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ABSTRACT

This paper presents a novel method to address actuatoatatuior nonlinear hybrid systems by directly in-
corporating user-defined input bounds in controller designparticular, we consider the application of bipedal
walking and show that our method (based on a quadratic pmogmag (QP) implementation of a control Lyapunov
Function (CLF)-based controller) enables gradual peréorce degradation while still continuing to walk under
increasingly stringent input bounds. We draw on previouskviny the authors which has demonstrated the effec-
tiveness of CLF-based controllers for stabilizing periogdaits for biped walkers [1]. The current work presents
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a framework which results in more effective handling of cohsaturations and provides a means for incorporat-
ing a whole family of user-defined constraints into the oml@omputation of a CLF-based controller. The paper
concludes with an experimental validation of the main rssah the bipedal robot MABEL, demonstrating the
usefulness of the QP-based CLF approach for real-time imbohtrol.

1 Introduction

Biped locomotion presents an interesting control chakergpecially since the dynamic models are typically hybrid
and underactuated. The method of Hybrid Zero Dynamics (H2D)21] has provided a rigorous and intuitive method for
implementing periodic walking gaits in such robotic sysseiy driving the system to a lower-dimensional zero dynamic
manifold on which the walking gait exists as an exponertistable periodic orbit. Typical experimental implemeiaat
of the HZD method has relied on input-output linearizatiothwPD control to drive the system to the zero dynamics
manifold [17], but recent work by the authors has demoreirahat control Lyapunov function (CLF)-based controllers
can be used to effectively implement stable walking, botsinmulation and in experimental contexts [1].

A variant formulation known as an exponentially stabilgzitontrol Lyapunov function (ES-CLF) provides a means for
not only guaranteeing exponential stability of a systemdis providing an explicit bound on the rate of convergence.
the case of hybrid systems (such as biped robots with immufebt-ground impact), an even stronger convergence piope
is required, and therefore we turn to rapidly exponentistbbilizing control Lyapunov functions (RES-CLRE)This type
of CLF, which will be reviewed in more detail in Section 2, anporates an additional tuning parameter which allows the
user to directly control the rate of exponential convergenthe work in [1] established the key theoretical propsrté
CLF-based controllers in a hybrid context, and also preskaidescription of the successful experimental implentientaf
a CLF-based controller on the robotic testbed MABEL. Howgitavas also noted that the user-defined control saturaition
were active throughout a large portion of the walking experit, and that these saturations had a significant impact on
the actual performance of the CLF-based controller as cosdpa the predicted performance based on theoretical lsound
In this context the hard torque limits were “blindly” appli¢o the calculated CLF-based control torques, withoutiekpl
consideration of the potential effect on the controlleffpenance.

The impact of actuator saturation in feedback systems énafetrimental to stability and performance, and it thereefo
has been the study of a large body of research. (See [2] farios, which provides an extensive bibliography on thectppi
In the context of robotic biped locomotion, torque satunasi can limit the ability to recover from disturbances arglte
in instability. Typically, torque saturation is considéreuring the design of walking gaits, where actuator lintitas are
included as inequality constraints for an offline gait-gasbptimization routine (see [10] for instance). Howevehjles
this approach can guarantee that the torques required guetitalic walking gait are within limits, it does not accotot
disturbances such as rough terrain or model uncertaintiéshwdemand higher torques during recovery phase. In other
work, such as [16], an optimal decision strategy in the fofrarooptimal control problem is solved point-wise in time to
minimize the deviation between the joint accelerations theddesired joint accelerations subject to input condisainhe
authors also extend this to handle robustness when themtadl is not known precisely. Further, in [4], torque satiorss
are incorporated into calculation of a feedback controigtesd to track a time-based reference trajectory, withkiregerror
traded off in order to keep torque controls within limits.

