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ABSTRACT
This paper presents a novel method to address actuator saturation for nonlinear hybrid systems by directly in-

corporating user-defined input bounds in controller design. In particular, we consider the application of bipedal
walking and show that our method (based on a quadratic programming (QP) implementation of a control Lyapunov
Function (CLF)-based controller) enables gradual performance degradation while still continuing to walk under
increasingly stringent input bounds. We draw on previous work by the authors which has demonstrated the effec-
tiveness of CLF-based controllers for stabilizing periodic gaits for biped walkers [1]. The current work presents
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a framework which results in more effective handling of control saturations and provides a means for incorporat-
ing a whole family of user-defined constraints into the online computation of a CLF-based controller. The paper
concludes with an experimental validation of the main results on the bipedal robot MABEL, demonstrating the
usefulness of the QP-based CLF approach for real-time robotic control.

1 Introduction
Biped locomotion presents an interesting control challenge, especially since the dynamic models are typically hybrid

and underactuated. The method of Hybrid Zero Dynamics (HZD)[20, 21] has provided a rigorous and intuitive method for
implementing periodic walking gaits in such robotic systems, by driving the system to a lower-dimensional zero dynamics
manifold on which the walking gait exists as an exponentially stable periodic orbit. Typical experimental implementation
of the HZD method has relied on input-output linearization with PD control to drive the system to the zero dynamics
manifold [17], but recent work by the authors has demonstrated that control Lyapunov function (CLF)-based controllers
can be used to effectively implement stable walking, both insimulation and in experimental contexts [1].

A variant formulation known as an exponentially stabilizing control Lyapunov function (ES-CLF) provides a means for
not only guaranteeing exponential stability of a system butalso providing an explicit bound on the rate of convergence.In
the case of hybrid systems (such as biped robots with impulsive foot-ground impact), an even stronger convergence property
is required, and therefore we turn to rapidly exponentiallystabilizing control Lyapunov functions (RES-CLF).1 This type
of CLF, which will be reviewed in more detail in Section 2, incorporates an additional tuning parameter which allows the
user to directly control the rate of exponential convergence. The work in [1] established the key theoretical properties of
CLF-based controllers in a hybrid context, and also presented a description of the successful experimental implementation of
a CLF-based controller on the robotic testbed MABEL. However, it was also noted that the user-defined control saturations
were active throughout a large portion of the walking experiment, and that these saturations had a significant impact on
the actual performance of the CLF-based controller as compared to the predicted performance based on theoretical bounds.
In this context the hard torque limits were “blindly” applied to the calculated CLF-based control torques, without explicit
consideration of the potential effect on the controller performance.

The impact of actuator saturation in feedback systems is often detrimental to stability and performance, and it therefore
has been the study of a large body of research. (See [2] for instance, which provides an extensive bibliography on the topic.)
In the context of robotic biped locomotion, torque saturations can limit the ability to recover from disturbances and result
in instability. Typically, torque saturation is considered during the design of walking gaits, where actuator limitations are
included as inequality constraints for an offline gait-design optimization routine (see [10] for instance). However, while
this approach can guarantee that the torques required on theperiodic walking gait are within limits, it does not accountfor
disturbances such as rough terrain or model uncertainties which demand higher torques during recovery phase. In other
work, such as [16], an optimal decision strategy in the form of an optimal control problem is solved point-wise in time to
minimize the deviation between the joint accelerations andthe desired joint accelerations subject to input constraints. The
authors also extend this to handle robustness when the plantmodel is not known precisely. Further, in [4], torque saturations
are incorporated into calculation of a feedback control designed to track a time-based reference trajectory, with tracking error
traded off in order to keep torque controls within limits.

