Walking & Running in Bipedal Robots: Control Theory and Experiments

EECS Department University of Michigan

Jessy W. Grizzle

This work is supported by NSF grant ECS-0322395

Acknowledgements

Gabriel Abba (Metz, France)

ROBEA

(French National Project)

Franck Plestan (Nantes, France)

Christine Chevallereau (Nantes, France)

Carlos Canudas-de-Wit (Grenoble, France)

Gabriel Buche (Grenoble, France)

Yannick Aoustin (Nantes, France)

Acknowledgements

ROBEA

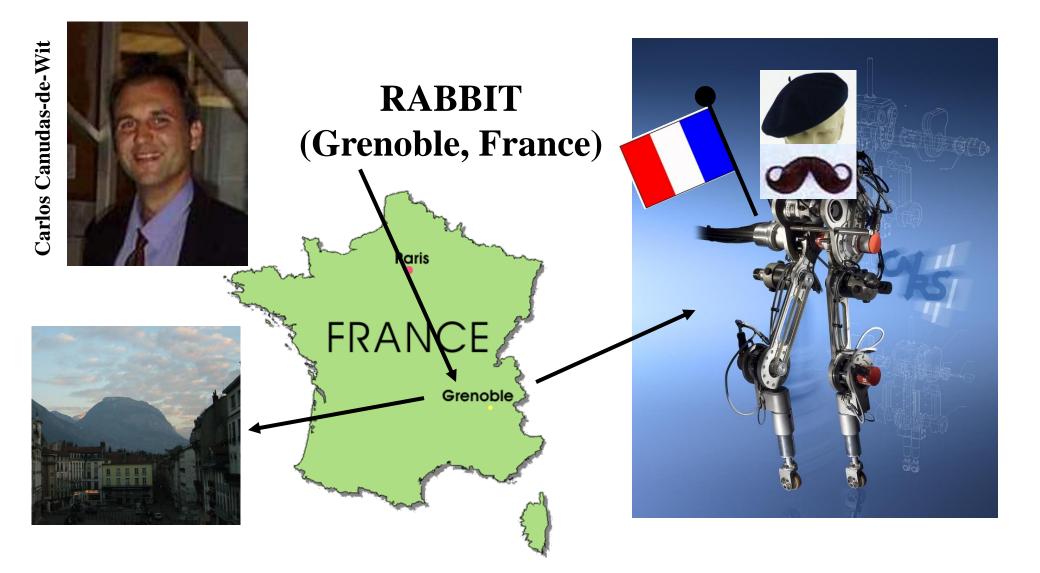
(A French National Project)

Christine Chevallereau (Nantes, France)

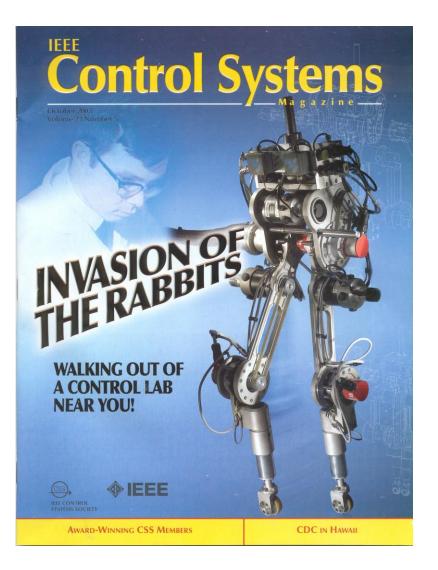
Carlos Canudas-de-Wit (Grenoble, France)

- Robotique et Entités Artificielles (1997)
- Links seven laboratories in France
- I was welcomed in Fall 1998 during a sabbatical in Strasbourg

Two Further Introductions...


RABBIT (Grenoble, France)

Eric Westervelt (Ohio State Univ.) (Asst. Professor)



Two Further Introductions...

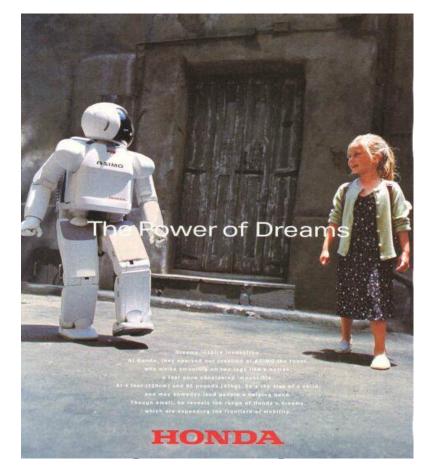
October 2003 Issue

- CSM paper is very conceptual
- Full details are in various
 IEEE-TAC & IJRR papers
- See my web site for listing of papers and many more videos (type ' grizzle' into Google)

Outline

- Bipedal background
 - Why study mechanical bipedal walking?
 - What is known about stable gaits?
 - How to model a bipedal walking robot?
- A new look at feedback control for bipeds
 - Finding and exploiting problem structure
 - The key is a two dimensional (hybrid) dynamic
 - Feedback design with the Hybrid Zero Dynamics
- Experiments on RABBIT
 - Walking and running
- Conclusions

Why biped walking? (robotics)


Increased mobility...

The fascination of anthropomorphic robots...

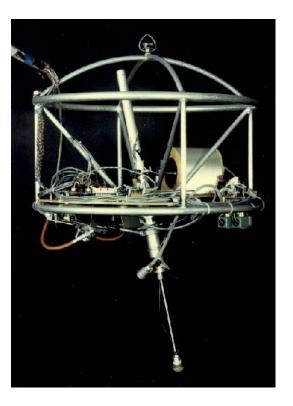
Why biped walking? (people)

Prosthetics: Leg Design

[Ottobock C-Leg]

Rehabilitation of WalkingStrokesSpinal Injury (Weight suspended treadmill therapy)

AutoAmbulator


Lokomat (Morari et al.)

Why biped walking? (control) Intellectual Way Cool Curiosity AHAJOKES.COM **Mathematics** Awesome Experiments Low-Hanging Fruit

Two Approaches to Locomotion and Control

- Analytical Methods
 - rigorous model-based analysis
 - success with very little tweaking
 - experimentation is used to test theory
- Heuristic Methods
 - based on intuition
 - trial and error many trials before success
 - uncertainty as to why success or failure was the outcome
 - usually produces awkward motions--slow, crouching gaits

- One-legged Hopper
 - Koditschek & Beuhler 1991
 - Francois & Samson 1998

Raibert (1984)

- One-legged Hopper
 - Koditschek & Beuhler 1991
 - Francois & Samson 1998

Raibert (1984)

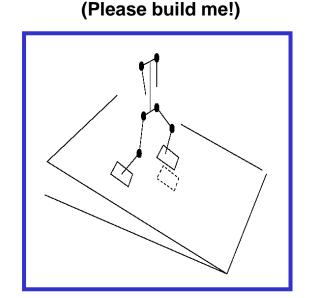
- One-legged Hopper
- Passive Robots
 - McGeer 1990
 - Espiau & Goswani 1994
 - Ruina et al. 1997-2004
 - Howell & Baillieul 1998
 - Kuo et al. 1999-2004

Gravity Powered Walking Down a Gentle Slope...The Ultimate in Efficiency!

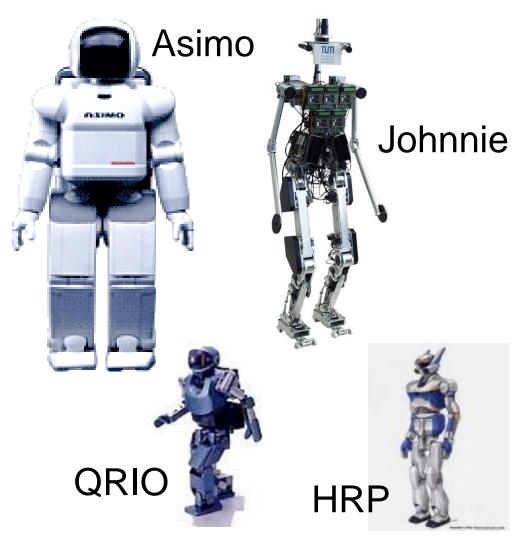
Collins and Ruina (2000)

- One-legged Hopper
- Passive Robots
 - McGeer 1990
 - Espiau & Goswani 1994
 - Ruina et al. 1997-2004
 - Howell & Baillieul 1998
 - Kuo et al. 1999-2004

Gravity Powered Walking Down a Gentle Slope...The Ultimate in Efficiency!


Collins and Ruina (2000)

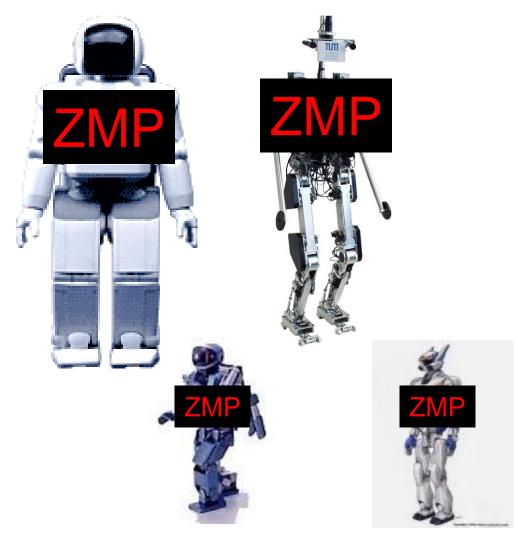
- One-legged Hopper
- Passive Robots
- Lifting Passive Gaits to Fully-Actuated Bipeds
 - Spong 1997
 - Spong & Bullo 2002


Powered walking on flat and sloped surfaces!

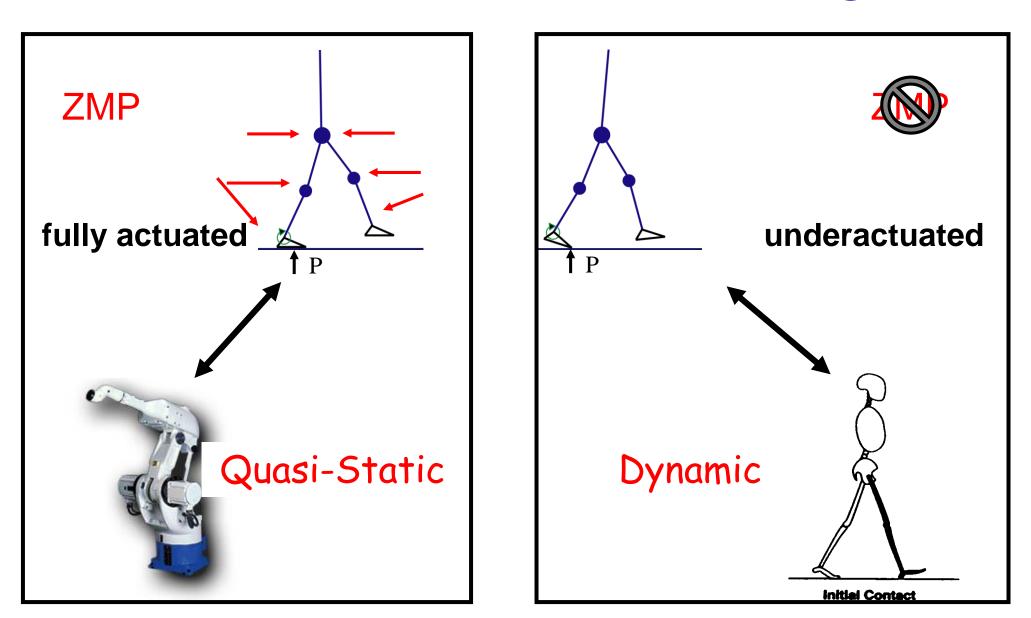
Spong & Bullo (2002)

Most Powered Biped Robots use <u>Heuristics</u> for Controller Design

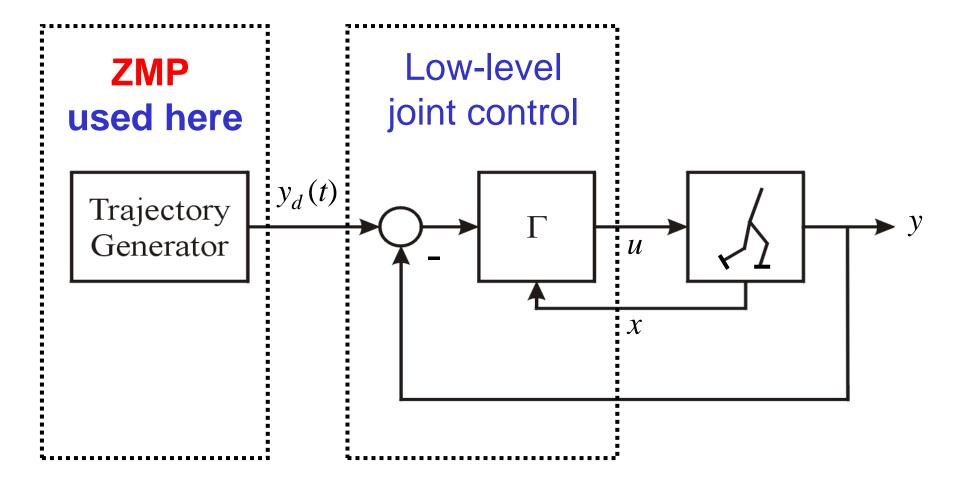
- ZMP (Zero Moment Point)
 - Asimo [Honda '96 →],
 \$150,000,000 [dev. cost] and
 \$1,000,000 per robot
 - QRIO [Sony, 2001]
- Intuition
 - Spring Flamingo
 [MIT Leg Lab '96-'00]
- Other Approx. Notions
 - Many



Most Powered Biped Robots use <u>Heuristics</u> for Controller Design


• ZMP (Zero Moment Point)

Asimo [Honda '96 →],
 >\$150,000,000 [dev. cost] and
 \$1,000,000 per robot


- QRIO [Sony, 2001]
- Intuition
 - Spring Flamingo
 [MIT Leg Lab '96-'00]
- Other Approx. Notions
 - Many

ZMP = Flat-Footed Walking

Prevailing Control Approach is ZMP-Based Trajectory Tracking

Prevailing Approach Fights Natural Dynamics of Walking

- Heuristic Methods
 - based on intuition
 - trial and error many trials before success
 - uncertainty as to why success or failure was the outcome
 - usually produces awkward motions--slow, crouching gaits

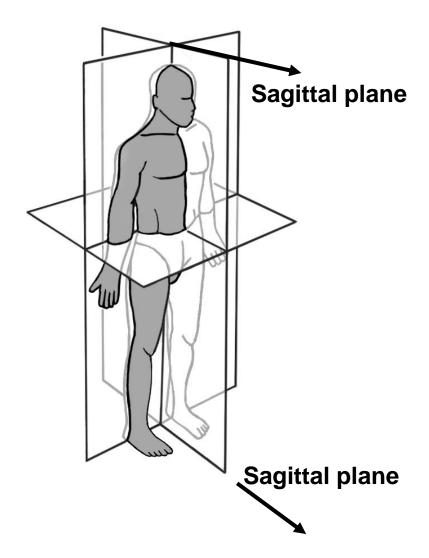
Walking

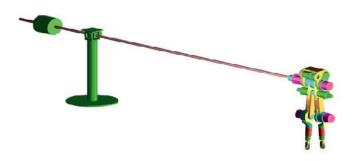
Running!

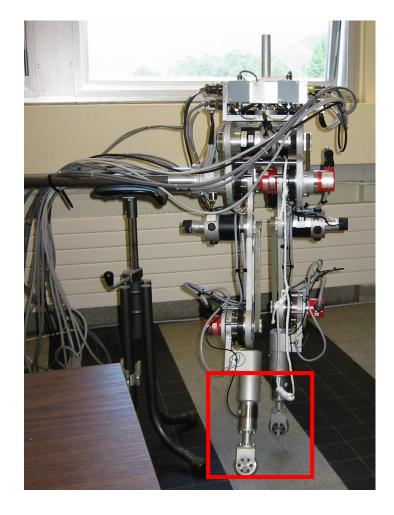

Qrio-Sony

Prevailing Approach Fights Natural Dynamics of Walking

RABBIT obliges you to EXPLOIT dynamics of walking.

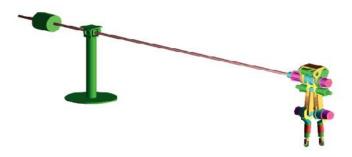

• Two legs, knees, a torso




- Two legs, knees, a torso
- Sagittal plane dynamics
- Side-to-side stability assured by a bar

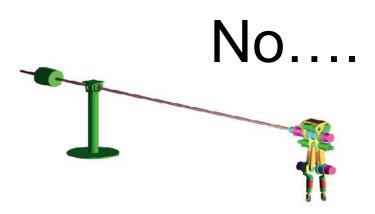
- Two legs, knees, a torso
- Sagittal plane dynamics
- Side-to-side stability
 assured by a bar
- Point feet = <u>No ZMP</u> = Need new control theory!

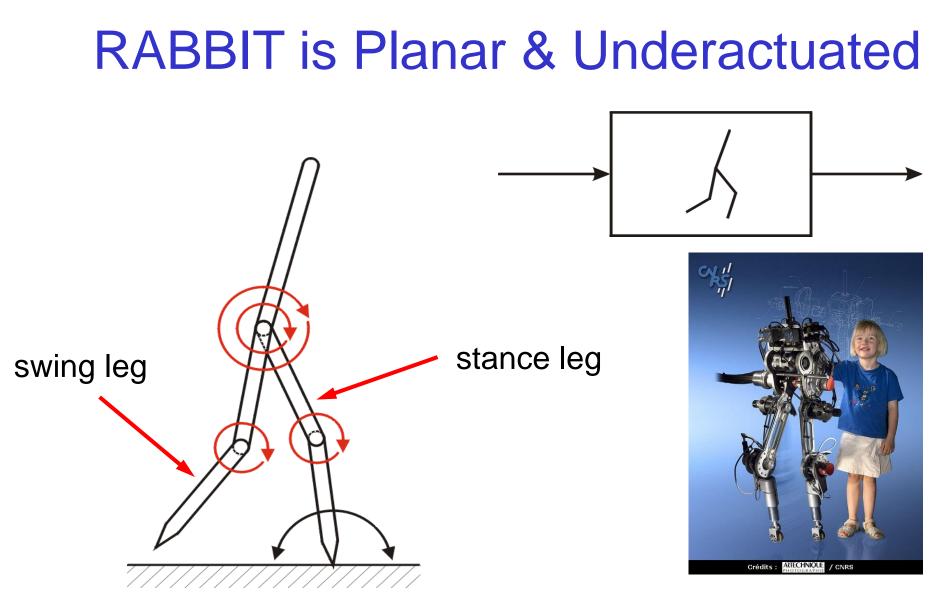
- Two legs, knees, a torso
- Sagittal plane dynamics
- Side-to-side stability assured by a bar
- Point feet = <u>No ZMP!</u>


Typical Gait

LAG: Laboratoire Automatique de Grenoble

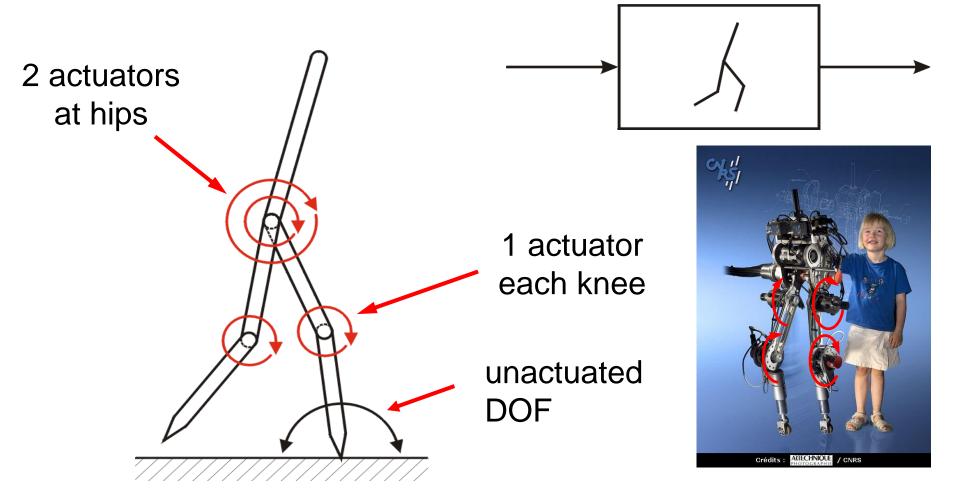
Question everyone asks:

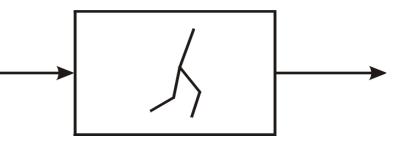

Does the bar hold up the robot?



Question everyone asks:

Does the bar hold up the robot?



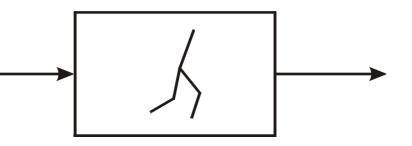

32 kg mass and 1.425 m tall

RABBIT is Planar & Underactuated

32 kg mass and 1.425 m tall

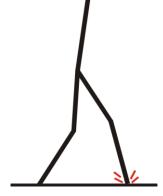
Normal walking:

.... SS, DS, SS, DS, ...

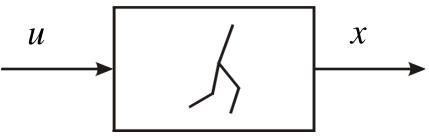

SS — Single Support

DS — Double Support

Normal walking:



... SS, DS, SS, DS, ...


SS — Single Support DS -

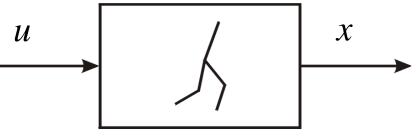
DS — Double Support

 $D(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = Bu$

Normal walking:


.... SS, DS, SS, DS, ...

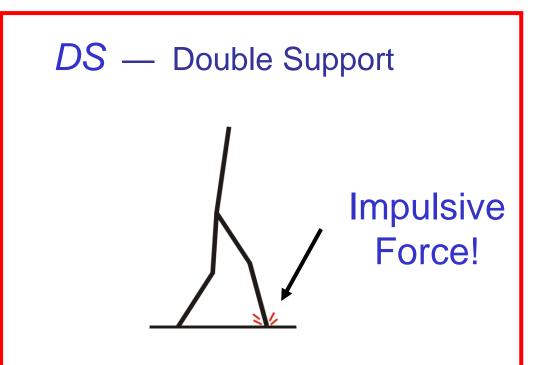
SS — Single Support D


DS — Double Support

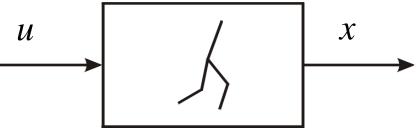
$$\dot{x} = f(x) + g(x)u$$

$$x = \begin{bmatrix} q \\ \dot{q} \end{bmatrix}$$

Normal walking:



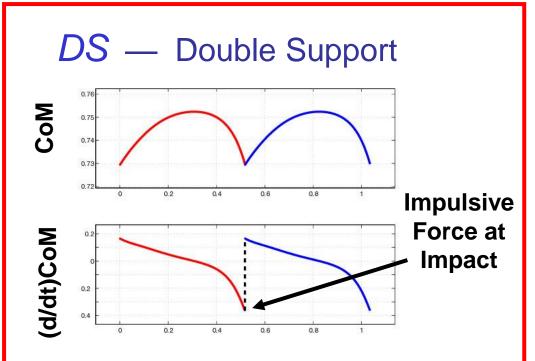
.... SS, DS, SS, DS, ...


SS — Single Support

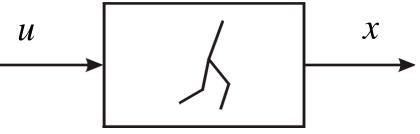
 $\dot{x} = f(x) + q(x)u$

$$x = \begin{bmatrix} q \\ \dot{q} \end{bmatrix}$$

Normal walking:



... SS, DS, SS, DS, ...


SS — Single Support

$$\dot{x} = f(x) + g(x)u$$

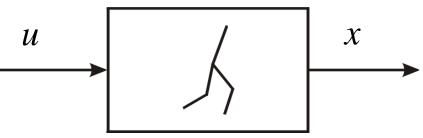
$$x = \begin{bmatrix} q \\ \dot{q} \end{bmatrix}$$

Normal walking:

.... SS, DS, SS, DS, ...