The main contribution of this paper is to provide a novel colndesign framework for application to bipedal robotics
that enables gradual performance degradation while siilticuing to walk under a range of stringent torque limitse W
achieve this through an alternative method of controllgglémentation based on quadratic programming (QP), thaimlgt
preserves (as much as possible) the desirable performaacacteristics promised by the CLF theory, but also respect
the user-defined bounds on the inputs. Recent work in [19]shag/n that QP implementation of CLF-based policies
can be made feasible for real-time implementation with ddaeh processor speeds. However, this work focuses on linear
time-varying systems, and not the nonlinear hybrid systemsonsider. The use of QP can also be found in biped control
applications, as in [3] for realizing desired link accetamas, in [18] for maintaining balance after disturbancestodifying
predefined reference trajectories, and in [7, 22] for apyglynodel predictive control approaches to biped controé ifain
contribution of the current work is to use QP to obtain RES-CGlonvergence properties (to the extent possible) for a
nonlinear hybrid system in the face of input constraintsl damonstrate the practicality of the approach through a non
trivial experimental implementation on a biped robot.

The paper proceeds as follows. In Section 2, we state thenigaaf the relevant model and review the results on CLF-
based control of biped robots from [1]. Section 3 discussestverse effects of user-specified control input saturaitbn
the CLF-based controller, providing the motivation for @t 4 which introduces a new method for using quadratic pro-
gramming to appropriately handle torque saturation cairgs for the CLF-based controllers. Section 5 presentalatinon
and experimental results, and we conclude with a summargdtic 6.

1This stronger convergence property is required to meet thditions described in Theorem 2 of [1], which relates stgbif a hybrid periodic orbit
in the zero manifold to stability of the orbit in the full space



2 Control Lyapunov Functionsfor Hybrid Systems Revisited
In this section we introduce the model for a biped robot aniéere the recent innovations introduced in [1] for using
control Lyapunov functions to control such systems.

2.1 Model
The dynamics for a biped robot (such as MABEL, the robot dbeedrin Section 5) can be derived by the standard
method of Lagrange and take the form

D(a)4+C(a,4)q+G(a) = B(a)u, @)

whereq € 2 is the robot configuration variabla,represents the motor control torques, 8@ andG are respectively the
inertia matrix, Coriolis matrix, and gravity vector. In thase of MABEL the configuration vectqris 7-dimensional and is
as described in [17] and depicted in Figure 7a, while 4-dimensional. Reformulating the dynamics (1) as

HECERCEn @

we also define output functions of the fowtg).2 The method of Hybrid Zero Dynamics (HZD) aims to drive thegpat
functions (and their first derivatives) to zero, thereby @sipg “virtual constraints” such that the system evolveston
lower-dimensional zero dynamics manifold, given by

Z={(a,9) e T2|y(a) =0, Lty(a,q) =0}, 3

whereL ¢ denotes the Lie derivative [11].

2.2 Input-output linearization
If y(g) has vector relative degree 2, then the second derivaties thle form

y=L%y(q,0) + LgLry(a, q)u, @)

where the decoupling matrixLy(q, q) is invertible due to the vector relative degree assumpfitren defining

u*(q,8) := —(LgL1y(a, ) "*L3y(q,4), (5)

and applying a pre-control law of the form

u(g,q) = u’(q,q) +1 (6)

or

u(g,d) = u*(q. ) + (LoL1y(c, @) 'p ()

render<Z invariant (providedi vanishes orz). (Note thatu*(q,q) is a feed-forward term representing the torque required to
remain onz.)

Under these assumptions, the dynamics (2) can be decomipdse@ro dynamics statese Z and transverse variables
n= [y y}. (See [11, 21] for details.) Under a pre-control law of thenfd6) or (7), the closed-loop dynamics in terms of
(n,z) take the form

h:f(nvz>+g_(n>z)p- (8)
z=1,(n,2). 9)

2More specifically, the output functions take the foyta) := Hoq — y4(8(q)), whered(q) is a strictly monotonic function of the configuration variabl
g, Ho is an appropriately-sized matrix prescribing linear comtiames of state variables to be controlled, apd-) prescribes the desired evolution of these
quantities. (See [17] for details.)



For the work presented here, we will use the pre-control [Bve¢ thatf (n,z) = Fn andg(n,z) = G, where

F:{gg}, G:m. (10)

The most common approach to controlling the transversabias (i.e. driving) to zero) relies on input-output lin-
earization with PD control, using (7) with

whereKp andKp are diagonal matrices chosen such that

. 0 |
w8 L] w)

is Hurwitz.