The main contribution of this paper is to provide a novel control design framework for application to bipedal robotics
that enables gradual performance degradation while still continuing to walk under a range of stringent torque limits. We
achieve this through an alternative method of controller implementation based on quadratic programming (QP), that notonly
preserves (as much as possible) the desirable performance characteristics promised by the CLF theory, but also respects
the user-defined bounds on the inputs. Recent work in [19] hasshown that QP implementation of CLF-based policies
can be made feasible for real-time implementation with standard processor speeds. However, this work focuses on linear
time-varying systems, and not the nonlinear hybrid systemswe consider. The use of QP can also be found in biped control
applications, as in [3] for realizing desired link accelerations, in [18] for maintaining balance after disturbances by modifying
predefined reference trajectories, and in [7,22] for applying model predictive control approaches to biped control. The main
contribution of the current work is to use QP to obtain RES-CLF convergence properties (to the extent possible) for a
nonlinear hybrid system in the face of input constraints, and demonstrate the practicality of the approach through a non-
trivial experimental implementation on a biped robot.

The paper proceeds as follows. In Section 2, we state the dynamics of the relevant model and review the results on CLF-
based control of biped robots from [1]. Section 3 discusses the adverse effects of user-specified control input saturations on
the CLF-based controller, providing the motivation for Section 4 which introduces a new method for using quadratic pro-
gramming to appropriately handle torque saturation constraints for the CLF-based controllers. Section 5 presents simulation
and experimental results, and we conclude with a summary in Section 6.

1This stronger convergence property is required to meet the conditions described in Theorem 2 of [1], which relates stability of a hybrid periodic orbit
in the zero manifold to stability of the orbit in the full space.



2 Control Lyapunov Functions for Hybrid Systems Revisited
In this section we introduce the model for a biped robot and review the recent innovations introduced in [1] for using

control Lyapunov functions to control such systems.

2.1 Model
The dynamics for a biped robot (such as MABEL, the robot described in Section 5) can be derived by the standard

method of Lagrange and take the form

D(q)q̈+C(q, q̇)q̇+G(q) = B(q)u, (1)

whereq∈ Q is the robot configuration variable,u represents the motor control torques, andD, C andG are respectively the
inertia matrix, Coriolis matrix, and gravity vector. In thecase of MABEL the configuration vectorq is 7-dimensional and is
as described in [17] and depicted in Figure 7a, whileu is 4-dimensional. Reformulating the dynamics (1) as

[

q̇
q̈

]

= f (q, q̇)+g(q, q̇)u, (2)

we also define output functions of the formy(q).2 The method of Hybrid Zero Dynamics (HZD) aims to drive these output
functions (and their first derivatives) to zero, thereby imposing “virtual constraints” such that the system evolves onthe
lower-dimensional zero dynamics manifold, given by

Z = {(q, q̇) ∈ TQ | y(q) = 0, L f y(q, q̇) = 0}, (3)

whereL f denotes the Lie derivative [11].

2.2 Input-output linearization
If y(q) has vector relative degree 2, then the second derivative takes the form

ÿ= L2
f y(q, q̇)+LgL f y(q, q̇)u, (4)

where the decoupling matrixLgL f y(q, q̇) is invertible due to the vector relative degree assumption.Then defining

u∗(q, q̇) :=−(LgL f y(q, q̇))
−1L2

f y(q, q̇), (5)

and applying a pre-control law of the form

u(q, q̇) = u∗(q, q̇)+µ (6)

or

u(q, q̇) = u∗(q, q̇)+(LgL f y(q, q̇))
−1µ (7)

rendersZ invariant (providedµ vanishes onZ). (Note thatu∗(q, q̇) is a feed-forward term representing the torque required to
remain onZ.)

Under these assumptions, the dynamics (2) can be decomposedinto zero dynamics statesz∈ Z and transverse variables
η =

[

y ẏ
]

. (See [11, 21] for details.) Under a pre-control law of the form (6) or (7), the closed-loop dynamics in terms of
(η,z) take the form

η̇ = f̄ (η,z)+ ḡ(η,z)µ (8)

ż= fz(η,z). (9)

2More specifically, the output functions take the formy(q) := H0q−yd(θ(q)), whereθ(q) is a strictly monotonic function of the configuration variable
q, H0 is an appropriately-sized matrix prescribing linear combinations of state variables to be controlled, andyd(·) prescribes the desired evolution of these
quantities. (See [17] for details.)