SS — Single Support

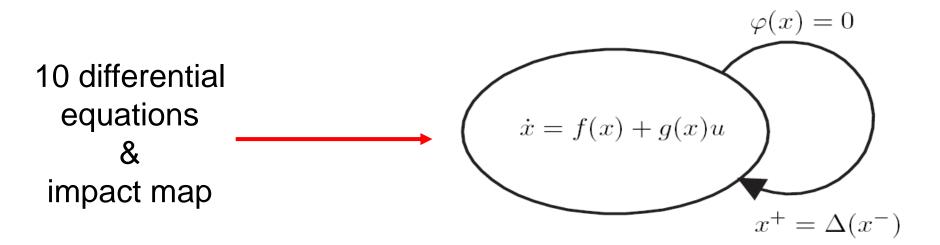
DS — Double Support


 $x^+ = \Delta(x^-)$

 $\dot{x} = f(x) + g(x)u$

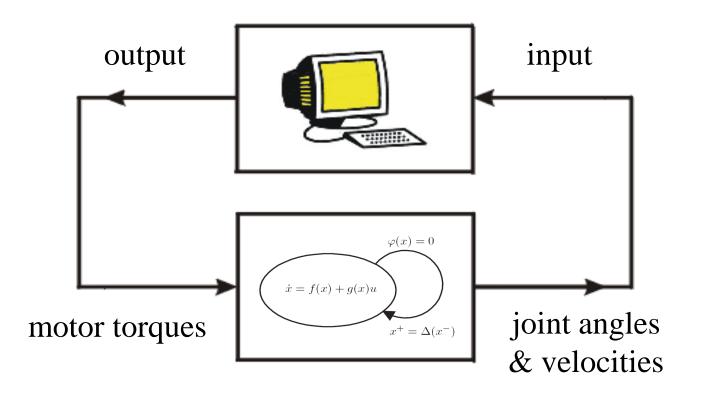
$$x = \begin{bmatrix} q \\ \dot{q} \end{bmatrix}$$

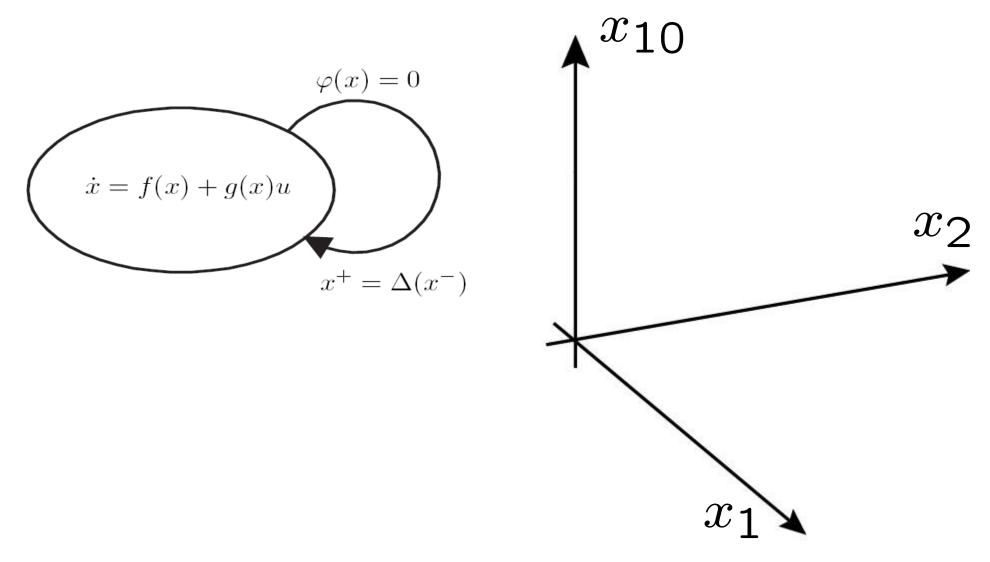
Robot Model: SS + DS = Hybrid

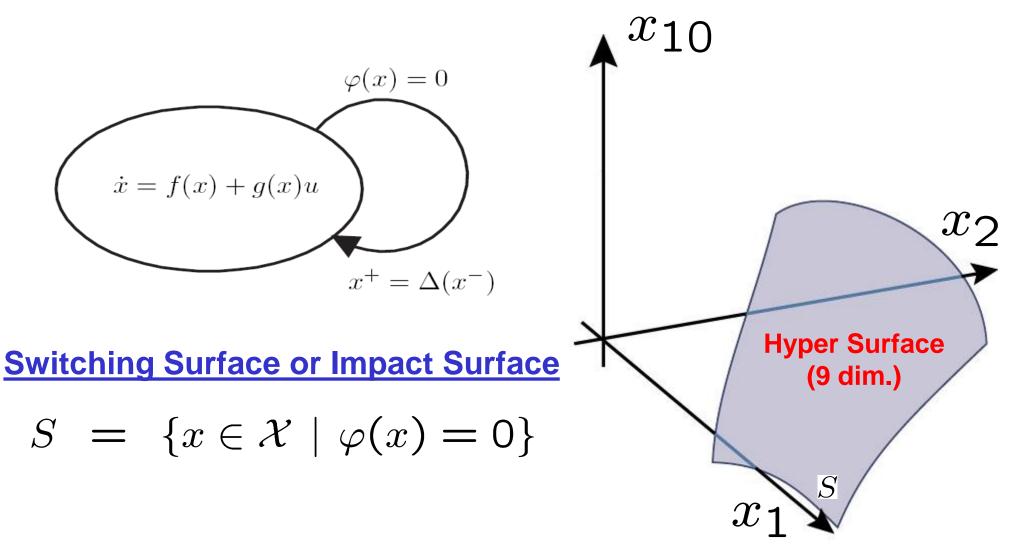

Normal walking:

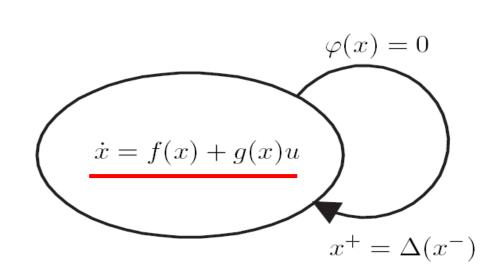
.... SS, DS, SS, DS, ...

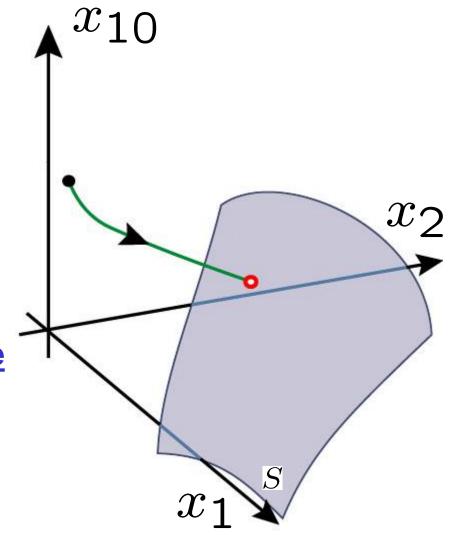
SS — Single Support


DS — Double Support

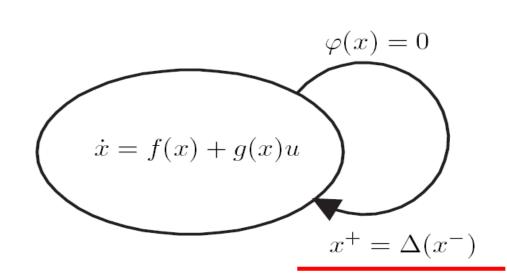

Terms in the Model ... Oh my!