2.3 CLF-based control
Recently, a new method based on control Lyapunov functiassieen introduced in [1], which provides an alternative
method for controlling the transverse variables. That w@ttan be summarized as follows.
A function Vg(n) is arapidly exponentially stabilizing control Lyapunov fuieet (RES-CLF)or the system (8)-(9) if
there exist strictly positive constarts, ¢y, c3 such that for all 0< € < 1 and all state$n, z) it holds that
C2
calnf? < Ve(n) < Slinl® (13)
. C
inf |LiVe(n.2) + Lave(n. D 2Ve(n)] <0, 14)

whereU is the set of all possible controls. One way to generate a RESV;(n) is to first solve the Lyapunov equation
ATP+PA= —Qfor P (whereAis given by (12) andQ is any symmetric positive-definite matrix), and then define

1 1
wim=n" 5 {| P[5 | n=n"mn, (15)

for which we have

LiVe(n,2) =n" (FTP.+P:F)n,
LgVe(n.2) = 2" R.G. (16)
Associated with a RES-CLF is the set of gffor which (14) is satisfied,
Ke(n,2) = {HE Ut LVe(n,2) +Lave(n, 2+ 2Ve(n) <0},

and one can show that for any Lipschitz continuous feedbankal law (N, z) € Ke(n,z), it holds that

1 /o a
In®l<Zy/ce =IO, (17)

i.e., the rate of exponential convergence to the zero dycemanifold can be directly controlled with the constattirough
%3. There are various methods for finding a feedback controlpgin, z) € K¢(n,2); in practical applications, it is often



important to select the control law of minimum norm. If wedgt= Am'” (where)\m.n andAmax denote the minimum and
maximum eigenvalues of a matrix, respectively) and define

Woe(n,2) = LVe(n,2) + 2Ve(n,2)
W1e(n,2) = LgVe(n,2)", (18)

then this pointwise min-norm control law [8] can be expliciormulated as

Yoe(N,2W1e(N,Z
He(n,2) = W if Woe(n,z) >0 o
0 if Yoe(n,2) <O

wherein we can takg = | in (7).

3 Adverseeffectsof torque saturation on the CLF-based controller

The approach described in Section 2 was successfully ingiead on the robotic testbed MABEL, producing a stable
walking gait. (See [1] for a description of the experimentl @reference to the online video.) However, analysis of the
experimental data reveals that the user-imposed satnsatio the control torque inputs were active throughout miicheo
experiment (see Figure 1) and significantly affected thdempentation of the CLF-based control method. Though necgss
to prevent unsafe or damaging motions, these saturaticstradmts were not applied in a manner that appropriatelygrred
the qualities of the CLF-based controller, and therefoeabiminal bounds given by (14) and (17) were frequently w&ala

Limits for control inputs are typically imposed by the userensure that motor torque specifications are not exceeded.
When the calculated ideal control effort frequently excetts prescribed bounds and must therefore be truncated, the
controller performance is degraded and theoretical pedioce measures may be violated, as in the experiment dedcrib
above. More importantly, when a control input is saturatled,system runs in open-loop and is no longer able to resgond t
increasing errors in tracking, often leading to eventuilife.

Designing controllers which respect such bounds is impbrend therefore a variety of approaches have been devel-
oped, such as quasi-linear control [5], which offers oneitsmh for a special class of systems. In the specific contéxt o
input-output linearization, one approach is to attempt &prthe actual input constraints for the original system te-co
straints on the corresponding control input for the lineadisystem. (See [12], for instance, where input-outpagliization
is combined with linear model predictive control (LMPC) toplement such an approach.) The main objective of the curren
work is to present a method for implementing CLF-based odletis for a general class of nonlinear systems in a manner
which respects the user-specified input bounds, making fueaalratic programming with relaxations.

4 Formulating the CLF Min-Norm controller asa Convex Optimization
To design such a controller, we proceed by recognizing kfegpbintwise min-norm controller in (19) can be equivalentl
expressed as a convex optimization problem formulated as

LT
min - Wy
st Woe(N,2) +Pie(n,z u<0.