For the work presented here, we will use the pre-control law (7) so thatf̄ (η,z) = Fη andḡ(η,z) = G, where

F =

[

0 I
0 0

]

, G=

[

0
I

]

. (10)

The most common approach to controlling the transverse variables (i.e. drivingη to zero) relies on input-output lin-
earization with PD control, using (7) with

µ=
[

− 1
ε2 KP −1

ε KD
]

η, (11)

whereKP andKD are diagonal matrices chosen such that

A :=

[

0 I
−KP −KD

]

(12)

is Hurwitz.

2.3 CLF-based control
Recently, a new method based on control Lyapunov functions has been introduced in [1], which provides an alternative

method for controlling the transverse variables. That method can be summarized as follows.
A function Vε(η) is a rapidly exponentially stabilizing control Lyapunov function (RES-CLF)for the system (8)-(9) if

there exist strictly positive constantsc1,c2,c3 such that for all 0< ε < 1 and all states(η,z) it holds that

c1‖η‖2 ≤Vε(η)≤
c2

ε2‖η‖2 (13)

inf
µ∈U

[

L f̄Vε(η,z)+LḡVε(η,z)µ+
c3

ε
Vε(η)

]

≤ 0, (14)

whereU is the set of all possible controls. One way to generate a RES-CLF Vε(η) is to first solve the Lyapunov equation
ATP+PA=−Q for P (whereA is given by (12) andQ is any symmetric positive-definite matrix), and then define

Vε(η) = ηT
[

1
ε I 0
0 I

]

P

[

1
ε I 0
0 I

]

η =: ηTPεη, (15)

for which we have

L f̄Vε(η,z) = ηT(FTPε +PεF)η,

LḡVε(η,z) = 2ηTPεG. (16)

Associated with a RES-CLF is the set of allµ for which (14) is satisfied,

Kε(η,z) = {µ∈U : L f̄Vε(η,z)+LḡVε(η,z)µ+
c3

ε
Vε(η)≤ 0},

and one can show that for any Lipschitz continuous feedback control lawµε(η,z) ∈ Kε(η,z), it holds that

‖η(t)‖ ≤
1
ε

√

c2

c1
e−

c3
2ε t‖η(0)‖, (17)

i.e., the rate of exponential convergence to the zero dynamics manifold can be directly controlled with the constantε through
c3
ε . There are various methods for finding a feedback control lawµε(η,z) ∈ Kε(η,z); in practical applications, it is often



important to select the control law of minimum norm. If we letc3 =
λmin(Q)
λmax(P)

(whereλmin andλmax denote the minimum and
maximum eigenvalues of a matrix, respectively) and define

ψ0,ε(η,z) = L f̄Vε(η,z)+
c3

ε
Vε(η,z)

ψ1,ε(η,z) = LḡVε(η,z)T , (18)

then this pointwise min-norm control law [8] can be explicitly formulated as

µε(η,z) =

{

−
ψ0,ε(η,z)ψ1,ε(η,z)

ψ1,ε(η,z)T ψ1,ε(η,z)
if ψ0,ε(η,z)> 0

0 if ψ0,ε(η,z)≤ 0,

}

(19)

wherein we can takeµ= µε in (7).

3 Adverse effects of torque saturation on the CLF-based controller
The approach described in Section 2 was successfully implemented on the robotic testbed MABEL, producing a stable

walking gait. (See [1] for a description of the experiment and a reference to the online video.) However, analysis of the
experimental data reveals that the user-imposed saturations on the control torque inputs were active throughout much of the
experiment (see Figure 1) and significantly affected the implementation of the CLF-based control method. Though necessary
to prevent unsafe or damaging motions, these saturation constraints were not applied in a manner that appropriately preserved
the qualities of the CLF-based controller, and therefore the nominal bounds given by (14) and (17) were frequently violated.

Limits for control inputs are typically imposed by the user to ensure that motor torque specifications are not exceeded.
When the calculated ideal control effort frequently exceedsthe prescribed bounds and must therefore be truncated, the
controller performance is degraded and theoretical performance measures may be violated, as in the experiment described
above. More importantly, when a control input is saturated,the system runs in open-loop and is no longer able to respond to
increasing errors in tracking, often leading to eventual failure.