Hybrid Zoro Demanics of N.Link Pl	anar Biped Walkers: Equation Details	$+q_1^N M.L. \cos(-q_1 + q_2 - q_1 + q_4)$	$C_{1,k}(\mathbf{g}) = M g_{1}^{kl} L_{2} \sin(\mathbf{g}_{k}) \dot{\mathbf{g}}_{k}$
		$D_{h,h}(q) = M_{*}L_{2}^{2} - M_{*}L_{2}^{2} \cos(q_{1} - q_{2}) - 2q_{*}^{M}M_{*}L_{2} \cos(q_{1}) - p_{*}^{M}M_{2}L_{2} \cos(q_{1})$	$C_{1,2}(q) = -M_{2}q_{1}^{2d}L_{2}\sin(q_{1})\dot{q}_{2}$ $C_{1,2}(q) = -L_{1}(\dot{q}_{2}q_{1}^{2d}M_{2}\sin(q_{1}))$
E.R. Westervelt [*] , J.W. 0	Grizzle ⁺ , D.E. Koditschek [‡]	$\pm p \partial^2 M_s L_s \cos (q_s - q_d + q_b)$	$(L_{1}q_{2}M_{1}\sin(q_{2}-q_{2}))$
I. Netwinow	$-g_T^{(0)}M_T L_e \exp(q_1 - q_2 + q_3)$	$-p_T^{2d}M_F L_F \cos(q_1 - q_2)$	$+q_{3}p_{f}^{W}M_{f}\sin(q_{1}-q_{2})$
The notation is as follows. The configuration econditates		$-p_1^{N}ML_c\cos(-q_1 + q_2 - q_1 + q_4)$	$+\frac{1}{2}q_{\mu}^{[0]}M_{\mu}\sin\left(-q_{\mu}+q_{\mu}+q_{\mu}\right)$
are denoted by q_1, \ldots, q_1 and their velocities by q_1, \ldots, q_n . The link lengths, masses, inertian, and center of mass loca- tions are denoted by $L_{\alpha}, M_{\alpha}, I_{\alpha}$, and $p_i^{\alpha \beta}$, respectively.	$+g_1^M M_0 L_1 \cos (-q_1 + q_2 - q_3 + q_4)$	$+M_{1}L_{1}L_{2}\cos(q_{1} - q_{2} + q_{3})$ $+q_{1}^{N}M_{2}L_{2}\cos(-q_{2} + q_{2} + q_{3}) + I_{2} + I_{3}$	$- p_0^M M_1 \sin(q_1) d_k$ $+ g_0 p_0^M M_2 \sin(q_1) + L_2 g_0 M_1 \sin(q_1 - q_2)$
	$-M_1 L_2 L_1 \cos (q_1 - q_2 + q_3)$	$+p_{1}^{2}M_{F}L_{s}\cos(\eta_{1}+\eta_{1})+I_{F}$	$+ \phi_0 p_1^{p_1} M_1 \sin(q_1 - q_2)$
II. EQUATIONS OF MOTION	$-p_{0}^{2M}M_{c}L_{F}\cos(-q_{1}+q_{2}+q_{3})-I_{f}-I_{c}$ $D_{h,1}(q) = M_{c}L_{f}^{2} - p_{f}^{2M}M_{f}L_{f}\cos(q_{3})$	$D_{5,0}(q) = -M_s L_T^2 + M_s L_T^2 \cos(q_s - q_2)$	$+q_1q_2^M M_1 \sin(-q_1 + q_2 + q_3))$
The equations of motion during the string phase is	$-2p_1^W M_s L_T con(q_1) - M_s L_T^2 con(q_1 - q_2)$	$+2\rho^M M_s L_f \cos(q_c)$	$C_{1,4}(q) = p_1^M M_1 L_J \sin(q_k) (\dot{q}_k - \dot{q}_2 + \dot{q}_3 - \dot{q}_4 + \dot{q}_5)$
$D(q)\bar{q} + C(q,\bar{q})\bar{q} + G(q) = Bu$	$-p^{\frac{1}{2}j}M_FL_F \cos(q_i - q_2) + I_F + I_J$	$-p_1^{W}M_sL_s \cos(q_1 - q_2 + q_1)$ $+p_1^{W}M_sL_s \cos(q_1 - q_2)$	$C_{1,2}(q) = -\frac{1}{6}g_2^{W}M_2L_F \sin(q_1) - L_2^2g_2M_1\sin(q_1 - q_2)$ $-\frac{1}{6}g_2^{W}M_1L_F \sin(q_2 - q_3)$
where	$+ y_1^{M} M_0 L_F \cos([-q_1 + q_2 + q_3) + I_0$	$+p_1^{-1}M_2L_2 \cos(q_1 - q_2)$ $+p_1^{N}M_2L_1 \cos((-q_1 + q_2 - q_1 + q_4))$	$-\frac{1}{2}q_{2}q_{1}^{2}M_{1}^{2}a_{2}^{2}\sin((-q_{2}-q_{2}))$ $-\frac{1}{2}q_{2}q_{1}^{2}M_{2}^{2}L_{2}^{2}\sin((-q_{2}+q_{2}+q_{2}))$
$D_{1,1}(q) = I_f - 2g_i^M M_s L_f \cos(q_b) + I_T + M_s L_f^2 + I_s$	$D_{hB}(g) = -M_{1}L_{f}^{2} + 2p_{i}^{M}M_{1}L_{f}\cos(g_{i})$	$-M_{1}L_{1}L_{2}\cos(q_{1}-q_{2}+q_{3})$	-re ^M M.Levin(n) da
$D_{1,0}(q) = -M_c L_F^2 + 2p_i^M M_c L_F ma(q_1) - I_r - I_A$	$+M_1\Sigma_2^2\cos(q_1-q_2)$	$-g_1^{N}M_iL_4 \cos(-g_1 + g_2 + g_4) - I_f - I_i$	$+q_{5}M_{c}L_{f}L_{c}\sin(q_{1}-q_{2}+q_{3})$
$D_{1,2}(q) = M_1 L_T^2 - p_2^M M_T L_T \cos(q_1)$	$+ g_{2}^{(d)} M_{f} L_{f} reat(q_{1} - q_{2}) - I_{f}$ $- g_{2}^{(d)} M_{c} L_{f} root(-q_{1} + q_{2} + q_{2}) - I_{f}$	$D_{0,3}(q) = 2M_{4}L_{2}^{2} - 2M_{4}L_{2}^{2} \cos(q_{1} - q_{2})$	$-\frac{1}{2} e_F q_1^{(d)} M_1 L_2 \sin \left(-q_2 + q_2 + q_3\right)$
$-2\rho_{\rm c}^M M_0 L_f \cos\left(q_{\rm b}\right) - M_1 L_2^2 \cos\left(q_{\rm c}-q_2\right)$	$D_{k,k}(q) = 2ML_T^2 - 2p_1^2M_TL_f \cos(q_k)$	$-3p_1^{M}M_FL_f \cos(q_1) - 3p_2^{M}M_FL_f \cos(q_1) + p_1^{M}M_FL_f \cos(q_1 - q_2 + q_3)$	$-\frac{1}{6}\varphi_j^{M}M_j\tilde{L}_j \sin(q_k - q_k)$ $-\tilde{L}_j^2q_kM_t \sin(q_k - q_k)$
$-p_T^{M}M_FL_F \cos (q_1 - q_2) + I_F + I_f$ + $p_t^{M}M_tL_F \cos (-q_1 + q_2 + q_1) + I_f$	$-2p_1^{W}M_1L_2 \cos(q_1) - 2M_1L_2^2 \cos(q_2 - q_2)$	$-2r_j^M M_f k_f \cos(q_i - q_i)$	$-\frac{1}{2} \partial_{\mu} \partial_{\mu}^{\mu} M_T L_{\mu} \sin(\eta_1)$
$+p_{1}^{-}M_{1}L_{2}\cos((-q_{1}+q_{2}+q_{3})+z_{1})$ $D_{1,4}(q) = p_{1}^{W}M_{1}L_{2}\cos(q_{1})-L_{1}$	$-2\mu_J^{IF}M_JL_J \cos(q_1 - q_2) + P_T + 2H_J$	$-n^{N}MJ$, $real - c_{1} + c_{2} - c_{3} + a_{4}$	$+\phi_0 p_1^{00} M_1 L_1 \sin (q_1 - q_2 + q_3)$
$D_{1,1}(q) = MA_{1}^{2} - M_{1}L_{2}^{2} \cos(q_{1} - q_{2})$	$+2M_JL_J^2 - 2p_J^{2F}M_JL_J + M_TL_J^2$	$+M_{1}L_{f}L_{1}\cos(q_{1}-q_{2}+q_{3})$	$+\frac{1}{2}g_{F}^{F}\Delta t_{T}L_{1}\sin\left(q_{1}+q_{2}\right)$
$-2p_h^M M_f L_T \cos(q_h) - p_l^M M_T L_T \cos(q_h)$	$+2p_1^{M}M_1L_2 \cos(-q_1 + q_2 + q_3) + I_1$ $D_{h,4}(q) = p_1^{M}M_1L_2 \cos(q_3)$	$+2q_1^{M}M_2L_2 \cos(-q_1 + q_2 + q_3) + 2l_2' + q_1^{W}M_2L_2 \cos(q_1) - M_2L_2L_2 \cos(q_1)$	$+q_{2}q_{1}^{2\sigma}M_{1}L_{a}\sin(-q_{1}+q_{2}-q_{1}+q_{4})$
$+p_{f}^{W}M_{h}L_{s}\cos{(q_{1}-q_{2}+q_{1})}$	$D_{3,4}(\underline{x}) = p_t^{-M_1L_2} \cos q_t - q_t + q_t + q_t) - \tilde{L}_t$	$+pq^{\prime}M_{J}L_{q}\cos(q_{1}) - M_{J}L_{J}L_{q}\cos(q_{2})$ $-M_{q}L_{J}L_{q}\cos(q_{1}) - 2M_{J}L_{J}L_{q}\cos(q_{2})$	$C_{0,k}(q) = -p_1^M M_s L_f \sin(q_k) q_k$ $C_{2,\beta}(q) = -p_1^M M_s L_f \sin(q_k) q_k$
$-p_1^{2\ell}M_sL_f \cos(q_1 - q_2)$ $-p_1^{2\ell}M_sL_s \cos(-q_1 + q_2 - q_3 + q_4)$	$D_{4,0}(q) = -21\delta_{4}L_{f}^{2} - 21\delta_{6}L_{f}^{2} \cos(q_{1} - q_{2})$	$+M_TL_T^2 - 2p_T^MM_TL_T + 2M_TL_T^2 + I_1$	$C_{2,3}(q) = L_F(L_F \oplus M_r \sin(q_2 - q_1))$
$-g_1^{-}M_1L_1 mm(-q_1 + q_2 - q_2 + q_4)$ + $M_1L_1L_1 mm(q_1 - q_2 + q_4)$	$-2p_{i}^{(0)}M_{i}L_{i}\cos(q_{i}) - 2p_{i}^{M}M_{2}L_{i}\cos(q_{i})$	$+p\frac{\partial}{\partial M}M\sigma L_{s} \cos(q_{1}+q_{2}) + I\sigma$	$+d_{3}\sigma_{1}^{W}M_{1}\sin(q_{1}-q_{2})$
$+g_{1}^{30}M_{1}L_{2}\cos(-g_{1}+g_{2}+g_{4}) + I_{2} + L_{1}$	$+p_T^{kl}M_fL_e \cos(q_k - q_k + q_b)$	$D_{0,d}(q) = -I_{\delta} - p_{1}^{W} M_{\delta} I_{A} exc (-q_{1} + q_{2} + q_{4})$	$+ \frac{1}{2} q_1^{W} M_0 \sin \left[-q_1 + q_2 + q_4 \right]$
$+p_0^{T}M_T I_{\alpha} \cos(q_1 + q_1) + I_T$	$-2p_f^W M_f L_f \cos(q_1 - q_2)$	$+g_1^{N}M_sL_g \cos(q_1)$ $+g_1^{N}M_sL_s\cos(-q_1 + q_2 - q_1 + q_4)$	$-p_1^M M_1 \sin(q_1) \dot{q}_k + L_f \dot{q}_1 M_5 \sin(q_k - q_1)$ $+ \dot{q}_2 p_f^M M_f \sin(q_k - q_1)$
$D_{2\Lambda}(q) = -M_1L_2^2 + 2p_1^NM_1L_T \cos(q_1) - I_1 - I_2$	$\begin{array}{l} -g_{k}^{(2)}M_{k}L_{k}L_{k}\cos\left(-q_{k}+q_{2}-q_{3}+q_{k}\right)\\ +M_{k}L_{p}L_{k}\cos\left(q_{k}-q_{2}+q_{3}\right)\end{array}$	$D_{0,0}(q) = 2p_1^M M_f L_0 \cos(q_0) - 2p_1^M M_f L_f \cos(q_1 - q_2)$	$+q_{1}p_{1}^{M}M_{1}\sin(-q_{1}+q_{2}+q_{3}))$
$D_{2,2}(q) = M_{0}L_{f}^{2} - 2g_{h}^{M}M_{h}L_{f}\cos(q_{h}) + I_{f} + I_{f}$ $D_{3,0}(q) = -M_{c}L_{f}^{2} + 2g_{h}^{M}M_{c}L_{f}\cos(q_{h})$	$+2p_1^{2F}M_1L_J cos(-q_1 + q_2 + q_4)$	$-2M_{2}L^{2}\cos(\eta_{1}-\eta_{2})$	$C_{2,4}(q) = -g_1^M M_1 L_2 \sin(q_1) (\dot{q}_1 - \dot{q}_2 + \dot{q}_3 - \dot{q}_4 + \dot{q}_8)$
$D_{0,0}(q) = -M_c L_F^{-1} + 2q_c^{-1} M_c L_F \cos(q_1)$ $+M_c L_F^{-1} \cos(q_2 - q_3)$	$+2I_F + p_F^M M_F L_1 \cos(\eta_3)$	$+2\rho_{1}^{M}M_{T}L_{1}\cos(q_{1}+q_{2})$	$C_{0,1}(g) = L_{2}^{2} q_{0} M_{c} \sin(g_{1} - g_{0})$
$+ se_{i} \frac{1}{2} f^{a} m_{f} L_{f} \cos (q_{i} - q_{2}) - I_{f}$	$-MyL_JL_e \cos(q_b) - M_cL_fL_e \cos(q_b)$	$+2p_{I}^{M}M_{I}L_{t}\cos(q_{1}-q_{2}+q_{3})$	$+ q_{0}p_{1}^{0}M_{f}L_{f} \sin(q_{0} - q_{0})$
$-g_1^{W}M_sL_d \cos(-g_1 + g_2 + g_4) - L_t$	$-2M_JL_JL_s \cos(\eta_b) + M_FL_2^2$ $-2p_J^2M_JL_J + 2M_JL_2^2 + I_i$	$-2q_F^{M}M_TL_f \cos(q_1) + 2\delta_1 + M_T\delta_1^2$ $-2M_TL_fL_f \cos(q_1) - 2M_TL_fL_e \cos(q_1)$	$+L_f g_{22} q_1^{10} M_t \sin(-q_1 + q_2 + q_4)$
$D_{2,d}(q) = -p_i^{N}M_iL_F m_i(q_4) + I_f$	$-2\rho_T^{-1} M_T L_J + 2N e_J L_J^{-1} + L_1$ + $p_T^{0^+} M_T L_s con (q_1 + q_2) + J_T$	$-4M_{ch}\cos(\omega) + 2f_{c} + d_{T}$	$-p_i^M M_i L_f \sin(q_i) \dot{q}_k$ $+ L_2^2 \dot{q}_2 M_i \sin(q_i - q_j)$
$D_{LS}(q) = -M_s L_f^2 + M_s L_f^2 \cos(q_1 - q_2) + 2q_1^{10} M_s L_f \cos(q_1)$	$D_{h,i}(q) = p_i^M M_i L_f \cos(q_i) - I_i$	$+216E_{1}E_{2}\cos(q_{1}-q_{2}+q_{3})+216E_{2}^{2}$	A WALL MADE A LAND
$+2\rho_1^{AI}M_AL_f con(g_k)$		$-2r_{I}^{M}M_{I}k_{J} + 2M_{2}k_{2}^{2} + 2M_{I}k_{2}^{2} + 2M_{I}k_{2}^{2}$	$+(q_2)^{M_1}M_2L_3\sin(q_2 - q_3)$
"Consequently particle for the second structure, Deriver, Experiment and the second structure, Deriver and State and An Arton. MI (2010) 222, UM, second reflection, edi "Control Structure, Deriver, Territorial Dispations, edi prover Structure, Deriver, Territorial Dispations, and Con- port Structure, Department, University of Mediagon, And Leber, MI (2010) 2010 (2	$D_{k,0}(g) = p_i^M M_i L_f \cos g_i $	$-2\mu_i^M M_2 L_i + M_F L_f^2$	$-dec n^{22} M_{2} L_{2} \sin (-m_{1} + m_{2} - m_{1} + m_{2})$
(a) Anit Arbor, Mr 6000-2122, USA, constructional and Com- "Control Beatrana Laboratory, Electrical Engineering and Com- tained Internet Determine of Malacone Inter Laboration."	$-g_1^{\mu\nu}M_0L_f \cos([-q_1 + q_2 + q_4) - I_0]$	$+2\rho_{k}^{10}M_{F}L_{f}\cos(-q_{1}+q_{2}+q_{k})$ $-2\rho_{k}^{10}M_{F}L_{f}\cos(q_{k})$	$-\frac{1}{2} M_s L_f L_s \sin (q_1 - q_2 + q_3)$
1018-2120. USA, granuloburati.edu	$D_{k,k}(q) = -q_k$ $D_{k,k}(q) = -I_k - g_k^{kl}M_kL_F \cos[-q_k + q_k + q_k]$	$-2q_1^{-M}M_2L_1 \cos(-q_1 + q_2 - q_3 + q_4),$ $-2q_1^{-M}M_2L_1 \cos(-q_1 + q_2 - q_3 + q_4),$	$\frac{+L_F g_{22}^{W} M_F \sin \left[-q_1 + q_2 + q_3\right]}{C_{1,4}(q)} = L_F \left(q_1 q_2^{W} M_F \sin (q_1) + L_F q_1 M_F \sin (q_2 - q_3)\right)$
puter Science Depictures. University of Madagan. Ann Arbor, MJ 2018-2018, USA, koobunch. edu	$+ p_0^{2d} M_0 L_F \cos(q_d)$		- 11(1)
			I HER TRANS OF ANTOHESIC CONTINUE - REOVEAR PAPER
$-iqp^M M_1 L_2 \sin (q_1)$	$-2\eta^{kl}M_{c}q_{c}L_{c}q_{k}\cos(q_{k})$	$+3I_{2}\dot{q}_{2}\dot{q}_{3}+\frac{1}{2}M_{2}L_{2}^{2}\dot{q}_{1}^{2}+\frac{1}{2}M_{2}L_{2}^{2}\dot{q}_{2}^{2}$	$D_{r,1,0}(q_r) = M_r L_f \cos (q_1 - q_2 + q_3 + q_4) - \rho_1^{10} M_r \cos (q_1 - q_2 + q_3 - q_4 + q_5)$
	$-2g_1^{kl}M_{cl}(\mu, \delta_{l}\mu, \delta_{l}\mu)$ $-2g_1^{kl}M_{cl}\delta_{\mu}\phi_{l}\phi_{l}\phi_{l}$ (eq.) $-2g_1^{kl}M_{cl}\delta_{\mu}\phi_{l}\phi_{l}\phi_{l}$ (eq.)	$+2I_{P}_{2}\phi_{0}^{i}+\frac{1}{2}M_{e}I_{2}^{2}\phi_{1}^{2}+\frac{1}{2}M_{e}I_{2}^{2}\phi_{2}^{2}$ $-M_{P}g_{e}^{2}L_{e}L_{e}\cos(q_{0})+M_{e}L_{2}^{2}\phi_{e}\eta_{e}$	$D_{n,l,k}(q_r) = M_n f_f \cos(q_r - q_l + q_l + q_l) - \rho_l^{ef} M_r \cos(q_l - q_l + q_l - q_l + q_l) + \rho_l^{ef} M_f \cos(q_l - q_l + q_l + q_l)$
$\begin{split} &- \dot{q}_0 q_0^{IJ} M_f L_f \sin\left(q_1\right) \\ &- \dot{q}_0 p_0^{IJ} M_f L_f \sin\left(q_1-q_2\right) \\ &- \dot{q}_0 p_0^{IJ} M_f L_s \sin\left(q_1-q_2+q_1\right), \end{split}$	$-2q_{1}^{10}M_{2}q_{1}M_{2}q_{2}M_{2}q_{3}mm(q_{1})$ $+2q_{1}^{10}M_{2}L_{1}P_{1}q_{2}q_{3}mm(q_{2})$ $+2q_{1}^{10}M_{2}L_{1}P_{2}q_{3}q_{3}mm(q_{1})$ $+p_{1}^{10}M_{2}L_{1}P_{2}q_{3}q_{3}mm(q_{1})$	$+2I_{P}\dot{q}_{P}\dot{q}_{P}$, $-\frac{1}{2}M_{s}L_{p}^{2}\dot{q}_{P}^{2}$, $-\frac{1}{2}M_{s}L_{p}^{2}\dot{q}_{P}^{2}$ $-M_{T}\dot{q}_{P}^{2}L_{p}L_{q}$, $\cos(q_{0}) + M_{s}L_{p}^{2}\dot{q}_{P}$, η_{1} $-M_{s}L_{p}^{2}\dot{q}_{P}\dot{q}_{2}$, $M_{s}L_{p}^{2}\dot{q}_{q}$, η_{2} , $L_{p}^{2}\dot{q}_{P}\dot{q}_{q}$,	$D_{n,h}(q_{1}) = M_{n}L_{f} \cos(q_{1} - q_{2} + q_{3} + q_{4})$ $-q_{f}^{N}M_{f} \cos(q_{1} - q_{2} + q_{3} - q_{4} + q_{1})$ $+p_{f}^{N}M_{f} \cos(q_{1} - q_{2} + q_{3} + q_{1})$ $+\cos(q_{1} + q_{2} + q_{3} + q_{3})$
$\begin{split} &-\partial_{0}p_{1}^{M}M_{1}\xi_{1}\sin\left(q_{1}-q_{2}\right)\\ &-\partial_{0}p_{2}^{M}M_{1}\xi_{2}\sin\left(q_{1}-q_{2}+q_{1}\right),\\ &G_{1}(q)=-g\left(an(q_{1}+q_{2}+q_{3})p_{1}^{M}M_{2}\right)\end{split}$	$-\frac{2\eta_1^{22}}{M_1}\frac{M_2(q, \bar{q}, \eta_1 q, mm; (q_1))}{(q_1 - q_1)^{22}} + \frac{2\eta_1^{22}}{M_1}\frac{M_2(q, \bar{q}, \eta_2 q, mm; (q_2))}{(q_1 - q_1)^{22}} + \frac{2\eta_1^{22}}{M_1}\frac{M_1}{d_1}\frac{q_1 \eta_2 \eta_2}{q_2} \exp \left(q_2\right)}{(q_1 - q_1)^{22}} + \frac{2\eta_1^{22}}{M_1}\frac{M_1}{d_1}\frac{q_1 \eta_2}{q_2} \exp \left(q_1\right)}{(q_1 - q_1)^{22}} + \frac{2\eta_1^{22}}{M_1}\frac{M_1}{d_1}\frac{q_2 \eta_2}{q_2} \exp \left(q_1\right)}{(q_1 - q_1)^{22}} \exp \left(q_1\right)}$	$\begin{split} + 2J_{f} \dot{a}_{1} \dot{a}_{2} &+ \frac{1}{2} M_{1} \dot{a}_{1}^{2} \dot{a}_{1}^{2} + \frac{1}{2} M_{1} J_{1}^{2} \dot{a}_{2}^{2} \\ - M_{1} \dot{a}_{2}^{2} \dot{a}_{1} \dot{a}_{1} &- (m + m) + M_{1} J_{2}^{2} \dot{a}_{2} \dot{a}_{2} \\ - M_{2} J_{1}^{2} \dot{a}_{1} \dot{a}_{2} &- M_{2} J_{2}^{2} \dot{a}_{2} \dot{a}_{2} \\ + M_{2} J_{1}^{2} \dot{a}_{2} \dot{a}_{2} &- M_{2} J_{2}^{2} \dot{a}_{2} \dot{a}_{2} \\ - M_{2} J_{1}^{2} J_{2} \dot{a}_{2} \dot{a}_{2} \dot{a}_{2} \dot{a}_{2} \dot{a}_{2} \dot{a}_{2} \end{split}$	$\begin{array}{ll} D_{-1,0}(\mathbf{p}_{*}) &=& M_{*} \delta_{T} \cos \left(\mathbf{p}_{*} - \mathbf{p}_{*} + \mathbf{q}_{*} + \mathbf{q}_{*}\right) \\ & - p_{*}^{W} M_{*} \cos \left(\mathbf{n}_{*} - \mathbf{n}_{*} + \mathbf{q}_{*} - \mathbf{q}_{*} + \mathbf{q}_{*}\right) \\ & + p_{*}^{W} M_{F} \cos \left(\mathbf{q}_{*} - \mathbf{q}_{*} + \mathbf{q}_{*} + \mathbf{q}_{*}\right) \\ & + \cos \left(\mathbf{q}_{*} + \mathbf{q}_{*} + \mathbf{q}_{*}\right) \frac{Y}{M} M_{F} \\ D_{-1,7}(\mathbf{q}_{*}) & = -M_{*} + \sin \left(\mathbf{q}_{*} - \mathbf{q}_{*} + \mathbf{q}_{*}\right) \end{array}$
$\begin{split} &-\frac{1}{2} g g_{1}^{(0)} M_{2}(k, q_{0}, q_{0}) \\ &-\frac{1}{2} g g_{2}^{(0)} M_{2}^{(0)} f_{1} \sin \left(q_{0}-q_{0}\right) \\ &-g_{2} g_{1}^{(0)} M_{2}^{(0)} f_{1} \sin \left(q_{0}-q_{0}+q_{0}\right) \\ &-g_{1}^{(0)} \left(q_{1}-q_{0}+q_{0}+q_{0}\right) g_{2}^{(0)} M_{1} \\ &+g_{1}^{(0)} M_{1}^{(0)} \left(q_{1}-q_{0}+q_{0}+q_{0}\right) \\ &+g_{1}^{(0)} M_{1}^{(0)} \left(q_{1}-q_{0}+q_{0}+q_{0}\right) \\ \end{split}$	$\begin{split} &-2g_{1}^{20}M_{1}^{2}M_{2}g_{1}^{2}g_{1}^{2}\cos(m_{1})\\ &+2g_{1}^{20}M_{1}^{2}g_{1}^{2}g_{2}^{2}g_{2}^{2}\cos(m_{1})\\ &+2g_{1}^{20}M_{1}^{2}f_{2}g_{2}^{2}g_{2}^{2}\cos(m_{1})g_{1}\\ &+g_{1}^{20}M_{1}^{2}f_{2}g_{1}^{2}g_{2}^{2}\cos(m_{1})g_{1}\\ &+g_{1}^{20}M_{1}^{2}f_{2}^{2}g_{2}^{2}\cos(m_{1}-g_{1}-g_{2}+g_{1})\\ &+g_{1}^{20}M_{1}^{2}f_{2}^{2}g_{2}^{2}\cos(m_{1}-g_{2}-g_{2}+g_{1})\\ &+g_{1}^{20}M_{1}^{2}f_{2}^{2}g_{2}^{2}\cos(m_{1}-g_{2}-g_{2}+g_{1})\end{split}$	$\begin{split} + M_{1} \rho_{1} \rho_{2} \rho_{1} &= \frac{1}{2} M_{1} K_{1}^{2} \rho_{1}^{2} + \frac{1}{2} M_{1} K_{1}^{2} \rho_{1}^{2} \\ - M_{1} \rho_{1}^{2} K_{1} \rho_{2} \rho_{1} \rho_{1} &= M_{1} K_{2}^{2} \rho_{1} \rho_{1} \\ - M_{2} (\rho_{1}^{2} K_{1}^{2} \rho_{1} \rho_{2} + M_{2} K_{2}^{2} \rho_{2} \rho_{2} \rho_{1} \\ + M_{2} (\rho_{1}^{2} K_{2}^{2} - K_{2}^{2} K_{2}^{2} \rho_{2} \rho_{1} \\ - M_{2} (R_{1}^{2} K_{2}^{2} \rho_{2} \rho_{1} \rho_{2} \rho_{2} \rho_{2} \rho_{1} \rho_{2} \rho$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{split} &- \frac{1}{2} \phi_{0} q^{0} M_{1} L_{2} \sin(q_{1}) \\ &- \frac{1}{2} \phi_{0} q^{0} M_{1} L_{2} \sin(q_{1} - q_{2}) \\ &- \frac{1}{2} \phi_{0} q^{0} M_{2} L_{2} \sin(q_{1} - q_{2}) + q_{1}] , \end{split} \\ G_{1}(q) &= - g \left(\cos(q_{1} + q_{1} + q_{0}) p_{1}^{0} M_{1} \\ &+ p_{1}^{0} M_{1} \sin(q_{1} - q_{2}) + q_{1} + q_{0} \right) \\ &+ L_{2}^{0} M_{1} \sin(q_{1} - q_{2}) + q_{1} = \eta . \end{split}$	$\begin{split} &-2g_{1}^{2}M_{2}^{2}d_{2}d_{2}d_{2}d_{3}mm\left(\mu_{0}\right)\\ &+2g_{1}^{2}M_{2}^{2}d_{2}d_{2}d_{3}d_{3}mm\left(\mu_{0}\right)\\ &+2g_{1}^{2}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}mm\left(\mu_{0}\right)\\ &+g_{1}^{2}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}mm\left(\mu_{0}\right)\\ &+g_{1}^{2}M_{2}^{2}d_{3}d_{3}d_{3}mm\left(\mu_{0}\right)\\ &+g_{1}^{2}M_{2}^{2}M_{2}d_{3}d_{3}mm\left(\mu_{0}-\mu_{0}+\mu_{0}\right)\\ &-g_{1}^{2}M_{2}^{2}M_{2}d_{3}d_{3}mm\left(-\mu_{0}-\mu_{0}+\mu_{0}\right)\\ &-g_{1}^{2}M_{2}M_{2}d_{3}d_{3}mm\left(-\mu_{0}-\mu_{0}+\mu_{0}\right) \end{split}$	$-3L_{1}c_{2}c_{2}h_{1} + \frac{1}{2}M_{1}L_{1}^{2}c_{1}^{2}r_{1}^{2} + \frac{1}{2}M_{2}L_{1}^{2}c_{2}^{2}r_{1}^{2}$ $-M_{2}L_{2}^{2}c_{1}r_{2} + m(m) + M_{2}L_{2}^{2}h_{2}h_{1}$ $-M_{2}L_{2}^{2}c_{2}h_{2} + M_{2}L_{2}^{2}h_{2}h_{1}$ $-M_{2}L_{2}^{2}c_{2}h_{2}h_{2}h_{2}h_{2}h_{2}h_{2}h_{2}h$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{split} -& [\phi q_1^{0} M_{1} L_{2} dm(q_{1}) \\ &- [\phi q_2^{0} M_{1} L_{1} dm(q_{1} - q_{2}) \\ &- [\phi q_2^{0} M_{2} L_{2} dm(q_{1} - q_{2}) \\ &- [\phi q_1^{0} M_{2} L_{2} dm(q_{1} - q_{2} + q_{2})], \end{split} \\ G_{1}(q) &= - q_{1} \{ q_{21}(q_{1} - q_{2} + q_{2}) \\ &+ [\phi_1^{0} M_{2} dm(q_{1} - q_{2} - q_{2} + q_{2}) \\ &+ [\phi_1^{0} M_{2} dm(q_{1} - q_{2} - q_{2} + q_{2})], \end{split}$	$\begin{split} &-2g_{1}^{20}M_{2}^{2}d_{2}d_{2}d_{2}d_{3}\cos(m_{1})\\ &+2g_{1}^{20}M_{2}^{2}d_{2}d_{2}d_{3}d_{3}\cos(m_{1})\\ &+2g_{1}^{20}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}d_{3}\cos(m_{1})\\ &+g_{1}^{20}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}\cos(m_{1})\\ &+g_{1}^{20}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}d_{3}\cos(m_{1}-(m_{1}-m_{2}+m_{1}))\\ &+g_{1}^{20}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}d_{3}\cos(m_{1}-(m_{1}-m_{2}+m_{1}+m_{1}))\\ &-g_{1}^{20}M_{2}d_{3}d_{3}d_{3}d_{3}d_{3}\cos(m_{1}-(m_{1}-m_{2}+m_{1}+m_{1}))\\ &-g_{1}^{20}M_{2}d_{3}d_{3}d_{3}d_{3}\cos(m_{1}-(m_{1}-m_{2}+m_{1}+m_{1}))\\ &-g_{1}^{20}M_{2}d_{3}d_{3}d_{3}d_{3}\cos(m_{1}-(m_{1}-m_{2}+m_{1}+m_{1})) \end{split}$	$\begin{split} -& 3 L_{plach} + \frac{1}{2} M M_{p}^2 d_{1}^2 - \frac{1}{2} M M_{p}^2 d_{2}^2 \\ & - M M_{p}^2 M_{1} + 1 L_{1} + m \sin h + M M_{plach} \\ & - M M_{p}^2 M_{1}^2 - M M_{p}^2 M_{plac} - M M_{p}^2 M_{plac} \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{plac} - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - m M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - m M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - m M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 \\ & - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_{p}^2 - M M_{p}^2 M_$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{split} &-\frac{\partial \phi^{2}}{\partial t}M_{c}L\phi(\mathbf{x})\\ &-\frac{\partial \phi^{2}}{\partial t}M_{c}L\phi(\mathbf{x})-g_{0}-g_{0}\\ &-\frac{\partial \phi^{2}}{\partial t}M_{c}L\phi(\mathbf{x})-g_{0}-g_{0}-g_{0}\\ &-\frac{\partial \phi^{2}}{\partial t}M_{c}L\phi(\mathbf{x})-g_{0}-g_{0}-g_{0}\\ &+\frac{\partial \phi^{2}}{\partial t}M_{c}(g_{0}-g_{0}-g_{0}-g_{0})\\ &+\frac{\partial \phi^{2}}{\partial t}M_{c}(g_{0}-g_{0}-g_{0}-g_{0})\\ &-\frac{\partial \phi^{2}}{\partial t}M_{c}(g_{0}-g_{0}-g_{0}-g_{0})\\ &-\frac{\partial \phi^{2}}{\partial t}M_{c}(g_{0}-g_{0}-g_{0}-g_{0})\\ &-\frac{\partial \phi^{2}}{\partial t}M_{c}(g_{0}-g_{0}-g_{0}-g_{0})\\ &+\frac{\partial \phi^{2}}{\partial t}M_{c}(g_{0}-g_{0}-g_{0}-g_{0})\\ &+$	$\begin{split} &-2g_{1}^{2}M_{2}^{2}d_{2}d_{2}d_{2}d_{3}\cos(mx) g_{2}\rangle \\ &+2g_{1}^{2}M_{2}^{2}d_{2}d_{2}d_{3}d_{3}\cos(mx) g_{2}\rangle \\ &+2g_{1}^{2}M_{2}^{2}d_{2}d_{3}d_{3}d_{3}d_{3}\cos(mx) g_{2}\rangle \\ &+g_{1}^{2}M_{2}^{2}d_{2}d_{3}d_{3}d_{3}d_{3}\cos(mx) g_{2}\rangle \\ &+g_{1}^{2}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}d_{3}\cos(mx) g_{2}\rangle \\ &+g_{1}^{2}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}d_{3}d_{3}d_{3}d_{3$	$\begin{split} -& 2J_{1} \phi_{1} \phi_{2} + \frac{1}{2} X L_{1}^{2} \phi_{1}^{2} + \frac{1}{2} X L_{1}^{2} \phi_{1}^{2} \phi_{2}^{2} \\ -& 3J_{1} \phi_{2}^{2} L_{1} (-\alpha + \alpha \mu_{2}) + M M_{2}^{2} \mu_{2} \phi_{1} \\ -& 3J_{1} \phi_{1}^{2} + M h_{2}^{2} + M h_{2}^{2} \phi_{2} \phi_{2} \\ -& 3M h_{1}^{2} \phi_{2} + M h_{2}^{2} \phi_{2} \phi_{2} \\ -& 2M h_{2}^{2} \phi_{2} + \alpha + (\alpha + \alpha + $	$\begin{array}{l} B_{-1,1}(\mathbf{p}) &= M_{n,1}^{2} \exp\left(-\mathbf{p} + \mathbf{q} + \mathbf{q}\right) \\ &= p_{n,1}^{2} M_{n-1}(\mathbf{q}_{n-1} + \mathbf{q}_{n-1} + \mathbf{q}_{n-1}) \\ &= p_{n,1}^{2} M_{n-1}(\mathbf{q}_{n-1} + \mathbf{q}_{n-1} + \mathbf{q}_{n-1}) \\ &= p_{n,1}^{2} M_{n-1}(\mathbf{q}_{n-1} + \mathbf{q}_{n-1} + \mathbf{q}_{n-1}) \\ B_{-1,1}(\mathbf{q}_{n-1}) &= -M_{n,1}^{2} M_{n-1}(\mathbf{q}_{n-1} + \mathbf{q}_{n-1} + \mathbf{q}_{n-1} + \mathbf{q}_{n-1}) \\ &= -M_{n,1}^{2} M_{n-1}(\mathbf{q}_{n-1} + \mathbf{q}_{n-1} + \mathbf{q}_{n-1} + \mathbf{q}_{n-1}) \\ &= -M_{n-1}^{2} M_{n-1}^{2} M_{n-1}^{2} + \mathbf{q}_{n-1} + \mathbf{q}_{n-1} \\ B_{-1,1}(\mathbf{q}_{n-1}) &= -M_{n-1}^{2} M_{n-1}^{2} M$
