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Controlled Invariance for Discrete-Time Nonlinear
Systems with an Application to the Disturbance
Decoupling Problem

JESSY W. GRIZZLE, MEMBER, IEEE

Abstract—Invariant distributions are defined for discrete-time nonlin-
ear control systems, and necessary and sufficient conditions are given for
their controlled invariance. This extends to discrete-time systems the basic
tool which has been so important in solving the various synthesis
problems for continuous-time systems. To indicate their utility in the
discrete-time setting, they are used to locally solve the disturbance
decoupling problem.

I. INTRODUCTION

N Wonham’s now classic text on multivariable control theory

[1], a geometric approach is expounded for analyzing the
structure of continuous-time linear systems, and for solving
important synthesis problems such as disturbance decoupling and
noninteracting control. The fundamental notions employed are
those of invariant subspaces, (4, B) invariant subspaces, and
controllability subspaces. For a linear system X = Ax + Bu, a
subspace V is said to be invariant if AV C V, and (4, B)
invariant if AV C V + ImB. The crucial result relating the two
concepts is that a subspace can be made invariant through the use
of feedback if, and only if, it is (4, B) invariant. Of course, these
notions remain equally valid for discrete-time linear systems, X
= Ax; + Bu,.

For the class of continuous-time nonlinear control systems,
through the use of differential geometric techniques, a completely
parallel theory has been developed. In this theory, a nonlinear
system X = f{(x, u) is regarded as a vector field, parameterized by
the control u, defined on some manifold M. The generalization of
an invariant subspace is an invariant distribution. Roughly
speaking, a distribution is a collection of vector fields [2] which is
closed (pointwise) under vector addition and scalar multiplication.
Given an affine nonlinear system x = f,(x) + Zii; ufi(x), a
distribution A is invariant if [f;, X] € A, fori = 0, ---, m, for
all X € A, where [+, *] denotes the Lie bracket of two vector
fields [2]. It is called (f, g) [3], [4] (or A-B [5]) invariant if [f;, X]
C A + span {f}, ***, fm} fori =0, -+, mand for every X €
A. The analogy with the linear case should be clear. Here also,
given certain regularity hypotheses, one has the important result
that a distribution A can be made invariant through the use of
feedback if, and only if, A is (f, g) invariant. Using these ideas,
plus a nonlinear generalization of the controllability subspaces
[6], [7], necessary and sufficient conditions have been given for
the local solvability of the disturbance decoupling [3], [5], [8]-
[10], noninteracting control [3], [10]-{13], and invertibility [14]-
[16] problems. The award winning paper [3] gives a particularly
excellent account of these methods and their application.

Despite the remarkable success of the geometric approach in
extending to continuous-time nonlinear systems many important
results only previously known for linear systems, nothing of the
kind can be said to have occurred for their discrete-time
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counterparts. Given the pervasiveness of digital techniques in
control applications, it would seem to be especially important, and
useful, to extend the geometric theory to the class of discrete-time
nonlinear control systems. The goal of this paper is to take the
first step in this direction. A theory of invariant distributions will
be developed which completely parallels the corresponding theory
in continuous time. In particular, necessary and sufficient
conditions will be given for their local controlled invariance, and
an algorithm will be given for calculating the maximal locally
controlled invariant distribution contained in a given involutive
distribution. To show that these results are just as important in the
discrete setting as in the continuous one, they will be used to
locally solve the disturbance decoupling problem.

That the above can be carried out for discrete-time systems,
where there is a ‘‘lack’’ of vector fields, and hence Lie brackets,
may at first be surprising. However, it should be noted that in
[17], [18], where controlled invariance is discussed for general
nonlinear continuous-time systems, for the first time ever, the
necessary and sufficient conditions for controlled invariance were
stated without using Lie bracke . It is basically this fact, along
with some other concepts introduced in these papers, which
permits the extension to the discrete-time case. Indeed, the proofs
of the main results of this paper will parallel to a large extent the
proofs of the corresponding results given in [17], [18], although in
fact, they will be a little easier as it will not be necessary to deal
with prolongations of vector fields.

For reasons of preciseness of notation and generality,® this
paper will employ the language of differential geometry. Some
good engineering references for this material are [19]-[25];
standard mathematical texts are [2], [26]-[30]. The reader simply
wishing to know what the results are for discrete-time systems on
R" expressed in rectangular (or other globally defined) coordi-
nates will find this material in the numerous ‘‘examples’’ which
are dispersed throughout the paper. Indeed, this is the main
purpose of the examples, as realistic applications of these results
will have to be the subject of a separate investigation.