(20)

The inequality constraint above enforces the bound onhe-tierivative of the CLF given by (14), which can be equintije
expressed ag (n) < —cz/e Ve(n). The solution of this convex optimization problem is theaey the controller specified
in (19).

Remark 1. To clearly see thaf20)is in fact equivalent t§19), note that fonpp¢(n,z) < 0, the above optimization i(20)
has the optimal solution*= 0. This is exactly the second case(@®). Next consideringbo¢(n,z) > 0 and minimizing
"1 subject to the equality constraifi ¢ (1, 2) + W1 (N, z) = 0, we have the analytical solution of the equality-consteain
quadratic program through the Lagrange-dual method as tyalee first case 0{19).

Once we have expressed the pointwise min-norm controllarcasvex optimization problem, we can introduce bounds
on the control input in the form of additional constraintstite convex optimization problem. However, for these ptiddi
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Fig. 1: Motor torques (from the MABEL experiment describedll]) for the stance and swing legs for 4 consecutive steps of
walking with the minimum-norm CLF-based controller givern(19). The thicker plots indicate the experimental (sdaadh
torques, while the thinner plots are the raw (unsaturatdjues computed by the CLF-based controller. For the leteang
motor (top graph), the raw (desired) control torque is aeBmnore than 400% of the (actually implemented) saturated va

Moreover, this occurs over a significant duration of the shéqte that the symbols,_a, umLs indicate the motor torques at
theleg angleandleg shapecoordinates respectively, which are linear combinatidrite@thigh and knee angles [15].

conflicting additional constraints to be satisfied, we filesta to relax the bound on the time-derivative of the CLF. We do
this by requiringve(n) < —cs/€ Ve(n) +di, for somed; > 0. The new optimization problem is formulated as

min "+ py df
p.dy

st Woe(N,2) +Wie(n,2) p<dy, 21)
(LoLsy(a,G) ™ P> (Umin—U"),
(LoL1¥(0,§) " < (Umax—U"),

wherep; is a large positive number that represents the penalty axirgd the inequality constraints antlis defined by (5).
The last two inequalities above are torque constraints aserngially enforceinin < u < umaxWwith u as defined in (7).

The formulation in (21) deals with the non-ideal context afusated control inputs and therefore cannot ensure the
same type of stability claims as those provided by Theorerf2]psince relaxations in the bound & result in a loss of
the RES-CLF quality fok;. However, given a prescribed convergence bound and a satuwhtion constraints, the control
described by (21) is guaranteed to perform at least as welhgsther controller in the sense that it will kegpin the
smallest possible level set. In this sense, the CLF-basattiadier (21) can “match” the performance of any other colfer
in regards to bounding the growth of the RES-CU We also note that, though (21) as formulated does not gtesran
Lipschitz continuity of the resultant controller, the wank[14] provides sufficient conditions to ensure Lipschitmtinuity
for these types of problems.

Remark 2. We note that21) can also be formulated with “soft” bounds on the control inpusuch that the control input

u in (7) satisfies win — d2 < u < Unax+ ds, for some d,ds > 0. This alternative formulation provides the control desgn
with parameters to trade off violation of the bound on thestiderivative of the CLF with that of the saturation bound loa t
control input. However, in most practical cases the boundshe inputs appear as hard bounds which cannot be relaxed,
and the current work will focus only on this case.

Remark 3. Note that in(21) we have depicted.u, and unax as constants. However, since the convex optimization @nobl
is to be solved at every instant in time, these values candaf@|a as functions of time or system state, leadindyttamic



torque saturation For instance, the inequality constrainti(t,q,d) < u < umax(t,q,q) can be specified with time and
state-dependent dynamic bounds.