$\begin{split} &-\frac{\partial \phi^{2}}{\partial t}M_{c}L\phi(\mathbf{x})\\ &-\frac{\partial \phi^{2}}{\partial t}M_{c}L\phi(\mathbf{x})-g_{0}-g_{0}\\ &-\frac{\partial \phi^{2}}{\partial t}M_{c}L\phi(\mathbf{x})-g_{0}-g_{0}-g_{0}\\ &-\frac{\partial \phi^{2}}{\partial t}M_{c}L\phi(\mathbf{x})-g_{0}-g_{0}-g_{0}\\ &+\frac{\partial \phi^{2}}{\partial t}M_{c}(g_{0}-g_{0}-g_{0}-g_{0})\\ &+\frac{\partial \phi^{2}}{\partial t}M_{c}(g_{0}-g_{0}-g_{0}-g_{0})\\ &-\frac{\partial \phi^{2}}{\partial t}M_{c}(g_{0}-g_{0}-g_{0}-g_{0})\\ &-\frac{\partial \phi^{2}}{\partial t}M_{c}(g_{0}-g_{0}-g_{0}-g_{0})\\ &-\frac{\partial \phi^{2}}{\partial t}M_{c}(g_{0}-g_{0}-g_{0}-g_{0})\\ &+\frac{\partial \phi^{2}}{\partial t}M_{c}(g_{0}-g_{0}-g_{0}-g_{0})\\ &+$	$\begin{split} -& 2g_{1}^{2} \delta S_{1} \delta S_{1} \delta g_{2} + \cos \left(g_{2} \right) \\ & -& 2g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} + \cos \left(g_{2} \right) \\ & -& 2g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} + \cos \left(g_{2} \right) \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} + \cos \left(g_{2} \right) \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} + \cos \left(g_{2} \right) \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} + \cos \left(g_{2} - g_{2} + g_{2} + g_{2} \right) \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} + \cos \left(g_{2} - g_{2} + g_{2} + g_{2} \right) \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} + \cos \left(g_{2} - g_{2} + g_{2} + g_{2} \right) \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} + \cos \left(g_{2} - g_{2} + g_{2} + g_{2} \right) \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} + \cos \left(g_{2} - g_{2} + g_{2} + g_{2} \right) \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} + \cos \left(g_{2} - g_{2} + g_{2} + g_{2} + g_{2} \right) \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} + \cos \left(g_{2} - g_{2} + g_{2} + g_{2} + g_{2} \right) \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} + \cos \left(g_{2} - g_{2} + g_{2} + g_{2} + g_{2} + g_{2} + g_{2} \right) \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} + g_{2} \delta g_{2} \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} + g_{2} \delta g_{2} \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} + g_{2} \delta g_{2} \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} + g_{2} \delta g_{2} \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} \\ & -& g_{1}^{2} \delta S_{2} + g_{2} \delta g_{2} \\ & -& g_{1}^{2} \delta S_{2} + g_{2} + g_{2} \delta g_{2} \\ & -& g_{1}^{2} \delta S_{2} + g_{2} + g_{2} + g_{2} + g_{2} + g_{2} + g_{2} \\ & -& g_{1}^{2} \delta S_{2} + g_{2} + g_$	$\begin{split} -& 3 L_{plach} + \frac{1}{2} M L_{p}^{2} dt^{2} - \frac{1}{2} M L_{p}^{2} dt^{2} \\ & 3 M_{e}^{2} dt^{2} + 1_{e}^{2} + 1_{e}^{2} + 2_{e}^{2} + 2_{e}^{2} M L_{p}^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} - M L_{p}^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} - M L_{p}^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} - M L_{p}^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} - M L_{p}^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} - M L_{p}^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} - M L_{p}^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} - M L_{p}^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} dt^{2} - M L_{p}^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} dt^{2} - M L_{p}^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} dt^{2} - M L_{p}^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} dt^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} dt^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} dt^{2} dt^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} dt^{2} dt^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} dt^{2} dt^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} dt^{2} dt^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} dt^{2} dt^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} dt^{2} dt^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} dt^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} dt^{2} dt^{2} dt^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} dt^{2} dt^{2} dt^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} dt^{2} dt^{2} dt^{2} dt^{2} \\ & - M M_{e}^{2} dt^{2} dt$	$\begin{array}{l} B_{1,1}(\mathbf{p}) &= M_{1,2}^{1} \min\{\mathbf{p}-\mathbf{p}+\mathbf{q}+\mathbf{q},\mathbf{h}\}\\ &= p_{1}^{2} M_{1} \min\{\mathbf{n}-\mathbf{q}+\mathbf{n}-\mathbf{n},\mathbf{h}-\mathbf{q},\mathbf{h}\}\\ &= p_{1}^{2} M_{1} \min\{\mathbf{n}-\mathbf{q}+\mathbf{q}+\mathbf{n},\mathbf{h}+\mathbf{q},\mathbf{h}\}\\ &= m_{1}^{2} \min\{\mathbf{n}-\mathbf{q}+\mathbf{h}-\mathbf{q},\mathbf{h}\}\\ &= m_{1}^{2} M_{1} \min\{\mathbf{n}-\mathbf{q}+\mathbf{q}-\mathbf{q},\mathbf{h}\}\\ &= m_{1}^{2} M_{1} \min\{\mathbf{n}-\mathbf{q}+\mathbf{q}-\mathbf{q},\mathbf{h}\}\\ &= p_{1}^{2} M_{1} \min\{\mathbf{n}-\mathbf{q}+\mathbf{q},\mathbf{h},\mathbf{h}\}\\ B_{1,1}(\mathbf{p}) &= p_{1}^{2} M_{1} \min\{\mathbf{n}-\mathbf{q},\mathbf{h},\mathbf{h}\}\\ B_{1,1}(\mathbf{p}) &= p_{1}^{2} M_{1} \min\{\mathbf{n}-\mathbf{q},\mathbf{h},\mathbf{h}\}\\ B_{1,2}(\mathbf{p}) &= p_{1}^{2} M_{1} M_{1} \min\{\mathbf{n},\mathbf{h},\mathbf{h},\mathbf{h},\mathbf{h}\}\\ B_{1,2}(\mathbf{p}) &= p_{1}^{2} M_{1} M_{1} \min\{\mathbf{n},\mathbf{h},\mathbf{h},\mathbf{h}\}\\ B_{1,2}(\mathbf{p}) &= p_{1}^{2} M_{1} M_{1} \min\{\mathbf{n},\mathbf{h},\mathbf{h}\}\\ \end{array}$
$\begin{split} & -\frac{4}{9}q_{1}^{2}M_{2}L_{2}d_{2}d_{2}\left(p_{1}\right)\\ & -\frac{4}{9}q_{2}^{2}M_{2}L_{2}d_{2}d_{2}\left(q_{1}-q_{2}\right)\\ & -\frac{4}{9}q_{2}^{2}M_{2}L_{2}d_{2}d_{2}\left(q_{1}-q_{2}\right)\\ & -\frac{4}{9}q_{1}^{2}M_{2}L_{2}d_{2}\left(q_{1}-q_{2}-q_{2}\right)\\ & +\frac{4}{9}M_{2}d_{2}d_{2}\left(q_{1}-q_{2}-q_{2}-q_{2}+q_{2}\right)\\ & +\frac{4}{9}M_{2}d_{2}d_{2}\left(q_{1}-q_{2}-q_{2}-q_{1}-q_{2}-q_{2}\right)\\ & -\frac{4}{9}M_{2}d_{2}d_{2}\left(q_{1}-q_{2}-q_{2}-q_{1}-q_{2}-q_{2}\right)\\ & -\frac{4}{9}M_{2}d_{2}d_{2}d_{2}\left(q_{1}-q_{2}-q_{2}-q_{1}-q_{2}\right)\\ & -\frac{4}{9}M_{2}d_{2}d_{2}d_{2}\left(q_{1}-q_{2}-q_{2}-q_{1}-q_{2}\right)\\ & -\frac{4}{9}M_{2}d_{2}d_{2}d_{2}\left(q_{1}-q_{2}-q_{2}-q_{1}-q_{2}\right)\\ & -\frac{4}{9}M_{2}d_{2}d_{2}d_{2}\left(q_{1}-q_{2}-q_{2}-q_{1}-q_{2}\right)\\ & -\frac{4}{9}M_{2}d_{2}d_{2}d_{2}d_{2}d_{2}d_{2}d_{2}d$	$\begin{split} -& 2g_{1}^{2}M_{2}^{2}(d_{1},d_{2},d_{3},d_{$	$\begin{split} -& 2J_{10}(a,b,-\frac{1}{2}M_{10}^{2}\int_{0}^{a}d-\frac{1}{2}M_{10}^{2}\int_{0}^{a}d-\frac{1}{2}M_{10}^{2}\int_{0}^{a}dd\\ -& 3M_{10}^{2}H_{10}^{2}(a,-M_{10})a+M_{10}^{2}H_{10}^{2}(a,-M_{10})d\\ -& 3M_{10}^{2}H_{10}^{2}-M_{10}^{2}H_{10}^{2}h_{10}^{2}h\\ -& 2M_{10}^{2}H_{10}^{2}(a,-M_{10})a\\ -& 2M_{10}^{2}H_{10}^{2}(a,-m_{10})a\\ -& 2M_{10}^{2}H_{10}^{2}(a,-m_{10})a\\ -& M_{10}^{2}H_{10}^{2}(a,-m_{10})a\\ -& M_{10}^{2}H_{10}^{2}H_{10}^{2}(a,-m_{10})a\\ -& M_{10}^{2}H_{10}^{2}H_{10}^{2}H_{10}^{2}(a,-m_{10})a\\ -& M_{10}^{2}H_{10}^{$	$\begin{array}{l} B_{-,1,2}(\mathbf{p}) &= M_{-,2}^{2} \exp\left(-\mathbf{p} + \mathbf{q} + \mathbf{q}\right) \\ &= r_{+}^{2} M_{+}^{2} \exp\left(-\mathbf{q} + \mathbf{q} + \mathbf{q}\right) \\ &= r_{+}^{2} M_{+}^{2} \exp\left(-\mathbf{q} + \mathbf{q} + \mathbf{q}\right) \\ &= r_{+}^{2} M_{+}^{2} \exp\left(-\mathbf{q} + \mathbf{q} + \mathbf{q}\right) \\ B_{-,1}(\mathbf{p}) &= -M_{-,2}^{2} \exp\left(-\mathbf{q} + \mathbf{q} + \mathbf{q} + \mathbf{q}\right) \\ &= -M_{-,2}^{2} \exp\left(-\mathbf{q} + \mathbf{q} + \mathbf{q} + \mathbf{q} + \mathbf{q}\right) \\ &= -M_{-,2}^{2} \exp\left(-\mathbf{q} + \mathbf{q} + \mathbf{q} + \mathbf{q} + \mathbf{q}\right) \\ &= -M_{-,2}^{2} \exp\left(-\mathbf{q} + \mathbf{q} + \mathbf{q} + \mathbf{q} + \mathbf{q}\right) \\ B_{-,1}(\mathbf{p}) &= -M_{-,2}^{2} \exp\left(-\mathbf{q} + \mathbf{q} + \mathbf{q} + \mathbf{q} + \mathbf{q}\right) \\ B_{-,1}(\mathbf{q}) &= -M_{-,2}^{2} \exp\left(-\mathbf{q} + \mathbf{q} + $
$\begin{split} & -\frac{-4gq^2}{M_{1}}M_{2}^{2}\sin(q_{1}-q_{2})\\ & -\frac{-4gq^2}{M_{1}}M_{2}^{2}\sin(q_{1}-q_{2})\\ & -\frac{-4gq^2}{M_{1}}M_{2}^{2}\sin(q_{1}-q_{2}-q_{1}-q_{1})\\ & +\frac{-4gq^2}{M_{1}}M_{2}^{2}\sin(q_{1}-q_{1}-q_{1}-q_{1})\\ & +\frac{2}{M_{1}}M_{1}^{2}\sin(q_{1}-q_{1}-q_{1}-q_{1})\\ & +\frac{2}{M_{1}}M_{1}^{2}m_{1}^{2}(q_{1}-q_{1}-q_{1}-q_{1})\\ & -\frac{2}{M_{1}}M_{1}^{2}m_{1}^{2}(q_{1}-q_{1}-q_{1}-q_{1})\\ & +\frac{2}{M_{1}}M_{1}^{2}m_{1}^{2}(q_{1}-q_{1}-q_{1}-q_{1})\\ & +\frac{2}{M_{1}}M_{1}^{2}m_{1}^{2}(q_{1}-q_{1}-q_{1}-q_{1})\\ & +\frac{2}{M_{1}}M_{1}^{2}m_{1}^{2}(q_{1}-q_{1}-q_{1}-q_{1})\\ & -\frac{2}{M_{1}}M_{1}^{2}m_{1}^{2}(q_{1}-q_{1}-q_{1}-q_{1})\\ & -\frac{2}{M_{1}}M_{1}^{2}m_{1}^{2}(q_{1}-q_{1}-q_{1})\\ & -\frac{2}{M_{1}}M_{1}^{2}m_{1}^{2}(q_{1}-q_{1})\\ & -\frac{2}{M_{1}}M_{1}^{2}m_{1}^{2}(q_{1}-q_{1})\\ & -\frac{2}{M_{1}}M_{1}^{2}m_{1}^{$	$\begin{split} &-2g_{1}^{2}M_{1}^{2}d_{1}d_{2}d_{2}d_{3}\cos\left(m_{1}\right)\\ &+2g_{1}^{2}M_{1}^{2}d_{2}d_{2}d_{3}d_{3}\cos\left(m_{1}\right)\\ &+2g_{1}^{2}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}d_{3}\cos\left(m_{1}\right)\\ &+g_{1}^{2}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}d_{3}d_{3}d_{3}d_{3$	$\begin{split} -& 2J_{1} \phi_{1} \phi_{2} + \frac{1}{2} M A_{1}^{2} \phi_{1}^{2} + \frac{1}{2} M A_{2}^{2} \phi_{1}^{2} + \frac{1}{2} M A_{2}^{2} \phi_{2}^{2} + M A_{2}^{2} \phi_{2} + M $	$\begin{array}{l} B_{1,12}(q_1) &= M_{1,12}(m_1(q_1-q_1+q_1+q_2))\\ &= p_{1,12}^{(2)}M_{1,12}(m_1(q_1-q_1+q_1-q_2))\\ &= p_{1,12}^{(2)}M_{1,12}(m_1(q_1-q_1+q_2))\\ &= m_{1,12}^{(2)}M_{1,12}(m_1(q_1-q_1+q_2))\\ &= p_{1,12}^{(2)}M_{1,12}(m_1(q_1-q_1+q_2))\\ &= p_{1,12}^{(2)}M_{1,12}(m_1(q_1-q_1+q_2))\\ &= p_{1,12}^{(2)}M_{1,12}(m_1(q_1-q_1-q_1-q_2))\\ &= p_{1,12}^{(2)}M_{1,12}(m_1(q_1-q_1-q_1-q_1-q_2))\\ &= p_{1,12}^{(2)}M_{1,12}(m_1(q_1-q_1-q_1-q_1-q_2))\\ &= p_{1,12}^{(2)}M_{1,12}(m_1(q_1-q_1-q_1-q_1-q_2))\\ &= p_{1,12}^{(2)}M_{1,12}(m_1(q_1-q_1-q_1-q_1-q_1-q_2))\\ &= p_{1,12}^{(2)}M_{1,12}(m_1(q_1-q_1-q_1-q_1-q_1-q_2))\\ &= p_{1,12}^{(2)}M_{1,12}(m_1(q_1-q_1-q_1-q_1-q_1-q_1-q_1-q_1-q_1-q_1-$
$\begin{split} & -\frac{-ig \phi_1^2}{M_1^2} M_2 d_1 \sin(q_1 - q_2) \\ & -\frac{-ig \phi_1^2}{M_1^2} M_2 d_1 \sin(q_1 - q_2) \\ & -\frac{-ig \phi_1^2}{M_1^2} M_2 d_1 \sin(q_1 - q_1 - q_2) \\ & -\frac{-ig \phi_1^2}{M_1^2} M_1 d_2 \sin(q_1 - q_1 - q_1 - q_2) \\ & -\frac{ig \phi_1^2}{M_1^2} M_1 \sin(q_1 - q_1 - q_1 - q_1 - q_1) \\ & -ig \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1 - q_1) \\ & -d_1 \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1 - q_1) \\ & -d_1 \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1 - q_1) \\ & -d_1 \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1 - q_1) \\ & -d_1 \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1 - q_1) \\ & -d_1 \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1) \\ & -d_1 \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1) \\ & -d_1 \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1) \\ & -d_2 H_1 \sin(q_1 - q_1) M_1 - d_1 M_1 \sin(q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \sin(q_1 - q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \cos(q_1 - q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \cos(q_1 - q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \cos(q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \cos(q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \cos(q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \cos(q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \cos(q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \cos(q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \cos(q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \cos(q_1 - q_1 - q_1) \\ & -g \phi_1^2 M_1 \cos(q_1 - q_1) \\ & -$	$\begin{split} -& 2g_{1}^{2} \delta S_{2}^{2} $	$-3J_{1}\phi_{1}\phi_{2}, -\frac{1}{2}M_{1}J_{1}^{2}g_{1}^{2} - \frac{1}{2}M_{1}J_{1}^{2}g_{1}^{2}$ $-3M_{1}g_{1}^{2}A_{1}A_{2}A_{2}A_{3}A_{3}A_{3}A_{3}A_{3}A_{3}A_{3}A_{3$	$\begin{array}{l} B_{-1,0}(\mathbf{p}) &= M_{n,0}^{2} \exp \left(-\mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n}\right) \\ &= p_{n}^{2} M_{n}^{2} \exp \left(-\mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n}\right) \\ &= p_{n}^{2} M_{n}^{2} \exp \left(-\mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n}\right) \\ &= p_{n}^{2} M_{n}^{2} \exp \left(-\mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n}\right) \\ &= M_{n}^{2} \exp \left(-\mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n}\right) \\ &= -M_{n}^{2} \exp \left(-\mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n}\right) \\ &= -M_{n}^{2} \exp \left(-\mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n}\right) \\ &= M_{n}^{2} \exp \left(-\mathbf{p}_{n} + \mathbf{p}_{n} \\ \\ B_{-1,1}(\mathbf{p}) &= -p_{n}^{2} M_{n}^{2} \exp \left(-\mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n} \\ \\ B_{-1,1}(\mathbf{p}) &= -p_{n}^{2} M_{n}^{2} M_{n} + \mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n} \\ \\ B_{-1,1}(\mathbf{p}) &= -p_{n}^{2} M_{n}^{2} M_{n} + \mathbf{p}_{n} + \mathbf{p}_{n} \\ \\ B_{-1,1}(\mathbf{p}) &= -p_{n}^{2} M_{n}^{2} M_{n} + \mathbf{p}_{n} + \mathbf{p}_{n} \\ \\ B_{-1,1}(\mathbf{p}) &= -p_{n}^{2} M_{n}^{2} M_{n} + \mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n} \\ \\ \end{array}$
$\begin{split} & -\frac{-ig_0 q^0}{M_0 d_1} M_0 d_1 \sin(q_1 - q_2) \\ & -\frac{-ig_0 q^0}{M_0 d_1} M_0 d_1 \sin(q_1 - q_2) \\ & -\frac{-ig_0 q^0}{M_0 d_1} M_0 d_1 \sin(q_1 - q_2 - q_3) \\ & +\frac{ig_0^0}{M_0} M_0 m_0 q_1 - q_2 - q_3 \\ & -\frac{ig_0^0}{M_0} M_0 m_0 q_1 - q_2 - q_3 + q_3 \\ & -\frac{ig_0^0}{M_0} M_0 m_0 q_1 - q_3 - q_3 + q_3 \\ & -\frac{ig_0^0}{M_0} M_0 m_0 q_1 - q_3 - q_3 + q_3 \\ & -\frac{ig_0^0}{M_0} M_0 m_0 q_1 - q_3 - q_3 + q_3 \\ & -\frac{ig_0^0}{M_0} M_0 m_0 q_1 - q_3 - q_3 + q_3 \\ & -\frac{ig_0^0}{M_0} M_0 m_0 q_1 - q_3 - q_3 + q_3 \\ & -\frac{ig_0^0}{M_0} M_0 m_0 q_1 - q_3 - q_3 \\ & -\frac{ig_0^0}{M_0} M_0 m_0 q_1 - q_3 - q_3 \\ & -\frac{ig_0^0}{M_0} M_0 m_0 q_1 - q_3 - q_3 \\ & -\frac{ig_0^0}{M_0} M_0 m_0 q_1 - q_3 \\ & -\frac{ig_0^0}{M_0} M_0 \\ & -\frac{ig_0^0}{M_0$	$\begin{split} &-2g_{1}^{20}M_{2}^{2}d_{2}d_{2}d_{2}d_{3}\cos(m_{1})g_{2})\\ &+2g_{1}^{20}M_{2}^{2}d_{2}d_{3}d_{3}d_{3}\cos(m_{1})g_{2})\\ &+2g_{1}^{20}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}\cos(m_{1})g_{3})\\ &+g_{1}^{20}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}\cos(m_{1})g_{3})\\ &+g_{1}^{20}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}\cos(m_{1}-g_{2}-m_{2}+g_{3}))\\ &-g_{1}^{20}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}\cos(m_{1}-g_{2}-m_{2}+g_{3}))\\ &-g_{1}^{20}M_{2}^{2}d_{4}d_{3}d_{3}d_{3}\cos(m_{1}-g_{2}-m_{2}+g_{3}))\\ &-g_{1}^{20}M_{2}^{2}d_{4}d_{3}d_{3}d_{3}\cos(m_{1}-g_{2}-m_{2}+g_{3}))\\ &-g_{1}^{20}M_{2}^{2}d_{4}d_{3}d_{3}d_{3}\cos(m_{1}-g_{3}-m_{2}+g_{3})\\ &-g_{1}^{20}M_{2}^{2}d_{4}^{2}d_{3}d_{3}d_{3}d_{3}\cos(m_{1}-g_{3}-m_{2}+g_{3})\\ &-g_{1}^{20}M_{2}^{2}d_{4}^{2}d_{3}d_{3}d_{3}d_{3}\cos(m_{1}-g_{3}-m_{2}-g_{3})\\ &-g_{1}^{20}M_{2}^{2}d_{4}^{2}d_{3}d_{3}d_{3}d_{3}d_{3}d_{3}d_{3}d_{3$	$-32_A \phi_{abb} + \frac{1}{2} M M_{a}^2 \phi_{ab}^2 - \frac{1}{2} M M_{a}^2 \phi_{ab}^2$ $-3M_{a}^2 \phi_{ab}^2 - 4M_{a}^2 \phi_{abb} + 3M_{a}^2 \phi_{abb}$ $-3M_{a}^2 \phi_{abb} + 3M_{a}^2 \phi_{abb} - 3M_{a}^2 \phi_{abb}$ $-2M_{a}^2 \phi_{abb} - g_{abb} - g_{abb} - 2M_{a}^2 \phi_{abb}$ $-2M_{a}^2 \phi_{abb} - g_{abb} - g_{a$	$\begin{array}{l} B_{-1,0}(\mathbf{p}) &= M_{n,0}^{2} \exp\left(-\mathbf{p} + \mathbf{q} + \mathbf{q}\right) \\ &= p_{n,0}^{2} M_{n} \exp\left(-\mathbf{q} + \mathbf{q} + \mathbf{q}\right) \\ &= p_{n,0}^{2} M_{n} \exp\left(-\mathbf{q} + \mathbf{q} + \mathbf{q}\right) \\ &= p_{n,0}^{2} M_{n} \exp\left(-\mathbf{q} + \mathbf{q} + \mathbf{q}\right) \\ &= M_{n,0}^{2} M_{n}^{2} \exp\left(-\mathbf{q} - \mathbf{q} + \mathbf{q}\right) \\ &= M_{n,0}^{2} M_{n}^{2} \exp\left(-\mathbf{q} - \mathbf{q} + \mathbf{q}\right) \\ \\ &= M_{n,0}^{2} M_{n}^{2} \exp\left(-\mathbf{q} - \mathbf{q} + \mathbf{q}\right) \\ \\ &= M_{n,0}^{2} M_{n,0}^{2} \exp\left(-\mathbf{q} - \mathbf{q} + \mathbf{q} + \mathbf{q}\right) \\ \\ \\ &= M_{n,0}^{2} M_{n,0}^{2} \exp\left(-\mathbf{q} - \mathbf{q} + \mathbf{q} + \mathbf{q}\right) \\ \\ \\ &= M_{n,0}^{2} M_{n,0}^{2} \exp\left(-\mathbf{q} - \mathbf{q} + \mathbf{q} + \mathbf{q}\right) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$\begin{split} & -\frac{-iggF}{4}M_{s}^{2}d_{s}\sin(q_{s}-q_{s})\\ & -\frac{-iggF}{4}M_{s}^{2}d_{s}\sin(q_{s}-q_{s})\\ & -\frac{iggF}{4}M_{s}^{2}d_{s}\sin(q_{s}-q_{s})+q_{s}\right),\\ & -\frac{iggF}{4}M_{s}^{2}d_{s}\sin(q_{s}-q_{s}-q_{s})+q_{s}\right),\\ & -\frac{iggF}{4}M_{s}^{2}d_{s}\sin(q_{s}-q_{s}-q_{s}-q_{s})+q_{s}\\ & -\frac{iggF}{4}M_{s}^{2}d_{s}ad_{s}(q_{s}-q_{s}-q_{s}-q_{s}+q_{s})\\ & -\frac{igF}{4}M_{s}^{2}d_{s}ad_{s}(q_{s}-q_{s}-q_{s}-q_{s}+q_{s})\\ & -\frac{igF}{4}M_{s}^{2}d_{s}ad_{s}(q_{s}-q_{s}-q_{s}-q_{s}+q_{s})\\ & -\frac{igF}{4}M_{s}^{2}d_{s}ad_{s}-q_{s}Ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}ad_{s}d_{s}ad$	$\begin{split} -& 2g_{1}^{2m} M_{2}^{2} (d_{1}^{2}, d_{2}^{2}, d_{3}^{2}, d_{$	$-3J_{1}q_{1}d_{0} = \frac{1}{2}M_{1}f_{1}^{2}q_{1}^{2} = \frac{1}{2}M_{1}f_{1}^{2}q_{1}^{2}$ $-3M_{1}g_{1}^{2}A_{1}(z_{1}, z_{1}, z_{1$	$\begin{array}{l} B_{-1,0}(\mathbf{p}) &= M_{n,0}^{2} \exp\left(-\mathbf{p}_{n} + \mathbf{q}_{n} + \mathbf{q}_{n}\right) \\ &= p_{n,0}^{2} M_{n,0}^{2} \exp\left(-\mathbf{q}_{n} + \mathbf{q}_{n} + \mathbf{q}_{n}\right) \\ &= p_{n,0}^{2} \exp\left(-\mathbf{q}_{n} + \mathbf{q}_{n} + \mathbf{q}_{n}\right) \\ &= p_{n,0}^{2} \exp\left(-\mathbf{q}_{n} + \mathbf{q}_{n} + \mathbf{q}_{n}\right) \\ &= p_{n,0}^{2} \exp\left(-\mathbf{q}_{n} + \mathbf{q}_{n} + \mathbf{q}_{n}\right) \\ &= -M_{n,0}^{2} \exp\left(-\mathbf{q}_{n} + \mathbf{q}_{n} + \mathbf{q}_{n}\right) \\ &= -M_{n,0}^{2} \exp\left(-\mathbf{q}_{n} + \mathbf{q}_{n} + \mathbf{q}_{n} + \mathbf{q}_{n}\right) \\ &= -M_{n,0}^{2} \exp\left(-\mathbf{q}_{n} + \mathbf{q}_{n} + \mathbf{q}_{n}\right) \\ \\ &= M_{n,0}^{2} \exp\left(-\mathbf{q}_{n} + \mathbf{q}_{n} + \mathbf{q}_{n}\right) \\ \\ &= M_{n,0}^{2} \exp\left(-\mathbf{q}_{n} + \mathbf{q}_{n} + \mathbf{q}_{n}\right) \\ \\ &= M_{n,0}^{2} \exp\left(-\mathbf{q}_{n} + \mathbf{q}_{n} + \mathbf{q}_{n}\right) \\ \\ &= M_{n,0}^{2} \exp\left(-\mathbf{q}_{n} + \mathbf{q}_{n} + \mathbf{q}_{n} + \mathbf{q}_{n}\right) \\ \\ &= M_{n,0}^{2} \exp\left(-\mathbf{q}_{n} + \mathbf{q}_{n} + \mathbf{q}_{n}\right) \\ \\ &= M_{n,0}^{2} \exp\left(-\mathbf{q}_{n} + \mathbf{q}_{n} + \mathbf{q}_{n}\right) \\ \\ &= M_{n,0}^{2} \exp\left(-\mathbf{q}_{n} + \mathbf{q}_{n} + \mathbf{q}_{n}\right) \\ \\ \\ &= M_{n,0}^{2} \exp\left(-\mathbf{q}_{n} + \mathbf{q}_{n} + \mathbf{q}_{n}\right) \\ \\ \\ &= M_{n,0}^{2} \exp\left(-\mathbf{q}_{n} + \mathbf{q}_{n} + \mathbf{q}_{n}\right) \\ \\ \\ \\ &= M_{n,0}^{2} \exp\left(-\mathbf{q}_{n} + \mathbf{q}_{n} + \mathbf{q}_{n}\right) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$\begin{split} & -\frac{-iggF}{4}M_{s}^{2}d_{s}\sin(q_{s}-q_{s})\\ & -\frac{-iggF}{4}M_{s}^{2}d_{s}\sin(q_{s}-q_{s})\\ & -\frac{iggF}{4}M_{s}^{2}d_{s}\sin(q_{s}-q_{s})+q_{s}\right),\\ & -\frac{iggF}{4}M_{s}^{2}d_{s}\sin(q_{s}-q_{s}-q_{s})+q_{s}\right),\\ & -\frac{iggF}{4}M_{s}^{2}d_{s}\sin(q_{s}-q_{s}-q_{s}-q_{s})+q_{s}\\ & -\frac{iggF}{4}M_{s}^{2}d_{s}ad_{s}(q_{s}-q_{s}-q_{s}-q_{s}+q_{s})\\ & -\frac{igF}{4}M_{s}^{2}d_{s}ad_{s}(q_{s}-q_{s}-q_{s}-q_{s}+q_{s})\\ & -\frac{igF}{4}M_{s}^{2}d_{s}ad_{s}(q_{s}-q_{s}-q_{s}-q_{s}+q_{s})\\ & -\frac{igF}{4}M_{s}^{2}d_{s}ad_{s}-q_{s}Ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}^{2}d_{s}ad_{s}ad_{s}d_{s}ad$	$\begin{split} &-2g_{1}^{20}M_{2}^{2}d_{2}d_{2}d_{2}d_{3}\cos(m_{1})g_{2} \\ &+2g_{1}^{20}M_{2}^{2}d_{2}d_{2}d_{3}d_{3}\cos(m_{1})g_{2} \\ &+2g_{1}^{20}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}d_{3}\cos(m_{1})g_{3} \\ &+g_{1}^{20}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}d_{3}\cos(m_{1})g_{3} \\ &+g_{1}^{20}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}d_{3}\cos(m_{1})g_{3} \\ &+g_{1}^{20}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}d_{3}\cos(m_{1})g_{3} \\ &+g_{1}^{20}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}d_{3}\cos(m_{1})g_{3}\cos(m_{1})g_{3} \\ &+g_{1}^{20}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}d_{3}\cos(m_{1})g_{3}\cos(m_{1})g_{3} \\ &+g_{1}^{20}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}d_{3}\cos(m_{1})g_{3}\cos(m_{1})g_{3} \\ &+g_{1}^{20}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}d_{3}\cos(m_{1})g_{3}\cos(m_{1})g_{3} \\ &+g_{1}^{20}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}d_{3}d_{3}d_{3}d_{3$	$\begin{split} +3J_{10}(a,b,-\frac{1}{2}M_{10}^{2}f_{10}^{2}f_{10}^{2}-\frac{1}{2}M_{10}^{2}f_{10}^{2}f_{10}^{2}\\ +3M_{10}^{2}f_{10}^{2}(a,-4M_{10}^{2})+3M_{10}^{2}f_{10}^{2}(a,-M_{10}^{2})f$	$\begin{array}{l} B_{1,1}(q_1) &= M_{1,1}^2 \exp\left(-q_1+q_1+q_1\right) \\ &= p_{1,1}^2 M_{1,1} \exp\left(-q_1-q_1+q_1-q_1\right) \\ &= p_{1,1}^2 M_{1,1} \exp\left(-q_1-q_1+q_1-q_1\right) \\ &= m_{1,1}^2 \exp\left(-q_1-q_1-q_1\right) \\ &= m_{1,1}^2 \exp\left(-q_1-q_1-q_1-q_1\right) \\ &= m_{1,1}^2 \exp\left(-q_1-q_1-q_1-q_1-q_1-q_1-q_1-q_1-q_1-q_1$