The rest of the paper is organized as follows. In Section II,
invariant distributions are introduced, and necessary and suffic-
ient conditions are given for their local controlled invariance. In
Section III, maximal locally controlled invariant distributions will
be shown to exist, and an algorithm will be given for their
calculation. In Section IV a disturbance decoupling problem will
be formulated and then solved using the results of the previous
two sections. Section V contains the conclusions and comments.
In the Appendix, the disturbance decoupling problem with partial
measurements of the disturbances is considered.

II. CONTROLLED INVARIANCE

This section will fix the notation employed for a nonlinear
discrete-time system and introduce the notion of an invariant

! For many (continuous-time) nonlinear systems, the natural state space is
not a vector space. In view of the importance of sampled-data systems, this is
also true in discrete time.
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equivalence relation. It will be shown that for those equivalence
relations arising from foliations, an infinitesimal necessary and
sufficient condition can be given for their local controlled
invariance. This will entail extending to discrete-time systems the
notion of a controlled invariant distribution, which previously has
only been used in studying structural properties of continuous-
time systems, and which is a generalization of the (A4, B) invariant
subspaces so important in geometric linear system theory.

The following coordinate-free definition encompasses a large
class of discrete-time systems.

Definition 2.1: A nonlinear discrete-time system is a 3-tuple
(M x U, M, f) where M and U are analytic manifolds and f:M
X U — M is an analytic function. The points of M are the state
space and those of U are the inputs. The system’s dynamics are
defined by Xk+1 = j(xk, uk).

Example 2.1:

a) Let M = R", U = R™and let :R" X R™ — R" be any
analytic function. Then Z(R” X R™, R”", f) gives the usual class
of discrete-time systems on R".

b) Taking flx, u) = Ax + Bu, for A:R" — R" and B:R"™
— [R” linear operators, gives the ubiquitous discrete-time linear
system X;.; = Ax; + Bu, on R".

Definition 2.2: A feedback function vy is an analytic dif-
feomorphism (i.e., an analytic function which has an analytic
inverse) such that the following diagram commutes:

MXU——L— 3MxU

e K

M

2.1)

where m:M X U — M is the canonical projection. In local
coordinates (x, #) for M X U, one has, with a slight abuse of
notation, ¥ = +y(x, v) where v is the new input. Since v is
nonsingular, feedback can (and will) be viewed simply as a state-
dependent change of the input coordinates.

Invariant and controlled invariant equivalence relations are now
introduced.

Definition 2.3: Let Z(M x U, M, f) be a nonlinear discrete-
time system and let R be an equivalence relation [31] on M. R is
said to be invariant if for each u € U, f(x, u)Rf(X, u) whenever
XRx. R is said to be controlled invariant if there exists a
feedback function v such that R is invariant for the feedback
modified (or closed-loop) system (M X U, M, foy).

Example 2.2: Let Z(R" X R™, R", Ax + Bu) denote a
discrete-time linear system on R” and let V be a subspace of R”".
Then V induces an equivalence relation on R” by defining xRX if
X — X € V. The condition f{x, u)Rf(X, u) amounts to A(x — X)
€ V whenever x — X € V. This is equivalent to AV C V. In
other words, V is an invariant subspace of A.

The above example demonstrates that Definition 2.3 is in fact
an abstraction of the usual notion of (A, B) invariance for
discrete-time linear systems. Hence, it should be clear that such
invariant equivalence relations ought to play an important role in
understanding the structure of discrete-time nonlinear systems and
in solving certain synthesis problems; in this regard, one ought to
glance at Proposition 4.1. However, since they involve global
computations, except in certain special cases, one has little hope
of actually performing the necessary calculations. This motivates
trying to localize the above notion in a useful way. For those
equivalence relations arising from a regular foliation & on M, it
turns out that this is possible. (The reader may wish at this time to
consult [3, pp. 332-333] for a discussion on distributions and
foliations.)

. Towards this end, consider a distribution A on M which gives
nise to a regular foliation § on M in the sense that its maximal
Integral manifolds partition M into a disjoint union of fixed-
dimensional submanifolds. Then & induces an equivalence rela-
tion on M ; namely, xRx if x and X are elements of the same leaf of
F. § will be said to be locally invariant if for each u € U and x,
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€ M there exists an open set 8 about x,, such that f{x, ¥)RA%, u)
whenever x, X € 0 and xRX. For a regular foliation &, this can be
characterized as follows. For a vector field X € A, let X,(-)
denote its flow. Then & is locally invariant if and only if for each
such X there exists an € > 0 such that f{X,(x), ¥)RAx, u) for all
|#| < e. Differentiating with respect to ¢ and evaluating at ¢ = 0
then gives

[, W)X C A

This leads to the following definition.

