as developed in
Westervelt et al. (2002) exploits the structure of f1 in (111),
namely

d

dt

[
q1

σ1

]
=

[
q̇1

f1b(q1, q̇1, q2, q̇2)

]
and

q̇1 = D−1
11 (q) [σ1 −D12(q)q̇2] ,

to solve for a solution of the form[
q2

q̇2

]
=

[
hd(q1)(

∂
∂q1

hd(q1)
)
q̇1

]
,

so that the integrability condition (112) is automatically met.
When the computational method in Jones (2014); Hereid
et al. (2016a) does produce a solution, it does not come with
a Lyapunov function and hence input-output linearization
is often used to “pull” the virtual constraints back through
the double integrators. Moreover, conditions for the virtual

constraints q2 = hd(q1) to stabilize (a hybrid version of)
(111) are only known when q1 is a scalar. The solution we
have given in Sect. 5 works for vector valued q1, hence
for models with more than one degree of underactuation.
Moreover, even for one degree of underactuation, it provides
a more general solution to the boundary value problem in
that it naturally produces solutions of the form hd(t, q1, q̇1),
that is, the controller depends in a non-trivial way on the full
state of the x1-subsystem.
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Figure 32. A classic MPC controller is applied to the same
system as in Figure 9

D.3 Immersion and Invariance

The method of immersion and invariance (I&I) presented in
Astolfi and Ortega (2003); Karagiannis et al. (2005); Wang
et al. (2017) is more general than backstepping and can
provide alternative cascade realizations to the simple one
used in (26). However, I&I still requires a target system
to be provided, such as, (18), which is what our method
is constructing. In other words, once a feedback satisfying
Prop. 2 has been constructed, I&I can be used to build
alternatives to the feedback used in Thm. 1, but it will not
replace the design of the reduced-order model.

Appendix E Standard MPC and Relative to
This Work

Figure 32 shows the standard MPC with Zero-Order-Hold
(ZOH) condition,

uzoh(t, ξ) = uξ(0), t ∈ [0, Tp). (114)

We would like to implement this controller to the high
dimensional system. However, it does not scale well. The
learned feedback µ(t, x) shows the similar performance as
the classic MPC. Sect. 3.3 illustrates how to apply it to a
reduced-order model while embedding it to the full-order
model. In this sense, the curse of dimensionality has been
mitigated.
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