$\begin{split} & -\frac{-igr q^2}{4M_{\pi}^2}M_{\pi}^2(x\mathrm{d}x\mathrm{d}x\mathrm{d}y) \\ & -\frac{-igr q^2}{4M_{\pi}^2}M_{\pi}^2(x\mathrm{d}x\mathrm{d}y, -g_{\pi}) \\ & -\frac{igr q^2}{4M_{\pi}^2}M_{\pi}^2(x\mathrm{d}x\mathrm{d}y, -g_{\pi}) + g_{\pi} + g_{\pi}^2(x\mathrm{d}y\mathrm{d}y, -g_{\pi}) \\ & -\frac{igr q^2}{4M_{\pi}^2}M_{\pi}^2(x\mathrm{d}y, -g_{\pi}, -g_{\pi}, -g_{\pi}, -g_{\pi}) \\ & -\frac{igr q^2}{4M_{\pi}^2}M_{\pi}^2(x\mathrm{d}y, -g_{\pi}) \\ & -\frac{igr q^2}{4M_{\pi}^2}M_{\pi}^$	$\begin{split} -& 2g_{1}^{20}M_{2}^{2}d_{2}d_{2}d_{2}d_{3}d_{4}d_{4}d_{5}d_{5}d_{5}d_{5}d_{5}d_{5}d_{5}d_{5$	$\begin{split} -3F_{1}(a_{1}b_{2}, \cdots, \frac{1}{2}M_{1}E_{1}^{2}E_{1}^{2}C_{1}^{2}C_{2}^{2}M_{1}E_{2}^{2}E_{2}^{2}\\ -3M_{1}E_{2}^{2}F_{1}(a_{1}-a_{2}b_{2})+3M_{2}^{2}S_{2}a_{2}\\ -3M_{2}^{2}F_{2}(a_{2}-M_{2}^{2}E_{2}b_{2})-3M_{2}^{2}F_{2}b_{2}a_{2}\\ -3M_{2}^{2}F_{2}(a_{2}-M_{2}^{2}E_{2}b_{2})\\ -2M_{2}^{2}M_{2}^{2}F_{2}(a_{2}-a_{2})-2M_{2}^{2}F_{2}b_{2}a_{2}\\ -3M_{2}^{2}F_{2}(a_{2}-a_{2})-2M_{2}^{2}F_{2}b_{2}a_{2}-2M_{2}^{2}F_{2}b_{2}a_{2}\\ -3M_{2}^{2}F_{2}(a_{2}-a_{2})-2M_{2}^{2}F_{2}b_{2}a_{2}\\ -3M_{2}^{2}F_{2}(a_{2}-a_{2})-2M_{2}^{2}F_{2}b_{2}a_{2}\\ -3M_{2}^{2}F_{2}(a_{2}-a_{2})-2M_{2}^{2}F_{2}b_{2}a_{2}\\ -3M_{2}^{2}F_{2}(a_{2}-a_{2})-2M_{2}^{2}F_{2}b_{2}a_{2}\\ -4M_{2}^{2}F_{2}(a_{2}-a_{2})-2M_{2}^{2}F_{2}b_{2}a_{2}\\ -3M_{2}^{2}F_{2}(a_{2}-a_{2})-2M_{2}^{2}F_{2}b_{2}a_{2}\\ -3M_{2}^{2}F_{2}^{2}$	$\begin{array}{l} B_{-1,2}(\mathbf{p}) &= M_{-1}^{2} \exp\left(-\mathbf{p} + \mathbf{q} + \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{p} + \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} + \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} + \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} + \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf{q} - \mathbf{q}\right) \\ &= r^{2} M_{-1}^{2} \exp\left(-\mathbf{q} - \mathbf$
$\begin{split} & -\frac{-ig_{0}Q^{2}}{M_{1}}M_{2}^{2}dx_{0}^{2}(\mathbf{p}_{1}) \\ & -\frac{-ig_{0}Q^{2}}{M_{2}}M_{2}^{2}dx_{0}^{2}(\mathbf{p}_{1}-\mathbf{p}_{2}) \\ & -ig_{0}Q^{2}M_{2}^{2}dx_{0}^{2}(\mathbf{p}_{1}-\mathbf{p}_{2}) \\ & -ig_{0}Q^{2}M_{2}^{2}dx_{0}^{2}(\mathbf{p}_{1}-\mathbf{p}_{2}) \\ & -ig_{0}Q^{2}M_{1}^{2}dx_{0}^{2}(\mathbf{p}_{1}-\mathbf{p}_{2}) \\ & -ig_{0}Q^{2}M_{1}^{2}dx_{0}^{2}(\mathbf{p}_{2}-\mathbf{p}_{2}) \\ & -ig_{0}Q^{2}M_{1}^{2}dx_{0}$	$\begin{split} &-2g_{1}^{20}M_{1}^{2}d_{2}d_{2}d_{3}d_{4}d_{4}d_{5}d_{5}d_{5}d_{5}d_{5}d_{5}d_{5}d_{5$	$\begin{split} +3J_{1}\phi_{1}\phi_{2} &= \frac{1}{2}M_{1}f_{1}^{2}f_{2}^{2} &= \frac{1}{2}M_{1}f_{1}^{2}f_{2}^{2}\\ +3M_{1}f_{2}^{2}f_{1}f_{2}f_{2}+M_{2}f_{2}^{2}\phi_{2}h_{3}+M_{3}f_{2}\phi_{3}h_{3}\\ +M_{1}f_{2}^{2}f_{2}h_{3}+M_{2}f_{2}\phi_{3}h_{3}-M_{3}f_{2}\phi_{3}h_{3}\\ +2M_{2}f_{2}^{2}f_{2}h_{3}h_{3}h_{3}h_{3}h_{3}h_{3}h_{3}h_{3$	$\begin{array}{l} B_{1,1}(q_1) &= M_{1,1}^{1} m(q_1-q_2+q_1+q_1) \\ &= p_{1,1}^{1} M_{1} m(q_1-q_1+q_1+q_1) \\ &= p_{1,1}^{1} M_{1} m(q_1-q_1+q_1+q_1) \\ &= m_{1,1}^{1} m(q_1-q_1+q_1) \\ &= m_{1,1}^{1} m(q_1-q_1+q_1) \\ &= m_{1,1}^{1} M_{1} m(q_1-q_1-q_1-q_1) \\ &= m_{1,1}^{1} M_{1} m(q_1-q_1-q_1-q_1-q_1) \\ &= m_{1,1}^{1} M_{1} m(q_1-q_1-q_1-q_1-q_1) \\ \\ B_{1,1}(q_1) &= m_{1,1}^{1} M_{1} m(q_1-q_1-q_1-q_1-q_1) \\ \\ B_{1,1}(q_1) &= m_{1,1}^{1} M_{1} m(q_1-q_1-q_1-q_1-q_1) \\ \\ \\ B_{1,1}(q_2) &= m_{1,1}^{1} M_{1} m(q_1-q_1-q_1-q_1-q_1-q_1) \\ \\ \\ B_{1,1}(q_2) &= m_{1,1}^{1} M_{1} m(q_1-q_1-q_1-q_1-q_1-q_1) \\ \\ \\ B_{1,1}(q_2) &= m_{1,1}^{1} M_{1} m(q_1-q_1-q_1-q_1-q_1-q_1) \\ \\ \\ \\ B_{1,1}(q_2) &= m_{1,1}^{1} M_{1} m(q_1-q_1-q_1-q_1-q_1-q_1) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$\begin{split} & -\frac{-iggV}{2}M_{2}L\sin(q_{1}-q_{2}-q_{2})\\ & -\frac{-iggV}{2}M_{2}L\sin(q_{1}-q_{2}-q_{2})\\ & -\frac{iggV}{2}M_{2}L\sin(q_{1}-q_{2}-q_{2})\\ & -\frac{iggV}{2}M_{2}L\sin(q_{1}-q_{2}-q_{2})\\ & -\frac{iggV}{2}M_{2}L\sin(q_{1}-q_{2}-q_{2}-q_{2})\\ & -\frac{iggV}{2}M_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2}+q_{2})\\ & -\frac{iggV}{2}M_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2}+q_{2})\\ & -\frac{iggV}{2}M_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2}+q_{2})\\ & -\frac{iggV}{2}M_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2}+q_{2})\\ & -\frac{iggV}{2}M_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2}+q_{2})\\ & -\frac{iggV}{2}M_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2}+q_{2})\\ & -\frac{iggV}{2}M_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2}+q_{2}-q_{2})\\ & -\frac{iggV}{2}M_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2}-q_{2}+q_{2}-q_{2})\\ & -\frac{iggV}{2}M_{2}\sin(q_{1}-q_{2}-q$	$\begin{split} &-2g_{1}^{20}M_{2}^{2}d_{1}d_{2}d_{2}d_{3}\exp(m_{1})(p_{1})\\ &+2g_{1}^{20}M_{2}^{2}d_{2}d_{2}d_{3}\exp(m_{1})(p_{2})\\ &+2g_{1}^{20}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}d_{3}e(m_{1})(p_{1})\\ &+g_{1}^{20}M_{2}^{2}d_{3}d_{3}d_{3}d_{3}d(m_{1})(p_{1})\\ &+g_{1}^{20}M_{2}^{2}d_{3}d(p_{1}d_{3}d_{3}m_{1})(p_{1}-p_{1})\\ &+g_{1}^{20}M_{2}^{2}d_{3}d(p_{1}d_{3}d_{3}m_{1})(p_{1}-p_{1})p_{1}d(p_{1}d_{3}d_{3}d_{3}d_{3}d_{3}d_{3}d_{3}d_{3$	$\begin{split} -3J_{1}\rho_{1}\rho_{2}\sigma_{1} &= \frac{1}{2}SLS_{1}^{2}S_{1}^{2}\sigma_{1}^{2} &= \frac{1}{2}SLS_{1}^{2}S_{2}^{2}S_{1}^{2}\\ -3J_{1}S_{2}^{2}S_{1}\sigma_{2} &= A_{2}S_{1}^{2}\sigma_{2}\sigma_{2} &= A_{2}S_{2}^{2}\sigma_{2}\sigma_{2} \\ -3J_{2}S_{2}^{2}\sigma_{2}\sigma_{2}\sigma_{2}\sigma_{2}\sigma_{2}\sigma_{2}\sigma_{2}\sigma_$	$\begin{array}{l} B_{1,1}(q_1) &= & M_{1,1}^{1} m (q_1-q_2+q_1+q_1) \\ &= & p_{1,1}^{1} M_{1} - m (q_1-q_1+q_1-q_1) \\ &= & p_{1,1}^{1} M_{1} - m (q_1-q_1+q_1-q_1) \\ &= & m (q_1-q_1+q_1+q_1) \\ &= & m (q_1-q_1-q_1+q_1) \\ &= & m (q_1-q_1-q_1-q_1) \\ &= & m (q_1-q_1-q_1-q_1) \\ &= & m (q_1-q_1-q_1-q_1) \\ &= & m (q_1-q_1-q_1-q_1-q_1) \\ &= & m (q_1-q_1-q_1-q_1-q_1) \\ &= & m (q_1-q_1-q_1-q_1-q_1-q_1-q_1-q_1-q_1-q_1-$
$\begin{split} & -\frac{-igg^{2}}{4}M_{2}^{2}d_{1}\sin(q_{1}-q_{2})\\ & -\frac{-igg^{2}}{4}M_{2}^{2}d_{1}\sin(q_{1}-q_{2})\\ & -\frac{-igg^{2}}{4}M_{2}^{2}d_{1}\sin(q_{1}-q_{2})\\ & -\frac{-igg^{2}}{4}M_{2}^{2}d_{1}\sin(q_{1}-q_{2})\\ & +\frac{-igg^{2}}{4}M_{1}^{2}d_{1}\sin(q_{1}-q_{2})\\ & -\frac{-igg^{2}}{4}M_{2}^{2}d_{1}\sin(q_{1}-q_{2}-q_{2})\\ & -\frac{igg^{2}}{4}M_{2}^{2}d_{1}\sin(q_{1}-q_{2}-q_{2})\\ & -\frac{igg^{2}}{4}M_{2}^{2}d_{1}\sin(q_{1}-q_{2}-q_{2})\\ & -\frac{igg^{2}}{4}M_{2}^{2}d_{1}\sin(q_{1}-q_{2}-q_{2})\\ & -\frac{igg^{2}}{4}M_{2}^{2}d_{1}\sin(q_{1}-q_{2}-q_{2})\\ & -\frac{igg^{2}}{4}M_{2}^{2}d_{1}\sin(q_{1}-q_{2}-q_{2})\\ & -\frac{igg^{2}}{4}M_{2}^{2}d_{1}\cos(q_{1}-q_{2})\\ & -\frac{igg^{2}}{4}M_{2}^{2}d_{1}\cos(q_{1}-q_{2})\\ & -\frac{igg^{2}}{4}M_{2}^{2}d_{1}\cos(q_{1}-q_{2})\\ & -\frac{igg^{2}}{4}M_{2}^{2}d_{1}\cos(q_{1}-q_{2})\\ & -\frac{igg^{2}}{4}M_{2}^{2}d_{1}\cos(q_{1}-q_{2})\\ & -\frac{igg^{2}}{4}M_{2}^{2}d_{1}\cos(q_{1}-q_{2})\\ & -\frac{igg^{2}}{4}M_{2}^{2}d_{1}\cos(q_{1}-q_{2}-q_{2})\\ & -\frac{igg^{2}}{4}M_{2}^{2}d_{1}\cos(q_{1}-q_{2}-q_{2})\\ & -\frac{igg^{2}}{4}M_{2}^{2}d_{1}\cos(q_{1}-q_{2}-q_{2}-q_{2})\\ & -\frac{igg^{2}}{4}M_{2}^{2}d_{2}\cos(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{igg^{2}}{4}M_{2}^{2}d_{2}\cos(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{igg^{2}}{4}M_{2}^{2}d_{2}\cos(q_{1}-q_{2}-q_$	$\begin{split} &-2g_{1}^{20}M_{1}^{2}d_{2}d_{2}d_{3}d_{4}d_{4}d_{5}d_{5}d_{5}d_{5}d_{5}d_{5}d_{5}d_{5$	$\begin{split} -3J_{1}\phi_{1}\phi_{2} &= \frac{1}{2} 8LE_{1}^{2} d_{1}^{2} &= \frac{1}{2} 3LE_{1}^{2} d_{2}^{2} d_{1}^{2} \\ -3J_{1}d_{2}^{2} L_{1}^{2} (z_{1}, (z_{1},$	$\begin{array}{l} B_{-1,0}(\mathbf{p}) &= M_{n,0}^{-1} \exp\left(-\mathbf{p} + \mathbf{q} + \mathbf{q}\right) \\ &= 2^{n} M_{n,0}^{-1} \exp\left(-\mathbf{q} + \mathbf{q} - \mathbf{q}_{n,0}\right) \\ &= 2^{n} M_{n,0}^{-1} \exp\left(-\mathbf{q} + \mathbf{q}_{n,0}\right) \\ &= 2^{n} M_{n,0}^{-1} \exp\left(-\mathbf{q}_{n,0}\right) \\ &= M_{n,1}^{-1} M_{n,1}^{-1} M_{n,1}^{-1} M_{n,1}^{-1} M_{n,1}^{-1} \\ \\ &= M_{n,1}^{-1} \exp\left(-\mathbf{q}_{n,0}\right) \\ &= M_{n,1}^{-1} M_{n,1}^{-1} \exp\left(-\mathbf{q}_{n,0}\right) \\ \\ &= M_{n,1}^{-1} M_{n,1}^{-1} M_{n,1}^{-1} M_{n,1}^{-1} M_{n,1}^{-1} M_{n,1}^{-1} \\ \\ &= M_{n,1}^{-1} \exp\left(-\mathbf{q}_{n,0}^{-1} M_{n,1}^{-1} \exp\left(-\mathbf{q}_{n,0}\right) \\ \\ &= M_{n,1}^{-1} M_{n,1}^{-1} M_{n,1}^{-1} M_{n,1}^{-1} M_{n,1}^{-1} M_{n,1}^{-1} M_{n,1}^{-1} \\ \\ &= M_{n,1}^{-1} M_{n,1}^{-1} M_{n,1}^{-1} M_{n,1}^{-1} M_{n,1}^{-1} M_{n,1}^{-1} \\ \\ &= M_{n,1}^{-1} M_{n,1}^{-1} M_{n,1}^{-1} M_{n,1}^{-1} M_{n,1}^{-1} M_{n,1}^{-1} M_{n,1}^{-1} \\ \\ &= M_{n,1}^{-1} $
$\begin{split} & -\frac{-igr g^2}{4M_{\pi}^2}M_{\pi}^2(x\mathrm{de}_{\pi}(\eta_{\pi}))\\ & -\frac{-igr g^2}{4M_{\pi}^2}M_{\pi}^2(x\mathrm{de}_{\pi}(\eta_{\pi}-\eta_{\pi}))\\ & -igr g^2M_{\pi}^2(x\mathrm{de}_{\pi}(\eta_{\pi}-\eta_{\pi})+\eta_{\pi}),\\ & -igr g^2(x\mathrm{de}_{\pi}(\eta_{\pi}-\eta_{\pi})+\eta_{\pi})\\ & -igr g^2(x\mathrm{de}_{\pi}(\eta_{\pi}-\eta_{\pi}-\eta_{\pi})+\eta_{\pi})\\ & -gr g^2M_{\pi}^2(\eta_{\pi}-\eta_{\pi})+\eta_{\pi}+\eta_{\pi})\\ & -gr g^2M_{\pi}^2(\eta_{\pi}-\eta_{\pi})+\eta_{\pi}+\eta_{\pi})\\ & -gr g^2M_{\pi}^2(\eta_{\pi}(\eta_{\pi}-\eta_{\pi})+\eta_{\pi}-\eta_{\pi})\\ & -gr g^2M_{\pi}^2(\eta_{\pi}(\eta_{\pi}-\eta_{\pi})+\eta_{\pi}-\eta_{\pi})\\ & -gr g^2M_{\pi}^2(\eta_{\pi}(\eta_{\pi}-\eta_{\pi})-\eta_{\pi}+\eta_{\pi})\\ & -gr g^2M_{\pi}^2(\eta_{\pi}(\eta_{\pi}-\eta_{\pi})-\eta_{\pi}-\eta_{\pi})\\ & -gr g^2M_{\pi}^2(\eta_{\pi}(\eta_{\pi}-\eta_{\pi})-\eta_{\pi}-\eta_{\pi})\\ & -gr g^2M_{\pi}^2(\eta_{\pi}(\eta_{\pi}-\eta_{\pi})-\eta_{\pi}+\eta_{\pi}-\eta_{\pi})\\ & -gr g^2M_{\pi}^2(\eta_{\pi}(\eta_{\pi}-\eta_{\pi})-\eta_{\pi}-\eta_{\pi}-\eta_{\pi})\\ & -gr g^2M_{\pi}^2(\eta_{\pi}(\eta_{\pi}-\eta_{\pi})-\eta_{\pi}-\eta_{\pi}-\eta_{\pi})\\ & -gr g^2M_{\pi}^2(\eta_{\pi}(\eta_{\pi}-\eta_{\pi})-\eta_{\pi}-\eta_{\pi}-\eta_{\pi})\\ & -gr g^2M_{\pi}^2(\eta_{\pi}(\eta_{\pi}-\eta_{\pi})-\eta_{\pi}-\eta_{\pi}-\eta_{\pi})\\ & -gr g^2M_{\pi}^2(\eta_{\pi}(\eta_{\pi}-\eta_{\pi})-\eta_{\pi}-\eta_{\pi}-\eta_{\pi}-\eta_{\pi})\\ & -gr g^2M_{\pi}^2(\eta_{\pi}(\eta_{\pi}-\eta_{\pi})-\eta_{\pi}-\eta_{\pi}-\eta_{\pi})\\ & -gr g^2M_{\pi}^2(\eta_{\pi}(\eta_{\pi}-\eta_{\pi})-\eta_{\pi}-\eta_{\pi}-\eta_{\pi})\\ & -gr g^2M_{\pi}^2(\eta_{\pi}(\eta_{\pi}-\eta_{\pi})-\eta_{\pi}-\eta_{\pi}-\eta_{\pi}-\eta_{\pi})\\ & -gr g^2M_{\pi}^2(\eta_{\pi}(\eta_{\pi}-\eta_{\pi})-\eta_{\pi}-\eta_{\pi})\\ & -gr g^2M_{\pi}^2(\eta_{\pi}(\eta_{\pi}-\eta_{\pi})-\eta_{\pi}-\eta_{\pi})\\ & -gr g^2M_{\pi}^2(\eta_{\pi}(\eta_{\pi}-\eta_{\pi})-\eta_{\pi}-\eta_{\pi})\\ & -gr g^2M_{\pi}^2(\eta_{\pi}(\eta_{\pi}-\eta_{\pi})-\eta_{\pi})\\ & -gr g^2M_{\pi}^2(\eta_{\pi}-\eta_{\pi})-\eta_{\pi})\\ & -gr g^2M_{\pi}^2(\eta_{\pi}-\eta_{$	$\begin{split} -& 2g_{1}^{22} M_{2}^{2} M_{2}^{$	$\begin{split} -3J_{1}\rho_{1}\rho_{2}\sigma_{1} &= \frac{1}{2}\delta_{1}J_{1}^{2}J_{2}^{2}d_{1}^{2} &= \frac{1}{2}\delta_{1}J_{1}^{2}J_{2}^{2}d_{1}^{2}\\ -3J_{1}J_{2}^{2}J_{1}\sigma_{1} &= J_{1}J_{2}J_{2}^{2}\sigma_{2} \\ -3J_{1}J_{2}^{2}J_{2}\sigma_{2} &= J_{1}J_{2}J_{2}^{2}\sigma_{2} \\ -3J_{2}J_{2}^{2}J_{2}\sigma_{2} &= J_{2}J_{2}J_{2}^{2}\sigma_{2} \\ &= 2J_{2}J_{1}J_{2}J_{2}\sigma_{2}\sigma_{2}\sigma_{2}\sigma_{2}\sigma_{2}\sigma_{2}\sigma_{2}\sigma$	$\begin{array}{l} B_{1,2,2}(\mathbf{p}) &= M_{n,2}^{2} \exp\left(-\mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n}\right) \\ &= \mathcal{H}_{n,2}^{2} \mathcal{H}_{n}^{2} \exp\left(-\mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n}\right) \\ &= \mathcal{H}_{n,2}^{2} \mathcal{H}_{n}^{2} \exp\left(-\mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n}\right) \\ &= \mathcal{H}_{n,2}^{2} \exp\left(-\mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n}\right) \\ &= \mathcal{H}_{n,2}^{2} \exp\left(-\mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n}\right) \\ &= \mathcal{H}_{n,2}^{2} \exp\left(-\mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n}\right) \\ &= \mathcal{H}_{n,2}^{2} \exp\left(-\mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n}\right) \\ &= \mathcal{H}_{n,2}^{2} \exp\left(-\mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n}\right) \\ \\ \mathcal{H}_{n,2}^{2} \exp\left(-\mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n}\right) \\ &= \mathcal{H}_{n,2}^{2} \exp\left(-\mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n}\right) \\ \\ \mathcal{H}_{n,2}^{2} \exp\left(-\mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n}\right) \\ &= \mathcal{H}_{n,2}^{2} \operatorname{Met}_{n} \exp\left(-\mathbf{p}_{n} + \mathbf{p}_{n}\right) \\ \\ &= \mathcal{H}_{n,2}^{2} \operatorname{Met}_{n} \exp\left(-\mathbf{p}_{n} + \mathbf{p}_{n} + \mathbf{p}_{n}\right) \\ \\ \\ \mathcal{H}_{n,2}^{2} \exp\left(-\mathbf{p}_{n} + \mathbf{M}_{n}^{2} + \mathbf{p}_{n}^{2} \operatorname{Met}_{n}^{2} \exp\left(-\mathbf{p}_{n} + \mathbf{p}_{n}\right) \\ \\ \\ \mathcal{H}_{n,2}^{2} \exp\left(-\mathbf{p}_{n}^{2} \operatorname{Met}_{n}^{2} \operatorname{Met}_{n} + \mathbf{p}_{n}\right) \\ \\ \\ \\ \mathcal{H}_{n,2}^{2} \exp\left(-\mathbf{p}_{n}^{2} \operatorname{Met}_{n}^{2} \operatorname{Met}_{n}\right) \\ \\ \\ \\ \\ \\ \\ \mathcal{H}_{n,2}^{2} \exp\left(-\mathbf{p}_{n}^{2} \operatorname{Met}_{n}^{2} \operatorname{Met}_{n}^{2} \exp\left(-\mathbf{p}_{n} + \mathbf{p}_{n}\right) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$\begin{split} & -\frac{-ign Q^2}{M_{1}} M_{1} A \sin(q_1) \\ & -\frac{-ign Q^2}{4M_{1}} M_{2} A \sin(q_1 - q_2) \\ & -ign Q^2} M_{2} A \sin(q_1 - q_2) + g_1 + g_1 + g_1^2 M_{2} M_{2} a \sin(q_1 - q_2) + g_1 + g_1^2 M_{2} M_{2} a \sin(q_1 - q_2) + g_1 + g_1^2 M_{2} M_{2} m_{2} + g_1 - g_1 + g_$	$\begin{split} &-2g_{1}^{20}M_{2}^{2}d_{2}d_{2}d_{3}d_{4}d_{4}d_{5}d_{5}d_{5}d_{5}d_{5}d_{5}d_{5}d_{5$	$\begin{split} -3J_{1}\phi_{1}\phi_{2} &= \frac{1}{2} M_{1} \int_{0}^{2} dt = \frac{1}{2} M_{1} \int_{0}^{2} dt \\ -3J_{1} dt \int_{0}^{2} (L_{1} + c_{1}\phi_{2}) + M_{2} M_{2}\phi_{1} \\ -3J_{1} dt \int_{0}^{2} (L_{1} + c_{2}\phi_{2}) + M_{2} M_{2}\phi_{1} \\ -3J_{2} dt \int_{0}^{2} (L_{1} + c_{2}\phi_{2}) \\ -3J_{2} dt \int_{0}^{2} (L_{1} + c_{$	$\begin{array}{l} B_{1,1}(q_1) &= M_{1,2}^{-1} m(q_1-q_2+q_1+q_2) \\ &= 2^{-1} M_{1,2}^{-1} m(q_1-q_2+q_1-q_2) \\ &= 2^{-1} M_{1,2}^{-1} m(q_1-q_1+q_2-q_2) \\ &= 2^{-1} M_{1,2}^{-1} m(q_1-q_1+q_2-q_2) \\ &= M_{1,1}^{-1} m(q_1-q_1+q_2-q_2) \\ &= M_{1,1}^{-1} m(q_1-q_1+q_2-q_2) \\ &= M_{1,1}^{-1} m(q_1-q_1-q_1-q_2-q_1-q_2) \\ &= M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} \\ &= M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} \\ &= M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} \\ &= M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} \\ &= M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} \\ &= M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} \\ &= M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} \\ &= M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} \\ &= M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} \\ &= M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} \\ &= M_{1,1}^{-1} M_{1,1}^{-1} M_{1,1}^{-1} M_{$
$\begin{split} & -\frac{-igr g^2}{4M_{1}d_{1}}d_{2}d_{2}d_{2}d_{2}d_{2}d_{2}d_{2}d_{$	$\begin{split} -& 2g_{1}^{2}M_{2}^{2}M_{2}^{2}d_{1}^{2}d_{2}^{2}d_{2}^{2}d_{3$	$\begin{split} +& 2J_{1}c(m)_{1} = \frac{1}{2}M_{1}\int_{0}^{2}c_{1}^{2} = \frac{1}{2}M_{1}\int_{0}^{2}d_{1}^{2}\\ +& M_{1}c_{2}^{2}L_{1}(\omega,\omega,m)_{2} + M_{2}M_{2}(m)_{2}\\ +& M_{2}f(m)_{2}^{2} + M_{2}f(m)_{2} \\ +& M_{2}f(m)_{2}^{2} + M_{2}f(m)_{2}\\ -& M_{2}f(m)_{2}^{2} + M_{2}f(m)_{2}\\ -& M_{2}f(m)_{2}^{2} + M_{2}f(m)_{2} \\ +& M_{2}f(m)_{2}^{2} + M_{2}f(m)_{2}^{2} + M_{2}f(m)_{2} \\ +& M_{2}f(m)_{2}^{2} + M_{2$	$\begin{array}{l} B_{-1,2}(\mathbf{p}) &= M_{-1}^{2} \pi m \left(p - p_{0} + q_{0} + q_{0} \right) \\ &= r_{0}^{2} M_{0}^{2} - m \left(r_{0} - q_{0} + r_{0} + q_{0} \right) \\ &= r_{0}^{2} M_{0}^{2} - m \left(r_{0} - q_{0} + q_{0} \right) \\ &= r_{0}^{2} M_{0}^{2} - m \left(r_{0} - q_{0} + q_{0} \right) \\ &= r_{0}^{2} M_{0}^{2} - m \left(r_{0} - q_{0} + q_{0} \right) \\ &= r_{0}^{2} M_{0}^{2} + m \left(r_{0} - q_{0} + q_{0} \right) \\ &= r_{0}^{2} M_{0}^{2} M_{0}^{2} - q_{0} - q_{0} + q_{0} \\ \\ B_{-1,1}(\mathbf{p}) &= r_{0}^{2} M_{0}^{2} M_{0}^{2} - q_{0} - q_{0} + q_{0} \\ \\ B_{-1,1}(\mathbf{p}) &= r_{0}^{2} M_{0}^{2} M_{0}^{2} - q_{0} - q_{0} + q_{0} \\ \\ B_{-1,1}(\mathbf{p}) &= r_{0}^{2} M_{0}^{2} M_{0}^{2} - q_{0} - q_{0} + q_{0} \\ \\ B_{-1,2}(\mathbf{p}) &= r_{0}^{2} M_{0}^{2} M_{0}^{2} - q_{0} - q_{0} - q_{0} \\ \\ B_{-1,2}(\mathbf{p}) &= r_{0}^{2} M_{0}^{2} M_{0}^{2} - q_{0} - q_{0} - q_{0} \\ \\ B_{-1,2}(\mathbf{p}) &= r_{0}^{2} M_{0}^{2} M_{0}^{2} - q_{0} - q_{0} - q_{0} \\ \\ B_{-1,2}(\mathbf{p}) &= r_{0}^{2} M_{0}^{2} M_{0}^{2} - q_{0} - q_{0} - q_{0} \\ \\ \\ B_{-1,2}(\mathbf{p}) &= r_{0}^{2} M_{0}^{2} M_{0}(\mathbf{p}) \\ \\ B_{-1,2}(\mathbf{p}) &= r_{0}^{2} M_{0}^{2} M_{0}(\mathbf{p}) \\ \\ B_{-1,2}(\mathbf{p}) &= r_{0}^{2} M_{0}^{2} M_{0}(\mathbf{p}) \\ \\ \\ \end{array} \right) \\ \\ \end{array}$
$\begin{split} & -\frac{-ign q^2}{M} M_{\pi}^2 \sin(q_1 - q_2) \\ & -\frac{-ign q^2}{m} M_{\pi}^2 \sin(q_1 - q_2) \\ & -ign q^2 M_{\pi}^2 \sin(q_1 - q_2) + g_1 + g_1 + g_1^2 M_{\pi}^2 \sin(q_1 - q_2) + g_2 + g_1 + g_2 + g_1^2 M_{\pi}^2 \sin(q_1 - q_2 - q_2) + g_1 + g_1 + g_1^2 M_{\pi}^2 \sin(q_1 - q_2 - q_2) + g_1 - g_1 + g_1$	$\begin{split} &-2g_{1}^{20}M_{2}^{2}d_{1}d_{2}d_{2}d_{3}d_{4}d_{4}d_{5}d_{5}d_{5}d_{5}d_{5}d_{5}d_{5}d_{5$	$\begin{split} +3T_{qrish} &= \frac{1}{2} XL_{q}^{2} [q_{1}^{2} = \frac{1}{2} XL_{q}^{2} [q_{2}^{2} = \frac{1}{2} XL_{q}^{2} [q_{2}^{2} \\ -3X_{q}^{2} [q_{1}^{2} + q_{2}^{2} + q_{2}^{2} + M_{q}^{2} [q_{2}^{2} - M_{q}^{2}] (q_{2}^{2} - M_{q}^{2} - M_{q}^{2}] (q_{2}^{2} - M_{q}^{2} - M_{q}^{2}] (q_{2}^{2} - M_{q}^{2} - M_{q}^{2} - M_{q}^{2}] (q_{2}^{2} - M_{q}^{2} - M_{q}^{2} - M_{q}^{2}] (q_{2}^{2} - M_{q}^{2} - M_{q}^{2} - M_{q}^{2} - M_{q}^{2}] (q_{2}^{2} - M_{q}^{2} - M_{q}^{2} - M_{q}^{2} - M_{q}^{2}] (q_{2}^{2} - M_{q}^{2} - M_{q}^{2} - M_{q}^{2} - M_{q}^{2} - M_{q}^{2}] (q_{1}^{2} - M_{q}^{2} - M_{q}^{2} - M_{q}^{2} - M_{q}^{2} - M_{q}^{2}] (q_{1}^{2} - M_{q}^{2} - M_{q}^{2} - M_{q}^{2} - M_{q}^{2} - M_{q}^{2}] (q_{1}^{2} - M_{q}^{2} - M_{q}^{2} - M_{q}^{2} - M_{q}^{2}] (q_{1}^{2} - M_{q}^{2} - M_{q}^{2} - M_{q}^{2} - M_{q}^{2}] (q_{1}^{2} - M_{q}^{2} - M_{q}^{2} - M_{q}^{2}] (q_{1}^{2} - M_{q}^{2} - M_{q}^{2}] (q_{1}^{2} - M_{q}^{2} - M_{q}^{2} - M_{q}^{2}] (q_{1}^{2} - M_{q}^{2} - M_{q}^{2} - M_{q}^{2}] (q_{1}^{2} - M_{q}^{2} - M_{q}^{2}] (q_{1}^{2} - M_{q}^{2} + M_{q}^{2} - M_{q}^{2}] (q_{1}^{2} - M$	$\begin{array}{l} B_{1,1}(q_1) &= M_{1,2}^{-1}(q_1-q_2+q_1+q_2)\\ &= M_{1,2}^{-1}(M_{1,2}-q_1(q_1-q_1+q_2-q_2))\\ &= M_{1,2}^{-1}(M_{1,2}-q_1(q_1-q_2-q_1-q_2))\\ &= M_{1,2}^{-1}(q_1-q_1-q_1-q_2)\\ &= M_{1,2}^{-1}(q_1-q_1-q_1-q_2-q_1)\\ &= M_{1,2}^{-1}(q_1-q_1-q_1-q_1-q_1)\\ &= M_{1,2}^{-1}(q_1-q_1-q_1-q_1-q_1-q_1-q_1-q_1-q_1-q_1-$
$\begin{split} & -\frac{-igr^2}{4}M_{1}^2A_{1}\sin(q_{1}-q_{2})\\ & -\frac{-igr^2}{4}M_{2}^2A_{1}\sin(q_{1}-q_{2})\\ & -\frac{igr^2}{4}M_{2}^2A_{2}\sin(q_{1}-q_{2})\\ & -\frac{igr^2}{4}M_{2}^2A_{2}\sin(q_{1}-q_{2}-q_{2})\\ & -\frac{igr^2}{4}M_{2}^2A_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2})\\ & -\frac{igr^2}{4}M_{2}^2A_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{igr^2}{4}M_{2}^2A_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{igr^2}{4}M_{2}\cos(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{igr^2}{4}M_{2}\cos(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{igr^2}{4}M_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{igr^2}{4}M_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{igr^2}{4}M_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{igr^2}{4}M_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{igr^2}{4}M_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{igr^2}{4}M_{2}\sin(q_{1}-q_{2$	$\begin{split} -& 2g_{1}^{2}M_{2}^{2}(d_{1}^{2},d_{2}^{2},d_{3}^{2}$	$\begin{split} -3J_{1}\phi_{1}\phi_{2} &= \frac{1}{2} \delta \mathcal{L}_{1}^{2} \mathcal{L}_{2}^{2} &= \frac{1}{2} \delta \mathcal{L}_{1}^{2} \mathcal{L}_{2}^{2} \\ -3J_{12}\mathcal{L}_{2}^{2} &= (z_{1}+z_{2},z_{2})_{2} + 3J_{2}\mathcal{L}_{2}^{2} \\ &= J_{12}\mathcal{L}_{2}^{2} \phi_{2} &= J_{12}\mathcal{L}_{2}^{2} \phi_{2} \\ &= J_{2}\mathcal{L}_{2}^{2} \phi_{2}^{2} &= J_{2}\mathcal{L}_{2}^{2} \phi_{2} \\ &= J_{2}\mathcal{L}_{2}^{2} \mathcal{L}_{2}^{2} &= (z_{1}-z_{2}) \\ &= J_{2}\mathcal{L}_{2}^{2} \mathcal{L}_{2}^{2} &= J_{2}^{2} \mathcal{L}_{2}^{2} \\ &= J_{2}\mathcal{L}_{2}^{2} \mathcal{L}_{2}^$	$\begin{array}{l} B_{1,1}(q_1) &= & ML_{2} \exp\left(-q_2+q_1+q_1\right) \\ &= & 2 ML_{2} \exp\left(-q_1-q_1+q_1+q_1\right) \\ &= & 2 ML_{2} \exp\left(-q_1-q_1+q_1-q_1\right) \\ &= & 2 ML_{2} \exp\left(-q_1-q_1-q_1-q_1\right) \\ &= & 2 ML_{2} \exp\left(-q_1-q_1-q_1-q_1\right) \\ &= & 2 ML_{2} \exp\left(-q_1-q_1-q_1-q_1-q_1-q_1-q_1-q_1-q_1-q_1$