Definition 2.4: Let A be an involutive distribution on M
(possibly not giving rise to a regular foliation). Then A is an
invariant distribution of (M x U, M, f), if

2.2)

S, WA C A (2.3)

A is (locally) controlled invariant if there exists (locally) a
feedback < such that A is invariant for foy.
Example 2.3:
a) Let X and V' be as in Example 2.2. V can be regarded as a
constant distribution on R” and then (2.3) becomes AV C V.
b) Let (R" x R™, R", f) be a discrete-time system on R"
and let A be a distribution on R”. Then in the usual rectangular
coordinates for R”", (2.3) becomes

v C A(f(x, u) for each » € A(x). (2.4)

of (x, u)
ax

Remark 2. 1: Invariant foliations for autonomous discrete-time
systems (i.e., no inputs) were introduced in [32]. There it was also
noted that invariant foliations, in a neighborhood of a fixed point
of the dynamics, induce decompositions of the systems’ dynamics
and that such decompositions have been important in the solution
of various synthesis problems for continuous-time systems.

Doing local coordinate calculations for discrete-time systems
can be more delicate than in the case of continuous-time systems
since f{-, u) applied to a point x in a local coordinate chart may
leave the chart even for ‘‘small” inputs.? Thus, one must
introduce a pair of coordinate charts: one in the domain of f and
another in its image. This paragraph will develop a convenient
pair of charts for doing calculations and will introduce some
useful notation. Let (x,, u,) € M X U, and consider f{x,, u,) €
M. Choose a coordinate chart (Va, $») and f(x,, #,) and consider
the open set f~!(V)) about (x,, u,). Now choose a coordinate
chart (Varxus dumxu) about (x,, #,) such that V. y C f~Y(Vi).
(Vuxus dmxuv)s (Va, dar) will be called a coordinate chart pair.
Denote coordinates for (Vyxuv, dmxv) by (%, u), and for (Vy,
&) by x. This abuse of notation is useful and permits one to
perform local calculations as if one were working in a single
coordinate chart. The coordinate chart pair will simply be denoted
by (x, u). If A is an involutive distribution on M having constant
dimension, then by the Frobenius theorem one can assume that A
= span {3/9x', * - -, 8/dx*} in each chart (Vyx v, dmxv)s (Va»
&u). Hence, the notation A = span {d/dx!, -+ -, 3/dx*} is not
ambiguous. If it should become important to distinguish between
the different domains of x, this could be done via the open sets
Vauxu and V. Note that w(Vyxy) and Vj, may or may not
intersect, and may or may not coincide. (Recall m:M X U = Mis
the canonical projection. ) In a neighborhood of a fixed point, f{x,,
U,) = X,, one may always choose Vjxy such that 7(Vyxu) C
Varand m0¢uu = Our|T(Varxu), so that one is essentially using
a single coordinate chart.

As a consequence of the Frobenius theorem and the definition
of an invariant distribution, one has the following result which
shows that invariant distributions are intimately linked to the
classical notion of a subsystem.

2 If one is considering systems defined on R” which are represented in
globally defined coordinates (such as rectangular coordinates), then the
following considerations are unnecessary.
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Proposition 2.1: Let S(M x U, M, f) be a nonlinear discrete-
time control system and let A be an involutive constant-
dimensional invariant distribution. Then for any x, € M and ¥,
€ U there exists a coordinate chart pair (x, #) in which 2 has the
form

1 1
Xpe1=S 1k )
2 12

Xks1=L2 (ks Xk, Ug)

where (x!, x?) is a suitable partition of x.

Conditions will now be established under which an involutive
distribution A is locally controlled invariant. In the following,
V(M x U) denotes the vertical distribution on M X U, i.e.,
VM x U) = {X € TM x U)|n(X) = 0}.

Lemma 2.1: Let 3(M x U, M, f) be a nonlinear discrete-time
control system and let A be a regular (i.e., involutive and constant
;limensional) distribution on M. Then the following are equiva-
ent.

a) Locally there exists a regular distribution E on M X U
such that 7, E = A, dim E = dim A, and f,E C A.

b) There exists a coordinate chart pair in which A is
invariant.

c) A is locally controlled invariant.

d) Locally there exists a regular distribution F on M X U
such that 7, F = A and f,F C A.