Remark 4. In Section 2.2 we presented an input-output linearizingradler based on PD control, given ki) with (11).
As formulated, the controller has no built-in means for deglwith saturation constraints, but we note that this cotiér
can also be formulated as a convex optimization problemagmls to(21), as

4
; T 2
min uu+d pid

i; -

U,dl,d27d3,d4
Kp Kb
s.t. Lthu= —L2h— —h— —L¢h
Lokt e g2 (22)
+ [dlv"'ad4]Ta
u Z Umim
U < Umax-

(Here Kp and Ky are diagonal matrices satisfying the Hurwitz assumption(ti?).) However, unlike the CLF-based
controller in (21), this formulation does not provide a clear correspondenegvieen the relaxations dnd performance of
the controller. (Here we consider controller performancetérms of imposing a bound af.) This highlights one of the
main advantages of using the QP implementation of the Clgedaontroller over the 10 controller (either the original
implementation or the QP version). Under active saturatiomstraints, the CLF-based controller relaxes the bound on
V; just enough to balance the conflicting requirements betwesformance and saturation constraints. In contrast, the
original 10 controller ((7) with (11)) “blindly” saturates controls, and the QP versid22) relaxes an equality constraint in
a manner that does not clearly correlate to the bound/gn

5 Simulation and Experimental Results

In this section we present both numerical simulation aneéerpental results to validate the performance of the contro
methods described in Section 4. Since experimental testifg ABEL was the ultimate goal, the numerical studies were
conducted first on a simple model of MABEL, followed by sintidas on a complex model of MABEL developed in [15],
which closely replicates the experimental setup. Thigfatiodel includes a compliant ground model as well as a model
that allows for stretch in the cables between the transomigsilleys. MABEL is a 5-link bipedal robot with point feetan
series-compliant actuation for improved agility and egesfficiency. The experimental setup has been describedusy
in [17] and is illustrated in Figure 7. For the simulationglaxperiments described here, the four output functiong wer
defined by the absolute pitch angle of the torso, the leg ghdlefor the swing leg, and the appropriately scaled leg-shape
motor position (LY for the swing and stance legs. The four control inputs aeddf-angle motor torquela.,, UmLA,)
and leg-shape motor torquenf s, UmLs,,) for the stance and swing legs respectively.
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Fig. 2: The RES-CLR/ and its derivative for the numerical simulations describe8ection 5.1. The figures depict the
results for four different torque bounds. Note that the tiergaturation gets more stringent as we progress from Case A t
Case D. In all the simulations, the same initial perturbaté of the periodic orbit was provided, as is evident in theng
exact initial values of the CLF for all cases. In particulzath joint angles and velocities were perturbed from themimal
values. For instance, the torso was perturbed to lean baidkwyean additional 3from the nominal.

51 Numerical smulation
5.1.1 CLF-QP controller under varioustorque bounds
The numerical simulation results presented here emplogtitebased controller with hard input constraints, as in.(21

We consider four separate cases with different control spgiven by,
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Fig. 3: Motor torque plots obtained by simulating the praab<LF-QP controller with four different cases of torque
saturation. (a) Motor torques for the stance (top two figuaesl swing legs (bottom two figures), and (b) Corresponding
errors in tracking the outpy{q), based on the numerical simulations described in SectiorEach figure depicts the results
for four different cases of input bounds. Walking stabilgymaintained in each case, but we note that the stringeqai¢or
bounds in Case C result in control inputs that are only pigise- continuous. For obtaining Lipschitz continuous cointr
inputs, see additional required conditions in [14].

where the input bounds get more stringent as we progress@asa A to Case D.

Simulations of a representative walking step with the algr (21) were run for each of Cases A-D; the corresponding
RES-CLFV; and its time derivative are presented in Figure 2. As can &e,der the stringent saturation in Case D, the time
derivative of the Lyapunov function violates the bound id)(&nd moreover actually becomes positive with a large Viaue
a part of the gait. Nonetheless, the controller is still dbldrive the errors to zero by the end of the gait. The resyitiput
torques and tracking errors are illustrated in Figure 3. Sdtaration effects are most visible in the plots in the finst third
rows of the figure; as expected, more restrictive torqueadimasult in increased tracking error. However, we obsdratthe
degradation in performance is gradual and walking stghdistill maintained for all cases (A-D) of input saturation

Remark 5. It should be noted that successful walking depends on pdeairokoices, and there are circumstances under
which the proposed controller does fail. For instance,rgjgnt saturation for g s, (corresponding to the stance knee) can
result in failure, since a minimum torque is required to halol the weight of the robot and prevent the stance knee from
buckling. For the case where errors at the start of the gadt significantly larger than those depicted in Figure 2 (irgtial
value of { is larger), stringent saturations such as those in Case Dleald to instability within a few steps.