$\begin{split} & -\frac{-ig_{0} q_{1}^{2} M_{1} d_{1} \sin (g_{1} - g_{2})}{-ig_{0} q_{1}^{2} M_{2} d_{1} \sin (g_{1} - g_{2})}{-ig_{0} q_{1}^{2} M_{2} d_{1} \sin (g_{1} - g_{2})}{-ig_{0} q_{1}^{2} M_{2} d_{2} \sin (g_{1} - g_{1})}{-ig_{0} q_{1}^{2} d_{1} \sin (g_{1} - g_{1})}{-ig_{0} q_{1}^{2} d_{1} \sin (g_{1} - g_{1})}{-ig_{0} q_{1} q_{1} (g_{1} - g_{1})}{-ig_{0} q_{1}^{2} d_{1} (g_{1} - g_{1})}{-ig_{0} q_{1} q$	$\begin{split} &-2g_{1}^{22}M_{2}^{2}M_{2}^{2}g_{1}^{2}g_{2}^{2}g_{3$	$\begin{split} -3J_{1}\phi_{1}\phi_{2} &= \frac{1}{2}M_{1}f_{1}^{2}f_{2}^{2} &= \frac{1}{2}M_{1}f_{1}^{2}f_{2}^{2}\\ -M_{1}f_{2}^{2}f_{1}\phi_{1} &= M_{2}f_{2}^{2}\phi_{2} &= M_{2}f_{2}^{2}\phi_{2} \\ -M_{2}f_{2}^{2}\phi_{2} &= M_{2}f_{2}\phi_{2} \\ -M_{2}f_{2}^{2}\phi_{2} &= M_{2}f_{2}\phi_{2} \\ -M_{2}f_{2}^{2}f_{2}\phi_{2} &= M_{2}f_{2}\phi_{2} \\ -M_{2}f_{2}^{2}f_{2}\phi_{2} &= m_{2}\phi_{2} \\ -M_{2}f_{2}^{2}f_{2}\phi_{2} &= m_{2}\phi_{2} \\ -M_{2}f_{2}^{2}f_{2}\phi_{2}\phi_{2} &= m_{2}\phi_{2} \\ -M_{2}f_{2}^{2}f_{2}\phi_{2}\phi_{2}\phi_{2} \\ -M_{2}f_{2}^{2}f_{2}\phi_{2}\phi_{2}\phi_{2}\phi_{2}\phi_{2}\phi_{2}\phi_{2}\phi$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{split} & -\frac{-igr^2}{4}M_{1}^2A_{1}\sin(q_{1}-q_{2})\\ & -\frac{-igr^2}{4}M_{2}^2A_{1}\sin(q_{1}-q_{2})\\ & -\frac{igr^2}{4}M_{2}^2A_{2}\sin(q_{1}-q_{2})\\ & -\frac{igr^2}{4}M_{2}^2A_{2}\sin(q_{1}-q_{2}-q_{2})\\ & -\frac{igr^2}{4}M_{2}^2A_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2})\\ & -\frac{igr^2}{4}M_{2}^2A_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{igr^2}{4}M_{2}^2A_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{igr^2}{4}M_{2}\cos(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{igr^2}{4}M_{2}\cos(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{igr^2}{4}M_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{igr^2}{4}M_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{igr^2}{4}M_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{igr^2}{4}M_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{igr^2}{4}M_{2}\sin(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{igr^2}{4}M_{2}\sin(q_{1}-q_{2$	$\begin{split} -& 2g_{1}^{2}M_{2}^{2}M_{2}^{2}(x_{1}^{2},y_{2}^{2},y_{3}^{2},$	$\begin{split} +3L_{plach} &= \frac{1}{2} M_{a} \int_{0}^{2} dt = \frac{1}{2} M_{a} \int_{0}^{2} dt \\ &= M_{a} (R_{a} (L_{a} (m_{b} (m_{b} + M_{a} (M_{b} m_{b} - M_{b} M_{b} m_{b} - M_{a} (M_{b} M_{b} - M_{b} m_{b} - M_{b} M_{b} M_{b} m_{b} - M_{b} M_{b} M_{b} m_{b} m_{b} - M_{b} M_{b} M_{b} m_{b} m_{b} m_{b} - M_{b} M_{b} M_{b} m_{b} m_{b} m_{b} - M_{b} m_{b$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$ \begin{array}{c} -\frac{-i \pi q^2}{q_1} M_{1,2}^2 \sin(q_1-q_2) \\ -\frac{-i \pi q^2}{q_2} M_{1,2}^2 \sin(q_1-q_2) \\ -\frac{-i \pi q^2}{q_1} M_{2,2}^2 \sin(q_1-q_2) \\ -\frac{-i \pi q^2}{q_2} M_{2,2}^2 M_{2,2}^2 M_{2,2}^2 \\ -\frac{-i \pi q^2}{q_2} M_{2,2}^2 \\ --$	$\begin{split} &-2g_{1}^{20}M_{1}^{2}M_{2}^{2}g_{1}^{2}g_{2}^{2}g_{3$	$\begin{split} -3J_{1}\phi_{1}\phi_{2} &= \frac{1}{2}M_{1}f_{1}^{2}f_{2}^{2} &= \frac{1}{2}M_{1}f_{1}^{2}f_{2}^{2}\\ -M_{1}f_{2}^{2}f_{1}\phi_{1}^{2} &= M_{2}f_{2}^{2}\phi_{2}^{2} &= M_{2}f_{2}^{2}\phi_{2}^{2}\\ -M_{2}f_{2}^{2}\phi_{2}^{2} &= M_{2}f_{2}^{2}\phi_{2}^{2}\\ -M_{2}f_{2}^{2}\phi_{2}^{2} &= M_{2}f_{2}^{2}\phi_{2}^{2}\\ -M_{2}f_{2}^{2}f_{2}^{2} &= M_{2}f_{2}^{2}\phi_{2}^{2}\\ -M_{2}f_{2}^{2}f_{2}^{2} &= M_{2}f_{2}^{2}\phi_{2}^{2}\\ -M_{2}f_{2}^{2}f_{2}^{2}f_{2}^{2} &= M_{2}f_{2}^{2}\phi_{2}^{2}\\ -M_{2}f_{2}^{2}f_{2}^{2}f_{2}^{2}\phi_{2}^{2}\phi_{2}^{2}f_{2}^{2}\phi_{2}^$	$\begin{array}{l} B_{1,2}(q_2) &= M_{2,1}^{-1} m(q_1-q_2+q_2+q_3) \\ &= r^{-1} M_{2,2}^{-1} m(q_1-q_2+q_3-q_3) \\ &= r^{-1} M_{2,2}^{-1} m(q_1-q_2+q_3-q_3) \\ &= r^{-1} M_{2,2}^{-1} m(q_1-q_2+q_3-q_3) \\ &= r^{-1} M_{2,2}^{-1} m(q_1-q_2+q_3-q_3-q_3) \\ &= r^{-1} M_{2,2}^{-1} m(q_1-q_3-q_3-q_3-q_3) \\ &= r^{-1} M_{2,2}^{-1} m(q_1-q_3-q_3-q_3-q_3) \\ &= r^{-1} M_{2,2}^{-1} m(q_1-q_3-q_3-q_3-q_3) \\ &= r^{-1} M_{2,2}^{-1} m(q_1-q_3-q_3-q_3-q_3-q_3-q_3-q_3-q_3-q_3-q_3$
$ \begin{array}{rcl} -\frac{-iggV}{2}M_{2}d_{2}\sin(q_{1}-q_{2})\\ & -\frac{-iggV}{2}M_{2}d_{2}\sin(q_{1}-q_{2})\\ & -\frac{-iggV}{2}M_{2}d_{2}\sin(q_{1}-q_{2}-q_{1}-q_{2})\\ & +\frac{igV}{2}M_{2}d_{2}\sin(q_{1}-q_{2}-q_{1}-q_{2})\\ & +\frac{igV}{2}M_{2}d_{2}\sin(q_{1}-q_{2}-q_{2}-q_{1}-q_{2})\\ & +\frac{igV}{2}M_{2}d_{2}\sin(q_{1}-q_{2}-q_{2}-q_{1}-q_{2})\\ & +\frac{igV}{2}M_{2}d_{2}\sin(q_{1}-q_{2}-q_{2}-q_{1}-q_{2})\\ & +\frac{igV}{2}M_{2}d_{2}\sin(q_{1}-q_{2}-q_{2}-q_{1}-q_{2})\\ & +\frac{igV}{2}M_{2}d_{2}\sin(q_{1}-q_{2}-q_{2}-q_{1}-q_{2})\\ & +\frac{igV}{2}M_{2}d_{2}\sin(q_{1}-q_{2}-q_{2}-q_{1}-q_{2})\\ & +\frac{igV}{2}M_{2}d_{2}\sin(q_{1}-q_{2}-q_{1}-q_{1}-q_{2})\\ & +\frac{igV}{2}M_{2}\sin(q_{1}-q_{2}-q_{1}-q_{2}-q_{1})\\ & +\frac{igV}{2}M_{2}\sin(q_{1}-q_{2}-q_{1}-q_{2}-q_{1})\\ & -\frac{igV}{2}d_{2}\sin(q_{1}-q_{2}-q_{1}-q_{1}-q_{2})\\ & -\frac{igV}{2}d_{2}\sin(q_{1}-q_{2}-q_{1}-q_{1}-q_{2})\\ & -\frac{igV}{2}d_{2}\sin(q_{1}-q_{2}-q_{1}-q_{1}-q_{2}-q_{1})\\ & -\frac{igV}{2}d_{2}\sin(q_{1}-q_{2}-q_{1}-q_{1}-q_{2}-q_{2})\\ & -\frac{igV}{2}d_{2}\sin(q_{1}-q_{2}-q_{1}-q_{1}-q_{2}-q_{2})\\ & -\frac{igV}{2}d_{2}\sin(q_{1}-q_{2}-q_{1}-q_{1}-q_{2}-q_{2})\\ & -\frac{igV}{2}d_{2}\sin(q_{1}-q_{2}-q_{2}-q_{1}-q_{2}-q_{2})\\ & -\frac{igV}{2}d_{2}\sin(q_{1}-q_{2}-q_$	$-\frac{2g^{2}}{2}M_{2}^{2}M_{2}^{2}H_{2}^$	$\begin{split} -3J_{1}\phi_{1}\phi_{1} &= \frac{1}{2}\delta_{1}J_{1}^{2}J_{1}^{2}d_{1}^{2} &= \frac{1}{2}\delta_{1}J_{1}^{2}J_{2}^{2}d_{1}^{2}\\ -3J_{1}J_{2}^{2}J_{1}\phi_{1} &= J_{1}J_{2}^{2}J_{2}\phi_{1} &= J_{1}J_{2}^{2}J_{2}\phi_{1} \\ -3J_{1}J_{2}^{2}J_{2}\phi_{1} &= J_{2}J_{2}^{2}J_{2}\phi_{1} \\ -3J_{2}J_{2}^{2}J_{2}\phi_{1} &= J_{2}J_{2}^{2}J_{2}\phi_{1} \\ -3J_{2}J_{2}^{2}J_{2}\phi_{1} &= J_{2}J_{2}J_{2}\phi_{1} \\ -3J_{2}J_{2}^{2}J_{2}\phi_{1} &= J_{2}J_{2}J_{2}J_{2}\phi_{1} \\ -3J_{2}J_{2}^{2}J_{2}\phi_{1} &= J_{2}J_{2}J_{2}J_{2}\phi_{1} \\ -J_{2}J_{2}J_{2}^{2}J_{2}\phi_{1} &= J_{2}J_{2}J_{2}J_{2}\phi_{1} \\ -J_{2}J_{2}J_{2}J_{2}^{2}J_{2}\phi_{1}^{2}J_{2}\phi_{2}J_{2}^{2}J_{2}\phi_{1}^{2}J_{2}\phi_{1}J_{2}J_{2}J_{2}J_{2}J_{2}J_{2}J_{2}J_{2$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$ \begin{array}{c} -\frac{-i \pi q^2}{4} M_{1}^2 A \sin \left(q_1 \right) \\ -\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ -\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_1 - q_2 \right) \\ +\frac{-i \pi q^2}{4} M_{2}^2 A \sin \left(q_2 \right) \\ +\frac{-i \pi q^2}{4$	$\begin{split} &-\frac{2\pi^2}{2} \frac{\delta M_{11}^2 \delta M_{12}^2 \delta M$	$\begin{split} +3J_{1}\phi_{1}\phi_{2} &= \frac{1}{2}M_{1}f_{1}^{2}f_{2}^{2} &= \frac{1}{2}M_{1}f_{1}^{2}f_{2}^{2}\\ &= M_{1}f_{2}^{2}f_{1}f_{2}f_{1}+M_{2}^{2}f_{2}g_{2}h_{2}-M_{2}f_{2}^{2}f_{2}g_{2}h_{2}\\ &= M_{1}f_{2}^{2}f_{2}f_{2}h_{2}^{2}-M_{2}f_{2}^{2}g_{2}h_{2}\\ &= M_{2}f_{2}^{2}f_{2}h_{2}^{2}h_{2}h_{2}^{2}h_{2}h_{2}h_{2}h_{2}h_{2}h_{2}h_{2}h_$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{split} & -\frac{-iq}{2}q_{1}^{2}M_{2}L_{2}\sin(q_{1}-q_{2})\\ & -\frac{-iq}{2}M_{2}L_{2}\sin(q_{1}-q_{2})\\ & -\frac{-iq}{2}M_{2}L_{2}\sin(q_{1}-q_{2})\\ & -\frac{-iq}{2}M_{2}L_{2}\sin(q_{1}-q_{2}-q_{1}-q_{2})\\ & +\frac{-iq}{2}M_{2}\sin(q_{1}-q_{2}-q_{1}-q_{2})\\ & +\frac{-iq}{2}M_{2}\sin(q_{1}-q_{2}-q_{2}-q_{1}-q_{2})\\ & +\frac{-iq}{2}M_{2}\sin(q_{1}-q_{2}-q_{2}-q_{1}-q_{2})\\ & -\frac{-iq}{2}M_{2}M_{2}(q_{1}-q_{2}-q_{2}-q_{1}-q_{2})\\ & -\frac{-iq}{2}M_{2}M_{2}(q_{1}-q_{2}-q_{2}-q_{1}-q_{2})\\ & -\frac{-iq}{2}M_{2}M_{2}(q_{1}-q_{2}-q_{2}-q_{1}-q_{2})\\ & -\frac{-iq}{2}M_{2}M_{2}(q_{1}-q_{2}-q_{2}-q_{1}-q_{2})\\ & -\frac{-iq}{2}M_{2}M_{2}(q_{1}-q_{2}-q_{2}-q_{1}-q_{2})\\ & -\frac{-iq}{2}M_{2}M_{2}(q_{1}-q_{2}-q_{2}-q_{1}-q_{2})\\ & -\frac{-iq}{2}M_{2}M_{2}(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{-iq}{2}M_{2}M_{2}(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{-iq}{2}M_{2}M_{2}(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{-iq}{2}M_{2}M_{2}(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{-iq}{2}M_{2}M_{2}(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{-iq}{2}M_{2}M_{2}(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{-iq}{2}M_{2}M_{2}(q_{1}-q_{2}-q_{2}-q_{2})\\ & -\frac{-iq}{2}M_{2}M_{2}(q_{1}-q_{2}-q_{2}-q_{2}-q_{2})\\ & -\frac{-iq}{2}M_{2}M_{2}(q_{1}-q_{2}-q_{2}-q_{2})\\ & -\frac{-iq}{2}M_{2}M_{2}(q_{1}-q_{2}-q_{2}-q_{2})\\ & -\frac{-iq}{2}M_{2}M_{2}M_{2}(q_{1}-q_{2}-q_{2}-q_{2})\\ & -\frac{-iq}{2}M_{2}M_{2}M_{2}M_{2}\\ & -\frac{-iq}{2}M_{2}M_{2}M_{2}\\ & -\frac{-iq}{2}$	$\begin{split} &-\frac{2\pi^2}{2} M_{12}^{2} M_{12$	$\begin{split} -3J_{1}\phi_{1}\phi_{2} &= \frac{1}{2} \delta \mathcal{L}_{1}^{2} \mathcal{L}_{2}^{2} &= \frac{1}{2} \delta \mathcal{L}_{1}^{2} \mathcal{L}_{2}^{2} \\ -3J_{1}\mathcal{L}_{2}^{2} &= J_{1}^{2} + J_{2}^{2} \mathcal{L}_{2}^{2} &= J_{2}^{2} + J_{2}^{2} \mathcal{L}_{2}^{2} \\ &= J_{1}^{2} \mathcal{L}_{2}^{2} \phi_{2}^{2} &= J_{2}^{2} \mathcal{L}_{2}^{2} \phi_{2}^{2} \\ &= J_{2}^{2} \mathcal{L}_{2}^{2} \phi_{2}^{2} &= J_{2}^{2} \mathcal{L}_{2}^{2} \phi_{2}^{2} \\ &= J_{2}^{2} \mathcal{L}_{2}^{2} \phi_{2}^{2} &= J_{2}^{2} \mathcal{L}_{2}^{2} \phi_{2}^{2} \\ &= J_{2}^{2} \mathcal{L}_{2}^{2} \phi_{2}^{2} &= J_{2}^{2} \mathcal{L}_{2}^{2} \phi_{2}^{2} \\ &= J_{2}^{2} \mathcal{L}_{2}^{2} \phi_{2}^{2} &= J_{2}^{2} \phi_{2}^{2} \phi_{2}^{2} \\ &= J_{2}^{2} \mathcal{L}_{2}^{2} \phi_{2}^{2} \\ &= J_{2}^{2} \phi_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} \\ &= J_{2}^{2} \phi_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} \\ &= J_{2}^{2} \phi_{2}^{2} \\ &= J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} \\ &= J_{2}^{2} \phi_{2}^{2} \\ &= J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} \\ &= J_{2}^{2} \phi_{2}^{2} \\ &= J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} \\ &= J_{2}^{2} \phi_{2}^{2} \\ &= J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} \\ &= J_{2}^{2} \phi_{2}^{2} \\ &= J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} \\ &= J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} \\ &= J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} \\ &= J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} \\ &= J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} - J_{2}^{2} \phi_{2}^{2} \\ &= J_{2}^{2} \phi_{2}^{2} - J_{2}^$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$ \begin{array}{rcl} -\frac{-igr{q}^2}{2}M_{1}(d_{1}+ig_{1}, g_{1}-g_{1}) \\ & -\frac{-igr{q}^2}{2}M_{1}(d_{1}+ig_{1}-g_{2}) \\ & -\frac{-igr{q}^2}{2}M_{1}(d_{1}+ig_{1}-g_{1}-g_{1}-g_{1}) \\ & +\frac{-igr{q}^2}{2}M_{1}(d_{1}+ig_{1}-g_{1}-g_{1}-g_{1}+g_{1}) \\ & +\frac{-igr{q}^2}{2}M_{1}(ig_{1}-g_{1}-g_{1}-g_{1}-g_{1}+g_{1}) \\ & -\frac{-igr{q}^2}{2}M_{1}(ig_{1}-g_{1}-g_{1}-g_{1}-g_{1}+g_{1}) \\ & -\frac{-igr{q}^2}{2}M_{1}(ig_{1}-g_{1}-g_{1}-g_{1}-g_{1}+g_{1}) \\ & -\frac{-igr{q}^2}{2}M_{1}(ig_{1}-g_{1}-g_{1}-g_{1}-g_{1}) \\ & -\frac{-igr{q}^2}{2}M_{1}(ig_{1}-g_{1}-g_{1}-g_{1}-g_{1}-g_{1}) \\ \\ & -\frac{-igr{q}^2}{2}M_{1}(ig_{1}-g_{1}-g_{1}-g_{1}-g_{1}-g_{1}) \\ & -\frac{-igr{q}^2}{2}M_{1}(ig_{1}-g_{1}-g_{1}-g_{1}-g_{1}-g_{1}) \\ \\ & -\frac{-igr{q}^2}{2}M_{1}(ig_{1}-g_{1}-g_{1}-g_{1}-g_{1}-g_{1}-g_{1}-g_{1}) \\ \\ & -\frac{-igr{q}^2}{2}M_{1}(ig_{1}-g_$	$\begin{split} -& 2g_{1}^{2}M_{2}^{2}M_{2}^{2}g_{1}^{2}g_{2}^{2}g_{3}^{2}g_{3}^{2}g_{3}^{2}g_{3}^{2}g_{3}^{2}g_{3}^{2}g_{3}g_{3}^{2}g_{3}g_{3}g_{3}g_{3}g_{3}g_{3}g_{3}g_{3$	$\begin{split} +3J_{1}\phi_{1}\phi_{2} &= \frac{1}{2}M_{1}f_{1}^{2}f_{2}^{2} &= \frac{1}{2}M_{1}f_{1}^{2}f_{2}^{2}\\ &= M_{1}f_{2}^{2}f_{1}f_{2}f_{1}+M_{2}^{2}f_{2}g_{2}h_{2}-M_{2}f_{2}^{2}f_{2}g_{2}h_{2}\\ &= M_{1}f_{2}^{2}f_{2}f_{2}h_{2}^{2}-M_{2}f_{2}^{2}g_{2}h_{2}\\ &= M_{2}f_{2}^{2}f_{2}h_{2}^{2}h_{2}h_{2}^{2}h_{2}h_{2}h_{2}h_{2}h_{2}h_{2}h_{2}h_$	$\begin{array}{lll} B_{1,1}(q_2) &=& ML_{2}^{2} m (q_1 - q_2 + q_2 + q_3) \\ &=& 2 ML_{2}^{2} m (q_1 - q_2 + q_3 - q_3) \\ &=& 2 ML_{2}^{2} m (q_1 - q_3 + q_3 - q_3) \\ &=& 2 ML_{2}^{2} m (q_1 - q_3 + q_3 - q_3) \\ &=& 2 ML_{2}^{2} m (q_1 - q_3 + q_3 - q_3) \\ &=& 2 ML_{2}^{2} m (q_1 - q_3 + q_3 - q_3) \\ &=& 2 ML_{2}^{2} ML_{2}^{2} m (q_1 - q_3 - q_3 - q_3) \\ &=& 2 ML_{2}^{2} ML_{2}^{2} m (q_1 - q_3 - q_3 - q_3) \\ &=& 2 ML_{2}^{2} ML_{2}^{2} m (q_1 - q_3 - q_3 - q_3) \\ &=& 2 ML_{2}^{2} ML_{2}^{2} m (q_1 - q_3 - q_3 - q_3 - q_3) \\ &=& 2 ML_{2}^{2} ML_{2}^{2} m (q_1 - q_3 - q_3 - q_3 - q_3 - q_3) \\ &=& 2 ML_{2}^{2} ML_{2}^{2} m (q_1 - q_3 -$
$\begin{split} & -\frac{-igr^2}{2}M_{1}^2 L_{2}^2 dx_{1}^2(y_{1}) \\ & -\frac{-igr^2}{-igr^2}M_{2}^2 L_{2}^2 dx_{1}^2(y_{1}-y_{2}) \\ & -\frac{-igr^2}{-igr^2}M_{2}^2 L_{2}^2 dx_{1}^2(y_{1}-y_{2}) \\ & -\frac{-igr^2}{-igr^2}M_{2}^2 L_{2}^2 dx_{1}^2(y_{1}-y_{2}) \\ & -\frac{-igr^2}{-igr^2}M_{2}^2 dx_{1}^2 dx_{1}^2(y_{1}-y_{2}-y_{2}-y_{1}) \\ & -\frac{-igr^2}{-igr}M_{2}^2 dx_{1}^2 dx_{1}^2(y_{1}-y_{2}-y_{2}-y_{1}) \\ & -\frac{-igr^2}{-igr}M_{2}^2 dx_{1}^2 dx_{1}^2(y_{1}-y_{2}-y_{2}-y_{1}) \\ & -\frac{-igr^2}{-igr}M_{2}^2 dx_{1}^2 dx_{1}^2(y_{1}-y_{2}-y_{2}-y_{2}) \\ & -\frac{-igr^2}{-igr}M_{2}^2 dx_{1}^2 dx_{1}^2(y_{1}-y_{2}-y_{2}) \\ & -\frac{-igr^2}{-igr}M_{2}^2 dx_{1}^2 dx_{1}^2(y_{1}-y_{2}-y_{2}) \\ & -\frac{-igr^2}{-igr}M_{2}^2 dx_{1}^2 dx_{1}^2(y_{1}-y_{2}-y_{2}-y_{2}) \\ & -\frac{-igr^2}{-igr}M_{2}^2 dx_{1}^2 dx_{1}^2(y_{1}-y_{2}-y_{2}-y_{2}-y_{2}-y_{2}) \\ & -\frac{-igr^2}{-igr}M_{2}^2 dx_{1}^2 dx_{1}^2(y_{1}-y_{2}$	$\begin{split} &-\frac{2\pi^2}{2} M_{12}^{2} M_{12$	$\begin{split} +3I_{1}\phi_{1}\phi_{1} &= \frac{1}{2}MA_{1}^{2}\phi_{1}^{2} &= \frac{1}{2}MA_{1}^{2}\phi_{2}^{2}\phi_{1}^{2}\\ +3M_{1}^{2}\phi_{1}^{2}(z_{1},z_{1},z_{2},z_{3},z$	$\begin{array}{lll} B_{-1,0}(\mathbf{p}) &=& M_{-1}^{2} g(m_{0}^{-1}-m_{0}^{-1}+m_{1}^{-1})\\ &=& M_{-1}^{2} M_{-1}^{-1} g(m_{0}^{-1}-m_{1}^{-1}+m_{1}^{-1})\\ &=& M_{-1}^{2} M_{-1}^{-1} g(m_{0}^{-1}+m_{1}^{-1}+m_{1}^{-1})\\ &=& M_{-1}^{-1} g(m_{0}^{-1}-m_{1}^{-1}+m_{1}^{-1}+m_{1}^{-1})\\ &=& M_{-1}^{-1} g(m_{0}^{-1}-m_{1}^{-1}+m_{1}^{-1})\\ &=& M_{-1}^{-1} g(m_{0}^{-1}-m_{1}^{-1})\\ &=& M_{-1}^{-1} g(m_{0}^{-1}-m_{1}^{-1})\\ &=& M_{-1}^{-1} g(m_{0}^{-1}-m_{1}^{-1}+m_{1}^{-1})\\ &=& M_{$
$\begin{split} & -\frac{1}{2} \phi_{1}^{2} M_{1} d_{1} d_{2} d_{2} d_{2} (p_{1}) \\ & -\frac{1}{2} \phi_{2}^{2} M_{2} d_{2} d_{2} d_{2} d_{2} (p_{1} - p_{1}) \\ & -\frac{1}{2} \phi_{2}^{2} M_{2} d_{2} d_{2} d_{2} d_{2} (p_{1} - p_{1}) \\ & -\frac{1}{2} \phi_{1}^{2} M_{2} d_{2} d_{2} d_{2} d_{2} (p_{1} - p_{1}) \\ & +\frac{1}{2} \phi_{1}^{2} M_{1} d_{2} d_{2} d_{2} d_{2} (p_{1} - p_{1}) \\ & -\frac{1}{2} \phi_{1}^{2} M_{1} d_{1} d_{2} d_{2} d_{2} - p_{1} + p_{1} + p_{1} \\ & -\frac{1}{2} \phi_{1}^{2} M_{1} d_{1} d_{1} d_{2} - p_{1} - p_{1} + p_{1} + p_{1} \\ & -\frac{1}{2} \phi_{1}^{2} M_{1} d_{1} d_{1} d_{1} - p_{1} - p_{1} + p_{1} + p_{1} \\ & -\frac{1}{2} \phi_{1}^{2} M_{1} d_{1} d_{1} d_{1} d_{2} d_{2} d_{2} \\ & -\frac{1}{2} \phi_{1}^{2} M_{1} d_{2} d_{1} d_{2} d_{2} d_{2} d_{2} d_{2} d_{2} d_{2} d_{2} d_{2} \\ & -\frac{1}{2} \phi_{1}^{2} M_{1} d_{1} d_{1} d_{1} d_{2} d_{2} d_{2} d_{2} d_{2} d_{2} d_{2} d_{2} \\ & -\frac{1}{2} \phi_{1}^{2} M_{1} d_{1} d_{1} d_{1} d_{1} d_{1} d_{2} $	$\begin{split} -& -2g^{22} M_{21}^{22} M_{22}^{2} M_{2}$	$\begin{split} -4J_{1}\phi_{1}\phi_{1} &= \frac{1}{2}4Ld_{1}^{2}d_{1}^{2} &= \frac{1}{2}4Ld_{1}^{2}d_{2}^{2} \\ -M_{11}d_{2}^{2}A_{1}^{2}A_{1}^{2}A_{2}^{2}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{split} & -\frac{1}{2} \phi_{1}^{2} M_{1} d_{1} \sin(q_{1} - q_{2}) \\ & -\frac{1}{2} \phi_{2}^{2} M_{2} d_{1} \sin(q_{1} - q_{2}) \\ & -\frac{1}{2} \phi_{1}^{2} M_{2} d_{1} \sin(q_{1} - q_{2}) \\ & -\frac{1}{2} \phi_{1}^{2} M_{2} d_{1} \sin(q_{1} - q_{2}) \\ & -\frac{1}{2} \phi_{1}^{2} m_{1}^{2} \phi_{1} \cos(q_{1} - q_{2}) \\ & -\frac{1}{2} \phi_{1}^{2} m_{1}^{2} \phi_{1} \cos(q_{1} - q_{2}) \\ & -\frac{1}{2} \phi_{1}^{2} M_{1} (q_{1} - q_{1} - q_{2} - q_{1}) \\ & -\frac{1}{2} \phi_{1}^{2} M_{1} (q_{1} - q_{1} - q_{2} - q_{1}) \\ & -\frac{1}{2} \phi_{1}^{2} M_{1} (q_{1} - q_{1} - q_{2} - q_{1}) \\ & -\phi_{1}^{2} M_{2} (q_{1} - q_{1} - q_{2} - q_{1}) \\ & -\phi_{1}^{2} M_{2} (q_{1} - q_{1} - q_{2} - q_{1}) \\ & -\phi_{1}^{2} M_{2} (q_{1} - q_{1} - q_{2} - q_{1}) \\ & -\phi_{1}^{2} M_{1} (q_{1} - q_{1} - q_{2} - q_{1}) \\ & -\phi_{1}^{2} M_{1} (q_{1} - q_{1} - q_{2} - q_{1}) \\ & -\phi_{1}^{2} M_{1} (q_{1} - q_{1} - q_{2} - q_{1}) \\ & -\phi_{1}^{2} M_{1} (q_{1} - q_{1} - q_{2} - q_{1}) \\ & -\phi_{1}^{2} M_{2} (q_{1} - q_{1} - q_{1} - q_{1}) \\ & -\phi_{1}^{2} M_{1} (q_{1} - q_{1} - q_{1} - q_{1}) \\ & -\phi_{1}^{2} M_{1} (q_{1} - q_{1} - q_{1}) \\ & -\phi_{1}^{2} M_{1} (q_{1} - q_{1} - q_{1}) \\ & -\phi_{1}^{2} M_{1} (q_{1} - q_{1} - q_{1}) \\ & -\phi_{1}^{2} M_{1} (q_{1} - q_{1} - q_{1}) \\ & -\phi_{1}^{2} M_{1} (q_{1} - q_{1}) \\ & -\phi_{1}^{2} M_{1} (q_{1} - q_{1}) \\ & -\phi_{1}^{2} M_{1} (q_{1} - q_{2}) \\ \\ & -\phi_{1}^{2} M_{1} (q_{1} - q_{2}) \\ & -\phi_{1}^{2} M_{1} (q_{1} - q_{2}) \\ \\ & -\phi_{1}^{2} M_{1} (q_{1} - q_$	$\begin{split} &-2g_{1}^{2}M_{2}^{2}M_{2}^{2}g_{1}^{2}g_{2}^{2}g_{3}^{2}g_{3}^{2}g_{3}^{2}g_{3}^{2}g_{3}^{2}g_{3}g_{3}g_{3}g_{3}g_{3}g_{3}g_{3}g_{3$	$\begin{split} +3L_p(a)a, = \frac{1}{2}M_{1}^{2}f_{1}^{2}d_{1}^{2} = \frac{1}{2}M_{1}^{2}f_{2}^{2}d_{1}^{2}\\ +3M_{1}^{2}f_{1}^{2}(z_{1}+A_{2}^{2}(z_{1})) + M_{2}^{2}f_{2}(z_{1})\\ +M_{1}^{2}f_{2}^{2}(z_{1}+A_{2}^{2}(z_{1})) + M_{2}^{2}f_{2}(z_{1})\\ +M_{2}^{2}f_{2}^{2}(z_{1}) + M_{2}^{2}f_{2}(z_{1})\\ +M_{2}^{2}f_{2}^{2}(z_{1}) - M_{2}^{2}f_{2}^{2}(z_{1})\\ +M_{2}^{2}f_{2}^{2}(z_{1}) - M_{2}^{2}f_{2}^{2}(z_{1}) - M_{2}^{2}f_{2}^{2}(z_{1})\\ +M_{2}^{2}f_{2}^{2}(z_{1}) - L^{2}f_{2}^{2}(z_{1}) - L^{2}f_{2}^{2}(z_{1})\\ +M_{2}^{2}f_{2}^{2}(z_{1}) - L^{2}f_{2}^{2}(z_{1}) - L^{2}f_{2}^{2}(z_{1})\\ +M_{2}^{2}f_{2}^{2}(z_{1}) - L^{2}f_{2}^{2}(z_{1}) - L^{2}f_{2}^{2}(z_{1})\\ +M_{2}^{2}f_{2}^{2}(z_{1}) - L^{2}f_{2}^{2}(z_{1}) - L^{2}f_{2}^{2}(z_{1}) - L^{2}f_{2}^{2}(z_{1})\\ +L^{2}f_{2}^{2}(z_{1}^{2}-z_{1}^{2}z_{1}^{2}+z_{1$	$\begin{array}{lll} B_{1,1}(q_2) &=& M_{n,1}^{2} \min\{q_{-},q_{-}+q_{+}+q_{1}\}\\ &=& M_{n,2}^{2} M_{n} - m(q_{-}-q_{-}+q_{-}+q_{1})\\ &=& M_{n}^{2} M_{n} - m(q_{-}-q_{-}+q_{-}+q_{1})\\ &=& M_{n}^{2} M_{n}^{2} m(q_{-}-q_{-}+q_{-}+q_{1})\\ &=& M_{n}^{2} M_{n}^{2} m(q_{-}-q_{-}+q_{-})\\ &=& M_{n}^{2} M_{n}^{2} m(q_{-}-q_{-}+q_{-})\\ &=& M_{n}^{2} M_{n}^{2} m(q_{-}-q_{-}+q_{-})\\ &=& M_{n}^{2} M_{n}^{2} m(q_{-}-q_{-}+q_{-}-q_{-})\\ &=& M_{n}^{2} M_{n}^{2} m(q_{-}-q_{-}-q_{-}-q_{-})\\ &=& M_{n}^{2} M_{n}^{2} m(q_{-}-q_{-}-q_{-}-q_{-})\\ &=& M_{n}^{2} M_{n}^{2} m(q_{-}-q_{-}-q_{-}-q_{-})\\ &=& M_{n}^{2} M_{n}^{2} m(q_{-}-q_{-}-q_{-}-q_{-})\\ &=& M_{n}^{2} M_{n}^{2} M_{n}^{2} m(q_{-}-q_{-}-q_{-})\\ &=& M_{n}^{2} M_{n}^{2} M_{n}^{2} m(q_{-}-q_$
$\begin{split} & -\frac{i}{2}q_{1}^{2}M_{1}^{2}d_{1}d_{2}d_{2}d_{2}(q_{1})\\ & -\frac{i}{2}q_{2}^{2}M_{1}^{2}d_{2}d_{2}d_{2}(q_{1}-q_{2})\\ & -\frac{i}{2}q_{2}^{2}M_{1}^{2}d_{2}d_{2}d_{2}(q_{1}-q_{2})\\ & -\frac{i}{2}q_{1}^{2}M_{1}^{2}d_{2}d_{2}d_{2}(q_{1}-q_{2})\\ & +\frac{i}{2}q_{1}^{2}M_{1}(q_{1}-q_{1}-q_{2}-q_{2}+q_{1})M_{1}^{2}\\ & -\frac{i}{2}q_{1}^{2}M_{2}^{2}M_{1}(q_{1}-q_{1}-q_{2}-q_{2}+q_{1})M_{1}^{2}\\ & -\frac{i}{2}q_{1}^{2}M_{2}^{2}M_{1}(q_{1}-q_{1}-q_{2}-q_{2}+q_{1})M_{1}^{2}\\ & -\frac{i}{2}q_{1}^{2}M_{2}^{2}M_{1}(q_{1}-q_{1}-q_{2}-q_{1}+q_{2})M_{1}^{2}\\ & -\frac{i}{2}q_{1}^{2}M_{2}^{2}M_{1}(q_{1}-q_{1}-q_{2}-q_{1}+q_{2})M_{1}^{2}\\ & -\frac{i}{2}q_{1}^{2}M_{2}^{2}M_{1}(q_{1}-q_{1}-q_{2}-q_{1}+q_{2}-q_{2})M_{1}^{2}\\ & -\frac{i}{2}q_{1}^{2}M_{2}^{2}M_{1}(q_{1}-q_{1}-q_{2}-q_{1}+q_{2}-q_{2})M_{1}^{2}\\ & -\frac{i}{2}q_{1}^{2}M_{2}^{2}M_{1}(q_{1}-q_{1}-q_{2}-q_{1}-q_{2})M_{2}^{2}\\ & -\frac{i}{2}q_{1}^{2}M_{2}^{2}M_{2}(q_{1}-q_{2}-q_{1}-q_{1}-q_{2}-q_{2}-q_{2})M_{2}^{2}\\ & -\frac{i}{2}q_{1}^{2}M_{2}^{2}M_{2}(q_{1}-q_{2}-q_{1}-q_{2}-q$	$\begin{split} -& -2g^{22} M_{21}^{22} M_{22}^{2} M_{2}$	$\begin{split} -4J_{1}\phi_{1}\phi_{1} &= \frac{1}{2}4Ld_{1}^{2}d_{1}^{2} &= \frac{1}{2}4Ld_{1}^{2}d_{2}^{2} \\ -3M_{1}^{2}d_{1}^{2}c_{1}^{2}-4M_{2}^{2}d_{2}^{2}a_{1}^{2}-4M_{2}^{2}d_{2}^{2}-4M$	$\begin{array}{llllllllllllllllllllllllllllllllllll$