Proof:

a) = b): Let (x, u) be a coordinate chart pair such that A =
span {3/0x', -+, 3/0x*}. Since 7,:E — A is an isomorphism,
there exists a (possnbly state-dependent) change of coordinates on
U resultmg in coordinates (x, v), such that £ = span {3/dx!,

-, /9x*}. Hence, f,E = f,A C A.

b) = ¢): Let (x, u) be a coordinate chart pair. By b), there
exists another coordinate chart pair (x, v) such that A in these
coordinates is invariant. Let v be the change of coordinates
between (x, u) and (x, v). Then v is the required feedback.

¢) = d): Simply let F = v,A.

d) = a): Let (x, u) be a coordinate chart pair such that A =
span {3/dx!, ---, 3/dx*}. Consider F N V(M x U). Then dim
F =dim A + dim (F N V(M X U)), and since dim F and dim A
are constant, it follows that dim (F N V(M Xx U)) is also.
Furthermore, it is involutive since it is the intersection of two
involutive distributions. Thus, F N V(M x U) is a regular
distribution and ome can integrate it to obtain new input
coordinates @', -+, v™ such that F N V(M X U) = span {3/
v, ---, 3/9v™}. Since 7, F = A, in these coordinates, F =
span {8/6x1 + T7_, o (x, v) /3, 3/, -, d/um|j =

, k} for some functlons o). Let E = span {8/axf + 30,
a’ (x, v) 3/vi|j = , k}. 'From the involutivity of F, one
deduces that of E. Clearly ‘the dimension of E equals that of A.
Since 7, (F N V(M x U)) = 0, 7, E = A. Since EC F, f,E C
A. In passing, note that the mvolut1v1ty of F implies that o/ (x, v)
does not depend on (v"*!, - - -, v™). O

The following theorem glves a simple coordmate—mdependent
test for checking the local controlled invariance of a given
distribution. Its proof is modeled on a theorem in [18] which gives
the corresponding result in continuous time.

Theorem 2.1: Let 2(M x U, M, f) be a nonlinear discrete-
time system and let A be an analytic involutive constant-
dimensional distribution. Then if A is a locally controlled
invariant

2.5)

fux:'Q) C A+f(Y(MXU)). (2.6)

Conversely, if (2.6) holds and if both f;! () N V(M x U) and
f(x, *):U = M have constant rank, then A is locally controlled
invariant.

Remark 2.2: The constant rank assumptions will hold on an
open dense subset of M X U and on such a subset (2.6) is then
both necessary and sufficient.
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Proof of Theorem 2.1: Assume A is locally controlled
invariant. Then by Lemma 2.1 there exists a coordinate chart pair
(x, u) in which A is invariant. In these coordinates one easily
verifies that (2.6) holds. But (2.6) is coordinate independent, and
hence the necessity is shown.

For the sufficiency, let (x, #) be a coordinate chart pair such
that A = span {d/dx', - - -, 3/3x*}. Denote the components of f
by (f', - - -, /™. Then under the constant rank hypotheses (2.6) is
equivalent to the local existence of analytic functions o/ (x, u)
such that

f’

20 & W+ 2 2.7

(x, u)a,(x, u)=0

forl=k+1,---,nandj = 1, - -+, k. Let P be the annihilating
codistribution of A (i.e., ker P = A). Then both f*P and x*P are
involutive codistributions on M X U, and moreover, Q := f*P
+ «*P is also involutive (since the intersection of two involutive
distributions is mvolutlve) In the above local coordinates one has
P- span {dx"*‘ . dx"} and Q = span {dx*“ oo, dxn,
5, (8f"+'/ax') dx’ + Oy (af"“/auf) dw, .-+, T5_, (af"/
ax’) dx' + =i, (3f"/ouw’) du’} From (2. 7), 1t follows that ker
Q = span {3/3x/ + 7 ofd/du'j =1, -, k} + ker span
{Sm @ /ou) dul, -, 5m  @f"/ow) duf dx!, - -+, dxy.
This last term is precisely V(M x u)n f 4), and hence ker
Q has constant dimension. Thus, letting E = ker Q, one has that
E is a regular distribution on M X U such that #, £ = A and
f«{E) C A. Therefore, by d) of Lemma 2.1, A is locally
controlled invariant. O
Example 2.4:

a) Let Z(R” x R™, R" f) be a nonlinear discrete-time
system on R", and let A be an analytic involutive constant-
dimensional distribution on R". Then in standard rectangular
coordinates (2.6) can be rewritten as

af(x, u)
ox

» € A(f(x, u))+span {éﬂ%i’} 2.8)

for each (x, u) € R” X R™ and v € A(x). The constant rank
hypotheses are that span {a € R™|df(x, ¥)/du a € A(fix, u))}
and span {df(x, u)/0u} each have constant dimension. Due to
analyticity, this will always be true at least ‘‘almost everywhere.”’

b) For a linear system T(R” X R™, R", Ax + Bu) and
subspace ¥V C R", (2.6) becomes

AV C V+Im B. (2.9)

The constant rank hypotheses are that InB N ¥ and ImB have
constant rank, which are of course always true.