Designing controllers which respect such bounds is important, and therefore a variety of approaches have been devel-
oped, such as quasi-linear control [5], which offers one solution for a special class of systems. In the specific context of
input-output linearization, one approach is to attempt to map the actual input constraints for the original system to con-
straints on the corresponding control input for the linearized system. (See [12], for instance, where input-output linearization
is combined with linear model predictive control (LMPC) to implement such an approach.) The main objective of the current
work is to present a method for implementing CLF-based controllers for a general class of nonlinear systems in a manner
which respects the user-specified input bounds, making use of quadratic programming with relaxations.

4 Formulating the CLF Min-Norm controller as a Convex Optimization
To design such a controller, we proceed by recognizing that the pointwise min-norm controller in (19) can be equivalently

expressed as a convex optimization problem formulated as

min
µ

µTµ

s.t. ψ0,ε(η,z)+ψ1,ε(η,z) µ≤ 0.
(20)

The inequality constraint above enforces the bound on the time-derivative of the CLF given by (14), which can be equivalently
expressed aṡVε(η)≤−c3/ε Vε(η). The solution of this convex optimization problem is then exactly the controller specified
in (19).

Remark 1. To clearly see that(20) is in fact equivalent to(19), note that forψ0,ε(η,z) ≤ 0, the above optimization in(20)
has the optimal solution µ∗ = 0. This is exactly the second case of(19). Next consideringψ0,ε(η,z) > 0 and minimizing
µTµ subject to the equality constraintψ0,ε(η,z)+ψ1,ε(η,z)µ= 0, we have the analytical solution of the equality-constrained
quadratic program through the Lagrange-dual method as exactly the first case of(19).

Once we have expressed the pointwise min-norm controller asa convex optimization problem, we can introduce bounds
on the control input in the form of additional constraints for the convex optimization problem. However, for these potentially
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Fig. 1: Motor torques (from the MABEL experiment described in [1]) for the stance and swing legs for 4 consecutive steps of
walking with the minimum-norm CLF-based controller given in (19). The thicker plots indicate the experimental (saturated)
torques, while the thinner plots are the raw (unsaturated) torques computed by the CLF-based controller. For the leg angle
motor (top graph), the raw (desired) control torque is at times more than 400% of the (actually implemented) saturated value.
Moreover, this occurs over a significant duration of the step. Note that the symbolsumLA ,umLS indicate the motor torques at
the leg angleandleg shapecoordinates respectively, which are linear combinations of the thigh and knee angles [15].

conflicting additional constraints to be satisfied, we first need to relax the bound on the time-derivative of the CLF. We do
this by requiringV̇ε(η)≤−c3/ε Vε(η)+d1, for somed1 > 0. The new optimization problem is formulated as

min
µ,d1

µTµ+ p1 d2
1

s.t. ψ0,ε(η,z)+ψ1,ε(η,z) µ≤ d1,

(LgL f y(q, q̇))
−1 µ≥ (umin−u∗),

(LgL f y(q, q̇))
−1 µ≤ (umax−u∗),

(21)

wherep1 is a large positive number that represents the penalty of relaxing the inequality constraints andu∗ is defined by (5).
The last two inequalities above are torque constraints and essentially enforceumin ≤ u≤ umax with u as defined in (7).

The formulation in (21) deals with the non-ideal context of saturated control inputs and therefore cannot ensure the
same type of stability claims as those provided by Theorem 2 of [1], since relaxations in the bound oṅVε result in a loss of
the RES-CLF quality forVε. However, given a prescribed convergence bound and a set of saturation constraints, the control
described by (21) is guaranteed to perform at least as well asany other controller in the sense that it will keepVε in the
smallest possible level set. In this sense, the CLF-based controller (21) can “match” the performance of any other controller
in regards to bounding the growth of the RES-CLFVε. We also note that, though (21) as formulated does not guarantee
Lipschitz continuity of the resultant controller, the workin [14] provides sufficient conditions to ensure Lipschitz continuity
for these types of problems.

Remark 2. We note that(21) can also be formulated with “soft” bounds on the control inputs, such that the control input
u in (7) satisfies umin−d2 ≤ u≤ umax+d3, for some d2,d3 > 0. This alternative formulation provides the control designer
with parameters to trade off violation of the bound on the time-derivative of the CLF with that of the saturation bound on the
control input. However, in most practical cases the bounds on the inputs appear as hard bounds which cannot be relaxed,
and the current work will focus only on this case.