	AREA AND ROBITSCHICK STRATE STRATE	NAMES OF STREET	ALTER BOOTANN	a EQUATION DETAILS FOR SUMMINION TO IEEE	FRAME OF AUTOMOTIV CONTROL - RECEILAR PAPER
C _{8,0} 090 = -	$\begin{split} &+ \log^2 M_{1} \sin((\alpha-\eta_{1})-\alpha)\\ &+ \log^2 M_{2} \sin((\alpha-\eta_{2})-\alpha)\\ &+ \log^2 M_{2}$	$C_{k,l}(t) =$ $C_{k,l}(t) =$ $C_{k,l}(t) =$ $C_{l,k}(t) =$	$\begin{split} &-\cos(n_1)(n_1 - q_1^{-1}, \cos(n_1 - q_1 + n_1 + q_2)) \\ &-\cos(n_1 - q_1^{-1}, \cos(n_1 - q_1^{-1}, m_1 + m_1)) \\ &-m_1^{10}M_1(q_1^{-1}, m_1^{-1}, m_1$	$+ig_0\eta^0 M_T \rho L_0 \sin(q_0 - q_0 + q_1)$ $+ig_0\eta^0 M_T \rho L_0 \sin(q_0 - q_0 + q_1)$ $-ig_0\eta^0 M_T \rho L_0 \sin(q_0 - q_0)$ C_{h_1} $+ig_0\eta^0 M_T P L_0 \sin(q_0 - q_0)$	$\begin{split} & - (c_{ij}q_{ij}^{2j}M_{i}d_{j}+d_{ij}q_{ij}q_{ij}) \\ & - (c_{ij}q_{ij}^{2j}M_{i}d_{j}+d_{ij}q_{ij}q_{ij}) \\ & - (c_{ij}q_{ij}^{2j}M_{i}d_{j}+d_{ij}q_{ij}) \\ & - (c_{ij}M_{i}d_{ij}d_{ij}+d_{ij}q_{ij}) \\ & - (c_{ij}M_{i}d_{ij}d_{ij}q_{ij}) \\ & - (c_{ij}M_{ij}d_{ij}d_{ij}q_{ij}) \\ & - (c_{ij}M_{ij}d_{ij}d_{ij}q_{ij}) \\ \\ & - (c_{ij}M_{ij}d_{ij}) \\ \\ & - (c_{ij}M_{ij}d_{ij}d_{ij}q_{ij}) \\ \\ & - (c_{ij}M_{ij}d_{ij}) \\ \\ \\ & - (c_{ij}M_{ij}d_{ij}q_{ij}) \\ \\ & - (c_{ij}M_{ij}d_{ij}q_{ij}) \\ \\ \\ & - (c_{ij}M_{ij}d_{ij}q_{ij}) \\ \\ $
	$D_{e,4,7}(q_e)$	=		$1 - q_2 + q_3 - q_4 + q_5$	
	$D_{e,5,1}(q_e)$	=		$-M_t L_f^2 - 2p_t^M M_t L_f$	
	$D_{e,5,2}(q_e)$	=		$(q_4) - I_f - I_t - M_t$	-
	$D_{e,5,3}(q_e)$	=	-	$s(q_3) - 2p_t^M M_t L_f \cos^2 q_3$	$\operatorname{os}(q_4)$
			,	$+I_t + 2M_t L_f^2$	D
	$D_{e,5,4}(q_e)$		$p_t^M M_t L_f \cos\left(\right.$	- /	$D_{e,7}$,
	$D_{e,5,5}(q_e)$	=		$\operatorname{os}(q_3) - 2p_t^M M_t L_f$	$\cos(q_4)$
			$+I_{T}+2I_{f}$ -	$+2I_t+2M_tL_f^2$	
	$D_{e,5,6}(q_e)$	=	$M_t L_f \cos\left(q_3 - M_t L_f\right)$		
			-	$(q_1 - q_2 + q_3 + q_5)$	
				$(q_1 - q_2 + q_3 - q_4 +$	
				$s(q_1 - q_2 + q_3 + q_5)$	$D_{e,7}$
			$+\cos(q_1+q_3+q_5) p_T^M M_T \qquad D_{e,7}$		
			$+p_f^M M_f \cos$	$s(q_3+q_5)-p_t^M M_t$ or	$\cos(q_5)$
	$D_{e,5,7}(q_e)$	=	$-M_t L_f \sin\left(q_3\right)$	- /	
			-	$(q_1 - q_2 + q_3 + q_5)$	
				$(q_1 - q_2 + q_3 - q_4 +$	$-q_5)$
				$q_3 + q_5) p_T^M M_T$	_
			$-p_f^M M_f \sin$	$(q_1 - q_2 + q_3 + q_5)$	$D_{e,7}$
			$-p_f^M M_f \sin$	$(q_3 + q_5) + p_t^M M_t s$	$in(q_5) = D_{e,7}$