III. MAXIMAL CONTROLLED INVARIANT DISTRIBUTIONS

In this section, a slightly weaker notion than local controlled
invariance will be introduced. It will be shown that with respect to
this weaker property, a maximal such distribution contained in a
given distribution exists. This will be the nonlinear analog of the
linear result that a maximal (A4, B) invariant subspace contained in
a given subspace exists. An algorithm for calculating these
maximal distributions will be given.

Definition 3.1: A distribution A is said to satisfy the LCI (local
controlled invariance) condition if

fux7' Q) C A+ (V(B))

on an open dense subset of M x U.
The following lemma is important.
Lemma 3.1:
a) Let A, and A, both satisfy the LCI condition; then so does
their sum A; + A,.

@3.1)
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b) Let A satisfy the LCI condition; then so does its involutive
closure A.

Proof: a) is true by the linearity off* For b), let X;, X; €

7 '(A), and note that X; can be written in the form X; = a;(x) 3/
ax + Bi(x, u) 8/0u in a local coordinate chart. Equation (3.1)
implies that on an open dense subset of M X U there exist vector
fields Y; € V(M x U)suchthat f(X; — Y) C Afori = 1, 2.
Thus, [X; - Y, X; — Y2] C I l(A) which equals f;'(A) on an
open dense subset. But since [X;, Y]] € V(M x U), due to the
form of X, and since [Y;, Y] € V(M X U), it follows that
X1, Xa]l € A + f(V(M x U)) on an open dense subset of 1[5!

x U.
Thls yields the following result.

Theorem 3.1: Let K be an involutive distribution on M. Then
K contains a maximal distribution A* satisfying the LCI condi-
tion; moreover, A* is necessarily involutive and on the open dense
subsets of M X U and M where the constant rank hypotheses of
Theorem 2.1 are satisfied, it is locally controlled invariant.

Proof: Define a linear partial ordering on those distributions
that satisfy the LCI condition by A; < A, if A; C A, (pointwise).
Then Lemma 3.1 and Zorn’s lemma [33] yield the first part of the
result, once one notes that the zero distribution satisfies the LCI
condition. The second part follows from Theorem 2.1. O

It can now be seen why the LCI condition was introduced: if A,
and A, were regular locally controlled invariant distributions, A,
+ A, may not be, since its dimension may not be constant, and
hence Zorn’s lemma could not be applied. However, using
Lemma 2.1 the following proposition can be shown.

Proposition 3.1:

a) Let A, and A; be two regular locally controlled invariant
distributions such that dim A; + A, is constant. Then A; + A, is
locally controlled invariant.

b) Let A; and A, be two analytic locally controlled invariant
distributions. Then A; + A, is locally controlled invariant on an
open dense subset.

An algorithm will now be given for calculating the maximal
distribution satisfying the LCI condition which is contained in a
given involutive distribution. Although such distributions are not
the objects for which one searches when trying to solve synthesis
problems, they are nevertheless important since: 1) one will have
obtained a maximal locally controlled invariant distribution on an
open dense subset; 2) any regular locally controlled invariant
distribution is contained in one; 3) under certain constant rank
conditions it is the maximal locally controlled invariant distribu-
tion.

The D*-Algorithm

Let K be an involutive analytic distribution on M. Define the
following sequence of distributions on M X U:

=7, '(K)
Dm+l={X € D"|f X C n, D" +f (V(MxU)) on an
open dense subset of Mx U}

and set D* = limy., D™, A* = 7, D* a
Theorem 3.2: The D*-algonthm possesses the following
properties.

a) It is well defined, each D™ is involutive, and the indicated
limits D* and A* exist.

b) A* is the maximal distribution contained in K which
satisfies the LCI condition.

¢) If at each step D™ has constant dimension, then D* =
D*, where k = dim K.

d) In any case, D* = D* on an open dense subset, where k
= dim K.