Remark 3. Note that in(21) we have depicted umin and umax as constants. However, since the convex optimization problem
is to be solved at every instant in time, these values can be specified as functions of time or system state, leading todynamic



torque saturation. For instance, the inequality constraint umin(t,q, q̇) ≤ u ≤ umax(t,q, q̇) can be specified with time and
state-dependent dynamic bounds.

Remark 4. In Section 2.2 we presented an input-output linearizing controller based on PD control, given by(7) with (11).
As formulated, the controller has no built-in means for dealing with saturation constraints, but we note that this controller
can also be formulated as a convex optimization problem analogous to(21), as

min
u,d1,d2,d3,d4

uTu+
4

∑
i=1

pi d2
i

s.t. LgL f hu=−L2
f h−

KP

ε
h−

KD

ε2 L f h

+[d1, . . . ,d4]
T ,

u≥ umin,

u≤ umax.

(22)

(Here KP and KD are diagonal matrices satisfying the Hurwitz assumption of(12).) However, unlike the CLF-based
controller in (21), this formulation does not provide a clear correspondence between the relaxations di and performance of
the controller. (Here we consider controller performance in terms of imposing a bound oṅVε.) This highlights one of the
main advantages of using the QP implementation of the CLF-based controller over the IO controller (either the original
implementation or the QP version). Under active saturationconstraints, the CLF-based controller relaxes the bound on
V̇ε just enough to balance the conflicting requirements betweenperformance and saturation constraints. In contrast, the
original IO controller ((7) with (11)) “blindly” saturates controls, and the QP version(22) relaxes an equality constraint in
a manner that does not clearly correlate to the bound onV̇ε.

5 Simulation and Experimental Results

In this section we present both numerical simulation and experimental results to validate the performance of the control
methods described in Section 4. Since experimental testingon MABEL was the ultimate goal, the numerical studies were
conducted first on a simple model of MABEL, followed by simulations on a complex model of MABEL developed in [15],
which closely replicates the experimental setup. This latter model includes a compliant ground model as well as a model
that allows for stretch in the cables between the transmission pulleys. MABEL is a 5-link bipedal robot with point feet and
series-compliant actuation for improved agility and energy efficiency. The experimental setup has been described previously
in [17] and is illustrated in Figure 7. For the simulations and experiments described here, the four output functions were
defined by the absolute pitch angle of the torso, the leg angle(LA) for the swing leg, and the appropriately scaled leg-shape
motor position (mLS) for the swing and stance legs. The four control inputs are the leg-angle motor torque (umLAst,umLAsw)
and leg-shape motor torque (umLSst,umLSsw) for the stance and swing legs respectively.
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5.1 Numerical simulation
5.1.1 CLF-QP controller under various torque bounds

The numerical simulation results presented here employ theCLF-based controller with hard input constraints, as in (21).
We consider four separate cases with different control bounds, given by,
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Fig. 3: Motor torque plots obtained by simulating the proposed CLF-QP controller with four different cases of torque
saturation. (a) Motor torques for the stance (top two figures) and swing legs (bottom two figures), and (b) Corresponding
errors in tracking the outputy(q), based on the numerical simulations described in Section 5.1. Each figure depicts the results
for four different cases of input bounds. Walking stabilityis maintained in each case, but we note that the stringent torque
bounds in Case C result in control inputs that are only piece-wise continuous. For obtaining Lipschitz continuous control
inputs, see additional required conditions in [14].

where the input bounds get more stringent as we progress fromCase A to Case D.
Simulations of a representative walking step with the controller (21) were run for each of Cases A-D; the corresponding

RES-CLFVε and its time derivative are presented in Figure 2. As can be seen, for the stringent saturation in Case D, the time
derivative of the Lyapunov function violates the bound in (14) and moreover actually becomes positive with a large valuefor
a part of the gait. Nonetheless, the controller is still ableto drive the errors to zero by the end of the gait. The resulting input
torques and tracking errors are illustrated in Figure 3. Thesaturation effects are most visible in the plots in the first and third
rows of the figure; as expected, more restrictive torque limits result in increased tracking error. However, we observe that the
degradation in performance is gradual and walking stability is still maintained for all cases (A-D) of input saturation.