To illustrate the effect of saturation on the walking limytcte, we also carry out simulations on the complex model of
MABEL. We use the controller given by (21) in closed-loop athlyze the phase portrait of the torso angle, subject to
several different saturation values. Figure 4 illustratestorso phase portrait for 15 steps of walking, and we ofestrat
stricter saturations result in (gradual) deterioratiotvaicking, as evidenced by deviations of the limit cycle fribva nominal
orbit. The saturation values used here differ from thosd usthe simulations described in the first part of this sec(gnce
the complex model differs significantly from the simple mibaed the required torques for walking are different), b th
approach is analogous, with bounds becoming increasieglyictive proceeding from Case | to Case IV.

5.1.2 Comparison of CLF-based controller with |O-linearizing PD control

Having demonstrated that the CLF-QP controller is capablerctioning, albeit at degraded performance, under vari-
ous levels of torque bounds, we will now attempt to compageefdlir controllers presented in this paper. In this sectien t
controllers are termed as (K) controller referring to the input-output linearizing controller, @jth (11); (b) CLF con-
troller referring to the CLF-based min-norm controller, (19); GYF-QP controllerreferring to the CLF-based min-norm
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that stricter saturations result in (gradual) deteriorain tracking, as evidenced by deviations of the limit cyftten the
nominal orbit.

controller posed as a quadratic program with additionaliirgonstraints, (21); and (dP-QP controllerreferring to the
input-output controller posed as a quadratic program aleitlg the additional input bound constraints, (22). For eath
these controllers, one step of walking is simulated withritieil error and with the restrictive input saturation coasts of
case C.

It must be noted that direct comparison of the performantleeo€LF controller and 10 controllers is difficult and some-
what anecdotal because of the heavy dependance on paranmiter \We note that for the CLF-QP controller, performance
depends on

selection of the RES-CLW,
the relaxation penaltp;, .
and the parameterwhich dictates the bound a1,

while the 10 controller is dependent on the selectiors ahd the parametetse andKp. For this comparison, we use the
samee for all controllers, however the relaxation penalty for tBeF controller and the PD gains for the 10 controller are
selected separately. A study of best procedures for tuhie@t.F controller and for comparison of controller perfonoa

is not the subject of the current work, but presents an istieng field of study for future research.

The controllers are compared in Table 1, and graphical teefihumerical simulations are presented in Figures 5-6. In
the particular simulations at hand, Table 1 illustrates timaler the same conditions, the CLF-QP controller sperelketst
amount of time having one or more actuators in saturationadsal results in the most energy efficient gait, as computed
by the specific cost of mechanical transport [6]. Howevemeted previously, comparison of controller performance is
somewhat anecdotal due to the reliance on paramter tunchthas the results in Table 1 should be viewed accordinglg. Th
comparison does suggest that the (non-QP) CLF controlidonpes the worst under input saturations since the comtroll
has no awareness of saturation constraints, and thus evem tvd actuators are not in saturation the controller does no
act aggressively to reduce the large errors that have huiltRigure 5 illustrates the RES-CL\g and its time-derivative
for all the controllers. For the two controllers which do itorporate knowlege of the input saturations (i.e. the @hH
IO controller),Ve grows considerably, although the 1O controller is able tkjy decrease the errors once the calculated
control torques are within saturation limits. Figure 6listirates the tracking errors for the controllers. Note thatCLF



Controller % Time in Saturation Cpq¢

10 (7), (11) 68% 0.021
CLF (19) 91% 0.092
CLF-QP (21) 23% 0.008
10-QP (22) 65% 0.016

Table 1: Comparison between the different types of comrslpresented in this paper when under hard input saturation
The second column represents the percentage of time fohwehie or more actuators are in saturation, and the third aolum
presents the specific cost of mechanical transport. Thétseme suggestive that CLF-QP may be the most efficient of the
four controllers, with less time in saturation likely retsog in lower cost of mechanical transport, but additionakistigation

is required to further explore the comparison.
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Fig. 5: The RES-CLR/ and its derivative for the numerical simulations describe8ection 5.1. The figures depict the
results for the four controllers presented in the papereuilder stringent torque limits.

controller is unable to control the growing errors and rssinl instability under these stringent torque bounds.