Proof:

a) D° is clearly a well-defined involutive distribution

which projects well to M. Assume that D™~ ! is such a
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distribution. Then the linearity of f, gives that D™ is a well-
defined distribution. The proof that D™ is involutive is the same as
part b) of Lemma 3.1. It is clear that V(M x U) C D™. Thus,
D™ is an involutive distribution on M X U containing the vertical
vector fields, and hence 7, D™ is well defined. D* exists since the
D™s are nested. A* exists since D* is clearly involutive and
contains the vertical vector fields.

b), c), and d) follow the same lines as [34, Theorem
4.1]. O

Example 3.1:

a) Let Z®"” X R™, R" f) be a nonlinear discrete-time
system on R”". A distribution A satisfies the LCI condition if (2.8)
holds ‘almost everywhere’’ (the reason for the almost every-
where is purely technical). The D*-algorithm can be rewritten as

A'=K
am+i=(x € am| X% y  am(fex, w)+m XL
ox u
for almost all (x, ¥) € R"XR™}
A*= lim A™.

m-—>c

b) Let Z(R” x R™, R", Ax + Bu) be a linear system and V'
C R”" be a subspace. Then V satisfies the LCI condition if and
only if it is (4, B) invariant. The D*-algorithm is then the usual
V*-algorithm [1, p. 91].

IV. DISTURBANCE DECOUPLING

This section will formulate a disturbance decoupling problem
for the class of discrete-time systems considered in this paper. The
property of being disturbance decoupled will be shown to be
equivalent to the existence of a certain invariant equivalence
relation. This will lead to a natural local version of the disturbance
decoupling problem for discrete-time systems which involves
invariant distributions. The results of Sections II and III will be
used to give necessary and sufficient conditions for its solvability.
This last part will parallel the result of [9] for continuous-time
systems.

Definition 4.1: A discrete-time nonlinear control system with
disturbances is a 4-tuple Z(W, M x U, M, f), where W, M, and
U are analytic manifolds and f:M X U X W — M is an analytic
mapping. As before, M and U are the state and control spaces,
respectively, W is the space of disturbances. The dynamics are
given by Xi41 = flXk, uk, wi). If outputs are present, that is,
if there is an analytic mapping h:M — Y, Y being an analytic
manifold, then the notation Z(W, M x U, M, f, Y, h) will be
used. The output is then y, = h(x;). In the following, & will
denote the projection fromM X U X W - M x U and 7’ will
denote the mapping 7o# so that 7':M X U X W — M.

In this context state variable feedback becomes the following.

Definition 4.2: A feedback function for a system with
disturbances is a diffeomorphism of the form (y, Ido%), where
v:M x U — M x Uis afeedback in the sense of Definition 2.2,
Id:W — W is the identity function, and #:M X U x W — Wis
the canonical projection. In local coordinates (x, ¥, w) one has,
with a slight abuse of notation, foy(x, u, w) = flx, y(x, u), w).
Note that this definition reflects the (implicit) assumptions that
one can neither measure nor modify the disturbances directly.

Asystem (W, M x U, M, f, Y, h) is said to be disturbance
decoupled if the output does not depend upon the disturbances.
More precisely, this means that for each initial condition x,, time
k, input sequence ()1, and for arbitrary disturbance sequences
(w);>, and (W)~ ,, one has

s Uk—1y Wi, 00, Wioy)

Tery Ugoy, Wy, ot

Yi(Xo, Uy, *°

=Yi(Xo, Uy, s Wi-1) @.1
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where y, = h(x,), for the x;’s defined in the obvious way. The
disturbance decoupling problem is to find, if it exists, a
feedback function vy such that S(W, M x U, M, foy) is
disturbance decoupled.

Proposition 4.1: (W, M x U, M, f, Y, h) is disturbance
decoupled if and only if there exists an equivalence relation R on
M such that, whenever xRX, one has that

h(x) = h(x) 4.2

and
S, u, wWRf(X, u, W)

for all u, and for arbitrary w and w.

Proof: Assume there exists an equivalence relation R on M
satisfying (4.2). Let M/R denote the set of equivalence classes.
Then (4.2) gives that T projects, in a set theoretic sense, to a
system on M/R

Fr1=F (X, 1)
Yi=h(%)
having the same input-output mapping as £, from which it is clear
that y, does not depend upon the disturbances. On the other hand,

for fixed x and X, define xRx if, for arbitrary sequences )2,
(wi);':oi(wl);:or
Yi(x, uo, Wi 1)

=yk('\;s Uy, **

Cee, Up_q, Wo, .