Remark 5. It should be noted that successful walking depends on parameter choices, and there are circumstances under
which the proposed controller does fail. For instance, stringent saturation for umLSst (corresponding to the stance knee) can
result in failure, since a minimum torque is required to holdup the weight of the robot and prevent the stance knee from
buckling. For the case where errors at the start of the gait are significantly larger than those depicted in Figure 2 (i.e. initial
value of Vε is larger), stringent saturations such as those in Case D will lead to instability within a few steps.

To illustrate the effect of saturation on the walking limit cycle, we also carry out simulations on the complex model of
MABEL. We use the controller given by (21) in closed-loop andanalyze the phase portrait of the torso angle, subject to
several different saturation values. Figure 4 illustratesthe torso phase portrait for 15 steps of walking, and we observe that
stricter saturations result in (gradual) deterioration intracking, as evidenced by deviations of the limit cycle fromthe nominal
orbit. The saturation values used here differ from those used in the simulations described in the first part of this section (since
the complex model differs significantly from the simple model and the required torques for walking are different), but the
approach is analogous, with bounds becoming increasingly restrictive proceeding from Case I to Case IV.

5.1.2 Comparison of CLF-based controller with IO-linearizing PD control
Having demonstrated that the CLF-QP controller is capable of functioning, albeit at degraded performance, under vari-

ous levels of torque bounds, we will now attempt to compare the four controllers presented in this paper. In this section the
controllers are termed as (a)IO controller referring to the input-output linearizing controller, (7)with (11); (b) CLF con-
troller referring to the CLF-based min-norm controller, (19); (c)CLF-QP controllerreferring to the CLF-based min-norm
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controller posed as a quadratic program with additional input constraints, (21); and (d)IO-QP controller referring to the
input-output controller posed as a quadratic program alongwith the additional input bound constraints, (22). For eachof
these controllers, one step of walking is simulated with an initial error and with the restrictive input saturation constraints of
case C.

It must be noted that direct comparison of the performance ofthe CLF controller and IO controllers is difficult and some-
what anecdotal because of the heavy dependance on parametertuning. We note that for the CLF-QP controller, performance
depends on

selection of the RES-CLFVε,
the relaxation penaltyp1,
and the parameterε which dictates the bound oṅVε,

while the IO controller is dependent on the selection ofε and the parametersKP andKD. For this comparison, we use the
sameε for all controllers, however the relaxation penalty for theCLF controller and the PD gains for the IO controller are
selected separately. A study of best procedures for tuning the CLF controller and for comparison of controller performance
is not the subject of the current work, but presents an interesting field of study for future research.

The controllers are compared in Table 1, and graphical results of numerical simulations are presented in Figures 5-6. In
the particular simulations at hand, Table 1 illustrates that under the same conditions, the CLF-QP controller spends the least
amount of time having one or more actuators in saturation andalso results in the most energy efficient gait, as computed
by the specific cost of mechanical transport [6]. However, asnoted previously, comparison of controller performance is
somewhat anecdotal due to the reliance on paramter tuning and thus the results in Table 1 should be viewed accordingly. The
comparison does suggest that the (non-QP) CLF controller performs the worst under input saturations since the controller
has no awareness of saturation constraints, and thus even when the actuators are not in saturation the controller does not
act aggressively to reduce the large errors that have built up. Figure 5 illustrates the RES-CLFVε and its time-derivative
for all the controllers. For the two controllers which do notincorporate knowlege of the input saturations (i.e. the CLFand
IO controller),Vε grows considerably, although the IO controller is able to quickly decrease the errors once the calculated
control torques are within saturation limits. Figure 6b illustrates the tracking errors for the controllers. Note thatthe CLF



Controller % Time in Saturation Cmt

IO (7), (11) 68% 0.021

CLF (19) 91% 0.092

CLF-QP (21) 23% 0.008

IO-QP (22) 65% 0.016

Table 1: Comparison between the different types of controllers presented in this paper when under hard input saturation.
The second column represents the percentage of time for which one or more actuators are in saturation, and the third column
presents the specific cost of mechanical transport. The results are suggestive that CLF-QP may be the most efficient of the
four controllers, with less time in saturation likely resulting in lower cost of mechanical transport, but additional investigation
is required to further explore the comparison.
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Fig. 5: The RES-CLFVε and its derivative for the numerical simulations describedin Section 5.1. The figures depict the
results for the four controllers presented in the paper while under stringent torque limits.

controller is unable to control the growing errors and results in instability under these stringent torque bounds.