5.2 Experimental results

Motivated by the favorable numerical simulation results, proceed to test the controller experimentally on MABEL.
Experimental implementation of the CLF controller at réale speeds is a challenging task, since it requires cortipntaf
the system dynamics (2), the Lie derivatives of the ouydq}, and the CLF controller terms (18), as well as the solving of
a convex optimization problem. In order to meet hard reaktconstraints of 1 kHz, these computations must be conaplete
in less than 1 ms. By employing the custom-code generaticghadeCVXGEN [13] for solving constrained quadratic pro-
grams, we are able to solve the optimization problem in a femdned microseconds and meet the 1 kHz update requirement,
making experimental implementation feasible.

In this experiment, we implemented the CLF controller diésct in (21), with the CLF-bound penalty set@t= 50
and with torque boundgmin, Umax chosen such that8 < uma < 8, —12 < ums < 12. This experiment resulted in 70
steps of walking for MABEL and is portrayed in the video in.[{A photo sequence depicting one representative step is
also shown in Figure 8.) Figure 9 illustrates the resultantml torques; we observe that the user-specified contnahtds
are respected, as evidenced by the flattened control sigh#iie boundary areas. Note that the green squares on the plot
depict the time instances at which control bounds are nof wigth occur at moments in which the convex optimization
algorithm is not able to converge within the specified timestmaints. These occurrences are isolated and have no affec
the experimental system since a motor is not able to respotictm. Figure 10 illustrates the Lyapunov functi@rand its
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Fig. 6: Motor torque plots obtained by simulating four difat controllers with the same torque saturation. (a) Mtutayues
for the stance (top two figures) and swing legs (bottom twarég) and (b) Corresponding errors in tracking the ougpui,
based on the numerical simulations described in SectiarEadh figure depicts the results for the four controllersenéed
in this paper with hard input saturation. Only the CLF coli¢roleads to instability, while the 10, 10-QP and CLF-QP
controllers stabilize to the periodic walking gait. (Nobat this plot is not intended to serve as a decisive compadéthe
tracking capabilities of the CLF-QP vs. the 10-QP contnofighich will require further analysis), but does demortstthat
CLF-QP tracking performance surpasses the simple CLFaltettand is qualitatively similar to 10-QP.)

time derivative for this experiment. The fact that the LypawfunctionV increases at some points where the calculsted
is negative is most likely due to model uncertainty, sivices calculated (online) along trajectories of the partitithgarized
system (8) and depends upon the model dynamics througheheopitrol (7).

6 Conclusion

We have presented a novel method that explicitly addreapes $aturation in the feedback control design for achigpvin
walking in bipedal robots. The resulting controller enabdeadual performance degradation while still continumgvalk
under a range of stringent torque limits. We accomplishttinigugh an alternative method for implementing the poiséwi
min-norm CLF-based controller described in (19) in a marthat more appropriately handles input saturations. Numeri
cal simulation as well as experimental implementation rermahstrated that these control methods can be very useful in
practice, even in systems which require a high real-timerobanpdate rate. This method has great potential for affelgt
dealing with saturations in a variety of contexts, such aggudimited systems which could progressively lower udefined
torque saturations as the battery charge decreases, thmabnging the last bit of battery charge while allowings®m
performance to gracefully degrade. In addition to dynaroiquie saturation, we also note that this approach provides a
method for incorporating a whole family of user-defined ¢aaiats into the online calculation of controller effortrfthe
types of systems described here. Future work will constieetfects of varying throughout the gait, which may result in
an improved trade-off between convergence rate and saturaisponse over the course of the step.
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