Ty Uk-1y Wo. Tty wk—l)

forall k = 0, 1, 2, --- for the y,’s defined in the obvious way.
Then it is easily checked that R is an equivalence relation
satisfying (4.2). O

Remark 4.1: For linear systems, one can show that R
corresponds to a linear subspace of the state space. For nonlinear
systems an important question, not addressed here, is when are
the orbits of R (locally immersed) submanifolds of M? In other
words, when does R correspond to a foliation induced from a
distribution? (It appears that Sard’s theorem may be useful here.)

Hence, to solve the disturbance decoupling problem, one must
give conditions for the existence of a feedback function 7 so that,
the closed-loop system will admit an equivalence relation satisfy-
ing (4.2). However, since such conditions would necessarily
involve global computations, one is led to localizing the problem.
Towards this end, assume that the equivalence relation R of
Proposition 4.1 comes from a foliation F with associated
distribution A. Then an easy calculation gives that (4.2) is locally
equivalent to: 1) ,(A) = 0, 2) f(*, u, w),A C A, and 3) f,(TW)
C A. This leads to the following definition.

Definition 4.3: The disturbance decoupling problem is /ocally
regularly solvable for a system (W, M x U, M, f, Y, h) if
there locally exists a feedback vy and a regular distribution A such
that

a) h,(A)=0;
b) (fey)(-, u, w),A C 4;
¢ (fo7),(TW) C A.

Remark 4.2:
a) Let (x, u, w) be a local coordinate chart pair. Then the
above gives that f = foy has the following local form:

Xio1=F1(xks )
Xeo1=FoXks Xty Uiy Wi)
Ye=h(xg) 4.3)

for properly chosen (x!, x?).
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b) If by a regular solution to the disturbance decoupling
problem [3] one means that there exists a regular foliation & such
that M/ is a smooth manifold and the system foy projects to a
smooth system f on M/, then Definition 4.3 clearly expresses
the local necessary conditions. On the other hand, (4.3) shows that
the system is locally disturbance decoupled.

The results from Sections II and III will now be used to give
conditions for the local regular solvability of the disturbance
decoupling problem for discrete-time systems.

Theorem 4.1: Let 3(W, M x U, M, f, Y, h) be a nonlinear
discrete-time system with disturbances. Let K = ker A, and let
A* be the maximal LCI distribution contained in K. Then on the
open dense subsets where A*, fL}(A*) N (VM x U) x TW)
and flx, -, *):U X W — M have constant rank, the disturbance
decoupling problem is locally regularly solvable if and only if
f«(TW) C A*.

Proof: The necessity is clear once one notes that c¢) of
Definition 4.3 is equivalent to f,(TW) C A* since the feedback
function cannot depend upon the disturbances. _

For the sufficiency, let B = M X U X W and recall that 7’:B
— M is the natural projection (see Definition 4.1). Let E be the
regular distribution on B satisfying 7 ,E = A* and f,(E) C A%,
which the proof of Theorem 2.1 constructs for the system (B,
M, f). Since £, (TW) C A¥, it follows that TW C E, and hence
E’ = w,E is a regular distribution on M x U. Moreover, 7, E’
= m, oM E = w E = A* and f(E’') C f(E' X TW) =
J«(E) C A*. Thus, E’ is a regular distribution on M x U
satisfying all of the conditions of part c¢) of Lemma 2.1, and
therefore a feedback v can be constructed independently of the
disturbance which makes A* invariant. (Note that A* was
automatically controlled invariant, but that the required feedback
could have depended on the disturbances.) Thus, b) of Definition
4.3 is fulfilled; a) is satisfied since by construction A* C ker hy.
Finally, c) follows from f,(TW) C A* since v does not depend
on the disturbances. O

Example 4.1:

a) Consider a nonlinear discrete-time system with distur-
bances Xe.1 = f(Xk, Uk, Wi), Vi = h(x;), defined on R”. To
locally solve the disturbance decoupling problem, the key object is
the maximal locally controlled invariant distribution contained in
the kernel of the output function 4. Let K(x) = ker h,(x) = {»v
€ R"|(3h(x)/8x) v = 0}, and let A* be the maximal locally
controlled invariant distribution contained in K. Then under
certain constant rank hypotheses (see Theorem 4.1 and Example
2.4), the disturbance decoupling problem is locally solvable if and
only if af(x, u, w)/dw C A*(f(x, u, w)).

b) The above result should be compared to the linear one;
namely, let x,,, = Axy + Bu, + Dw,, y, = Cx, be a linear
system with disturbances, then the disturbance decoupling prob-
lem is solvable if and only if InD C V*, where V* is the maximal
(A, B) invariant subspace contained in the kernel of C.