5.2 Experimental results
Motivated by the favorable numerical simulation results, we proceed to test the controller experimentally on MABEL.

Experimental implementation of the CLF controller at real-time speeds is a challenging task, since it requires computation of
the system dynamics (2), the Lie derivatives of the outputy(q), and the CLF controller terms (18), as well as the solving of
a convex optimization problem. In order to meet hard real-time constraints of 1 kHz, these computations must be completed
in less than 1 ms. By employing the custom-code generation method CVXGEN [13] for solving constrained quadratic pro-
grams, we are able to solve the optimization problem in a few hundred microseconds and meet the 1 kHz update requirement,
making experimental implementation feasible.

In this experiment, we implemented the CLF controller described in (21), with the CLF-bound penalty set atp1 = 50
and with torque boundsumin,umax chosen such that−8 ≤ umLA ≤ 8, −12≤ umLS ≤ 12. This experiment resulted in 70
steps of walking for MABEL and is portrayed in the video in [9]. (A photo sequence depicting one representative step is
also shown in Figure 8.) Figure 9 illustrates the resultant control torques; we observe that the user-specified control bounds
are respected, as evidenced by the flattened control signalsat the boundary areas. Note that the green squares on the plot
depict the time instances at which control bounds are not met, which occur at moments in which the convex optimization
algorithm is not able to converge within the specified time constraints. These occurrences are isolated and have no affect on
the experimental system since a motor is not able to respond to them. Figure 10 illustrates the Lyapunov functionVε and its
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Fig. 6: Motor torque plots obtained by simulating four different controllers with the same torque saturation. (a) Motortorques
for the stance (top two figures) and swing legs (bottom two figures), and (b) Corresponding errors in tracking the outputy(q),
based on the numerical simulations described in Section 5.1. Each figure depicts the results for the four controllers presented
in this paper with hard input saturation. Only the CLF controller leads to instability, while the IO, IO-QP and CLF-QP
controllers stabilize to the periodic walking gait. (Note that this plot is not intended to serve as a decisive comparison of the
tracking capabilities of the CLF-QP vs. the IO-QP controller (which will require further analysis), but does demonstrate that
CLF-QP tracking performance surpasses the simple CLF controller and is qualitatively similar to IO-QP.)

time derivative for this experiment. The fact that the Lypanuov functionVε increases at some points where the calculatedV̇ε
is negative is most likely due to model uncertainty, sinceV̇ε is calculated (online) along trajectories of the partiallylinearized
system (8) and depends upon the model dynamics through the pre-control (7).

6 Conclusion
We have presented a novel method that explicitly addresses input saturation in the feedback control design for achieving

walking in bipedal robots. The resulting controller enables gradual performance degradation while still continuing to walk
under a range of stringent torque limits. We accomplish thisthrough an alternative method for implementing the pointwise
min-norm CLF-based controller described in (19) in a mannerthat more appropriately handles input saturations. Numeri-
cal simulation as well as experimental implementation has demonstrated that these control methods can be very useful in
practice, even in systems which require a high real-time control update rate. This method has great potential for effectively
dealing with saturations in a variety of contexts, such as power-limited systems which could progressively lower user-defined
torque saturations as the battery charge decreases, thereby prolonging the last bit of battery charge while allowing system
performance to gracefully degrade. In addition to dynamic torque saturation, we also note that this approach provides a
method for incorporating a whole family of user-defined constraints into the online calculation of controller effort for the
types of systems described here. Future work will consider the effects of varyingε throughout the gait, which may result in
an improved trade-off between convergence rate and saturation response over the course of the step.
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