Remark 4.3: In [35]-[37], discrete-time nonlinear control
systems are studied from an input/output point of view via their
generating series. It has been announced in [35] that the
disturbance decoupling problem can be solved using such meth-
ods, although the details will appear elsewhere.

V. CONCLUSIONS AND COMMENTS

The basis for a geometric approach to solving certain synthesis
problems for discrete-time nonlinear control systems has been
developed. The key element was the introduction of invariant
distributions. Necessary and sufficient conditions were given for a
distribution to be invariant after feedback, i.e., to be locally
controlled invariant. In addition, certain maximality properties
were established for locally controlled invariant distributions, and
an algorithm was given for their calculation. Finally, these results
were applied to the disturbance decoupling problem to give
necessary and sufficient conditions for its local solvability.

The reader has probably noted that, with the exception of linear



GRIZZLE: CONTROLLED INVARIANCE FOR DISCRETE-TIME NONLINEAR SYSTEMS

systems, ‘‘affine’’ discrete-time systems of the form x,,, =
fo() + Zi=, ufi(x;) were never considered explicitly. This is
because if a system Y is affine in coordinates (x, %), a nonlinear
change of coordinates (¢(x), #) will result in a ‘‘nonaffine’’
system. Hence, from a geometric point of view, discrete-time
affine systems are not ‘‘natural’’; this is in contrast to the
situation of continuous-time systems where ‘‘affineness’’ is well
defined. On the other hand, if U is a vector space, the notation of
affine feedback is well defined. Hence, under what conditions
can the feedback required to achieve controlled invariance be
taken to be affine (i.e., y(x, ) = a(x) + B(x)u), is a well-posed
and interesting question. The answer appears to be intimately
related to the distribution E on M X U associated to a distribution
A on M, and will be addressed elsewhere.

Finally, the results of this paper can be easily extended to a
more general class of systems by everywhere replacing m:M x U
— M with a general fiber bundle 7:B = M. Assume that B is
equipped with an integrable connection H [38]. Then a distribu-
tion A is said to be invariant if f, X’ C A for all X € A where X'
is the horizontal lift of X. Lemma 2.1 and Theorem 2.2 can then
be interpreted as giving the necessary and sufficient conditions for
the local existence of a connection on B with respect to which A is
an invariant distribution. The relations between feedback and
connections are nicely treated in [17].

APPENDIX

This Appendix considers the problem of disturbance decoupling
with partially measurable disturbances; this is motivated by [39]
which addresses an analogous problem in continuous time which
arose in a practical application. One seeks a feedback which
depends on the state, controls, and measured disturbances and
which renders the closed-loop system disturbance decoupled. So
assume the disturbance space can be factored as W = W' x W2,
where W' represents the measured disturbances.

Theorem A: Let S(W' x W2, M x U, M, f, Y, h) be a
discrete-time nonlinear system with partially measurable distur-
bances. Let K = ker h, and let A* be the maximal LCI
distribution contained in K. Then on the open dense subsets of M
and M X U where A¥*, f;'(A*) N (VWM x U) x TW' x
TW? and fix, *, *):U X W — M have constant rank, the
disturbance decoupling problem with partial measurements of the
disturbances is locally regularly solvable if and only if f,(TW")
C A* + f(V(M x U)) and f(TW? C A*.

Proof: The necessity is easy. For the sufficiency, let E be
the regular distribution on B = M x U x W' x W? satisfying
n,E = A* and f, E C A*, which the proof of Theorem 2.1
constructs for the system (B, M, f). To guarantee that y can be
constructed independent of W2, it must be shown that E projects
well to M x U x W, but this follows from f,(TW?) C A* for it
implies that TW? C E. To further ensure that y can be
constructed such that the ‘‘ W'-component’’ is. the identity (i.e.,
the feedback y:M x U x W' — M x U x W' does not modify
the disturbances), one must show that E projects well to W'; but
since f(TW") C A* + f(V(M x U)), one obtains the
existence of a vector of functions such that 3/dw! + m(x, u, w)
d/du € E, and hence 1, ,E = TW!, where 7;:M x U x W' X
W? — W! is the canonical projection. ) O

Remark A: Let x,,, = Axi + Bu, + D'wy + D*wi, y =
Cx, be a linear system with partial measurements of the
disturbances. Let V* be the maximal (A4, B) invariant subspace
contained in the kernel of C. Then the disturbance decoupling
problem with partial measurements of the disturbances is solvable
if and only if span D' C V* + span B and span D> C V*.
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