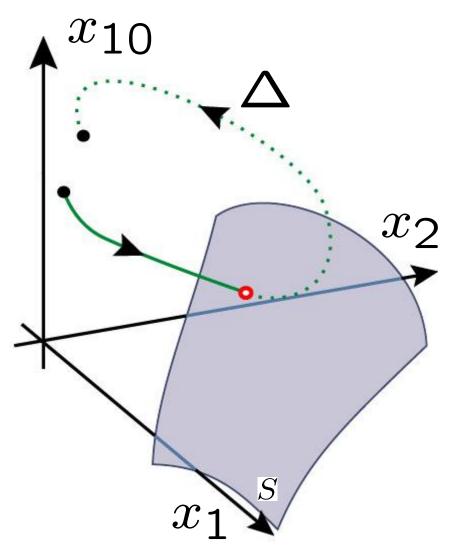
Switching Surface or Impact Surface


$$S = \{x \in \mathcal{X} \mid \varphi(x) = 0\}$$

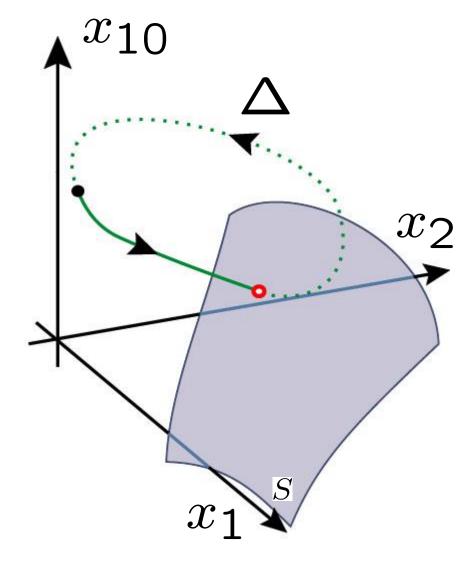
(Hyper Surface in state space \mathcal{X})

 x_{10}

 x_2

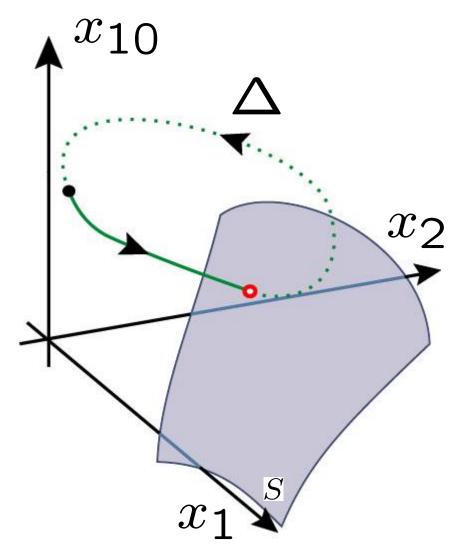


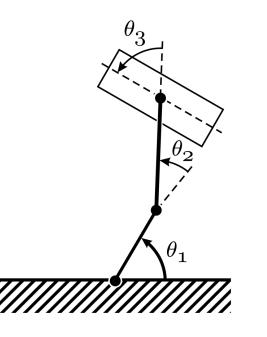
Switching Surface or Impact Surface

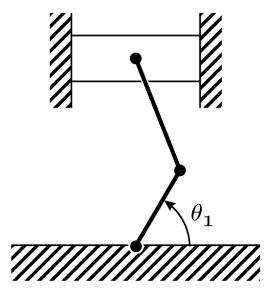

$$S = \{x \in \mathcal{X} \mid \varphi(x) = 0\}$$

(Hyper Surface in state space \mathcal{X})

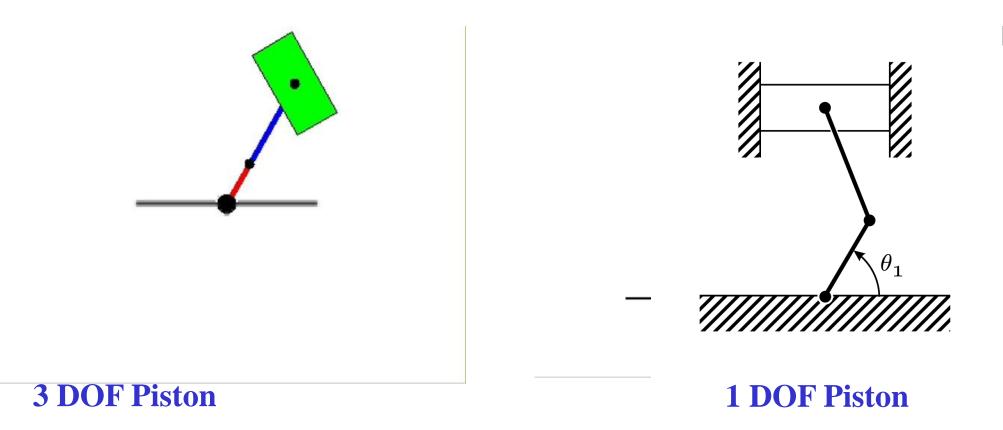
Most solutions are not periodic!

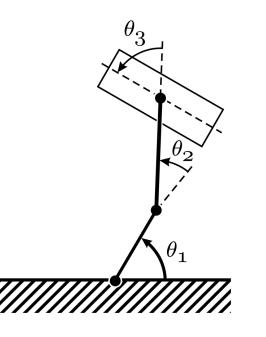



Harder than shown because require stability too!

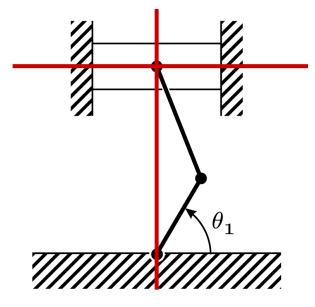

Our Approach

- Step 1: Use Virtual Constraints to reduce the complexity of the problem
- **Step 2:** Optimize performance within the obtained feedback structure...

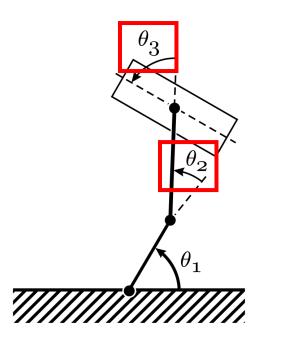


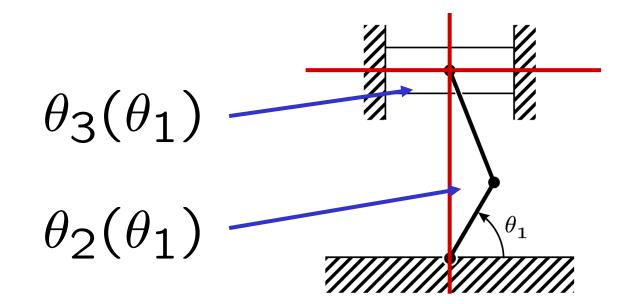


3 DOF Piston



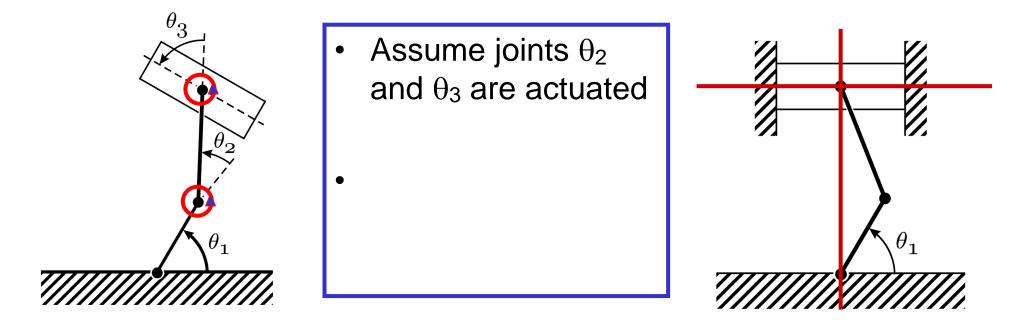
1 DOF Piston




3 DOF Piston

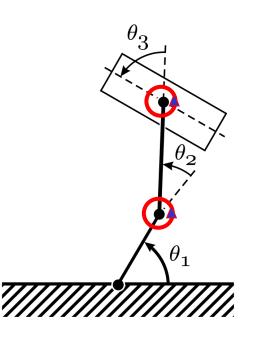
1 DOF Piston

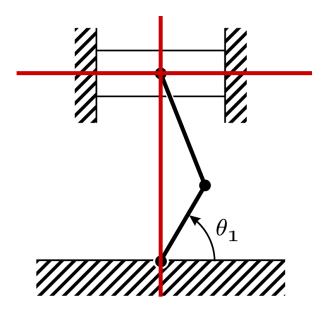
Cylinder walls impose 2 Constraints



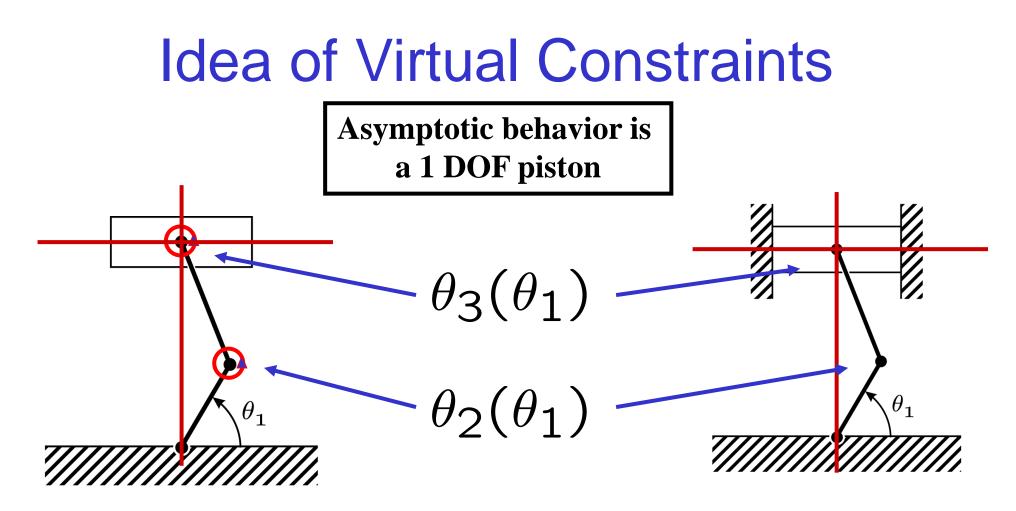
3 DOF Piston

1 DOF Piston


$$\begin{bmatrix} \theta_2 \\ \theta_3 \end{bmatrix} = \begin{bmatrix} \pi - \theta_1 - \arccos\left(\frac{L_1}{L_2}\cos(\theta_1)\right) \\ \arccos\left(\frac{L_1}{L_2}\cos(\theta_1)\right) \end{bmatrix}$$

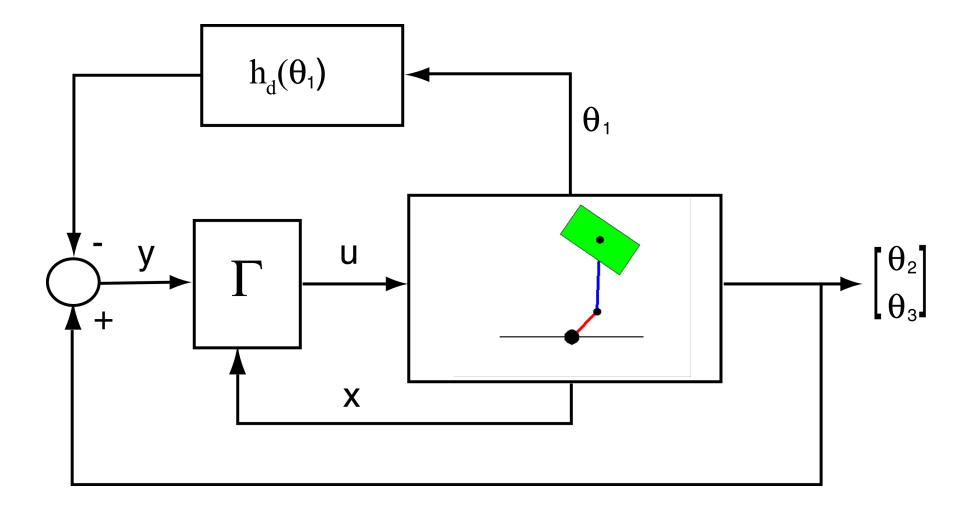

 $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \theta_2 - \left(\pi - \theta_1 - \arccos\left(\frac{L_1}{L_2}\cos(\theta_1)\right)\right) \\ \theta_3 - \arccos\left(\frac{L_1}{L_2}\cos(\theta_1)\right) \end{bmatrix}$

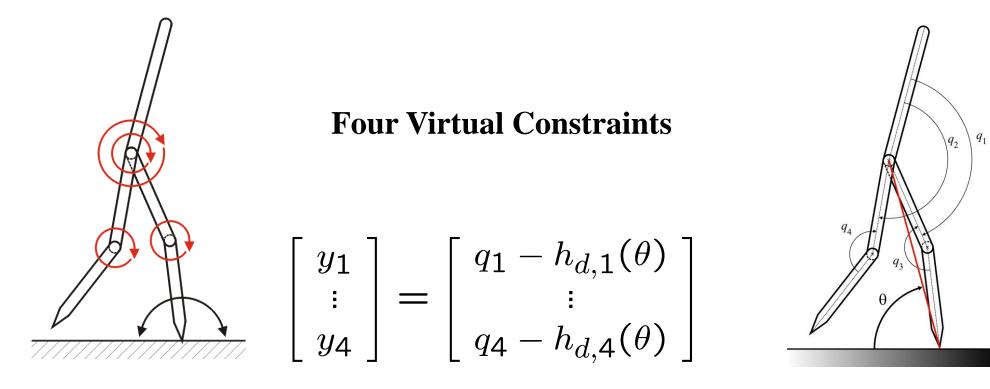
1 DOF Piston


$$\begin{bmatrix} \theta_2 \\ \theta_3 \end{bmatrix} = \begin{bmatrix} \pi - \theta_1 - \arccos\left(\frac{L_1}{L_2}\cos(\theta_1)\right) \\ \arccos\left(\frac{L_1}{L_2}\cos(\theta_1)\right) \end{bmatrix}$$

- Assume joints θ_2 and θ_3 are actuated
- Use feedback to impose constraints

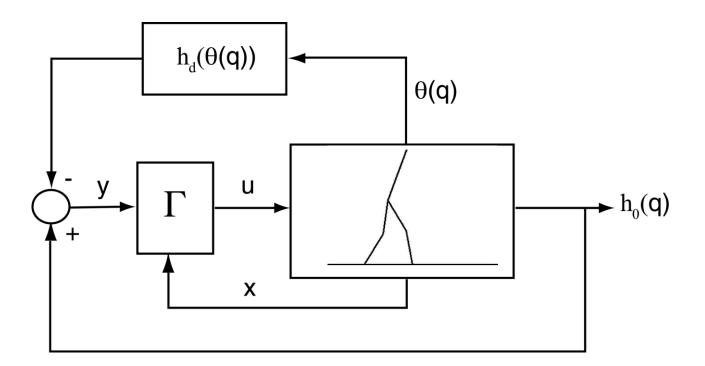
3 DOF Piston $\lim_{t \to \infty} \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longleftrightarrow \begin{bmatrix} \theta_2 \\ \theta_3 \end{bmatrix} = \begin{bmatrix} \pi - \theta_1 - \arccos\left(\frac{L_1}{L_2}\cos(\theta_1)\right) \\ \arccos\left(\frac{L_1}{L_2}\cos(\theta_1)\right) \end{bmatrix}$




3 DOF Piston with 2 Actuators

1 DOF Piston

$$\lim_{t \to \infty} \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} \theta_2 \\ \theta_3 \end{bmatrix} = \begin{bmatrix} \pi - \theta_1 - \arccos\left(\frac{L_1}{L_2}\cos(\theta_1)\right) \\ \arccos\left(\frac{L_1}{L_2}\cos(\theta_1)\right) \end{bmatrix}$$



5 DOF Robot

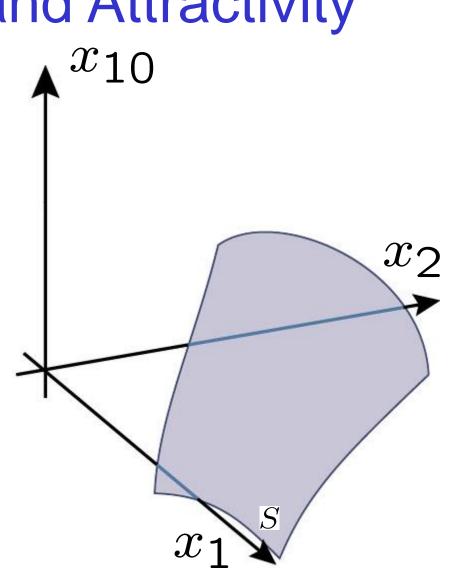
Asymptotic behavior is a 1 DOF robot 1 Un-Actuated DOF


 $y = h(q) = h_0(q) - h_d(\theta(q))$

For "posture principles", see [Kajita et al., '92; Hurmuzlu, '93; Ohno '01]

Virtual Constraints in ODE model

$$\dot{x} = f(x) + g(x)u$$



Complexity Reduction Through (Hybrid)-Invariance and Attractivity x_{10} Virtual Constraints in ODE model $\dot{x} = f(x) + g(x)u$ $y = h(q) = h_0(q) - h_d(\theta(q)) \in \mathbb{R}^4$ $x \gamma$ S

Virtual Constraints in ODE model

$$\dot{x} = f(x) + g(x)u^*(x)$$

 $y = h(q) = h_0(q) - h_d(\theta(q)) \in \mathbb{R}^4$

Design: $u^*(x)$ s.t. $y(t) \rightarrow 0$

Z

 x_{10}

 $x_{\mathcal{I}}$

Virtual Constraints in ODE model

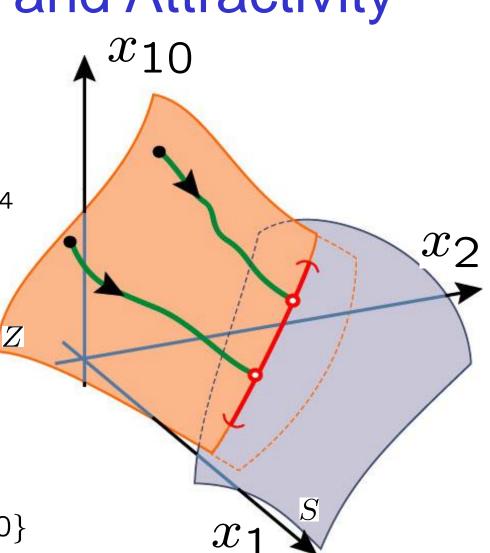
$$\dot{x} = f(x) + g(x)u^*(x)$$

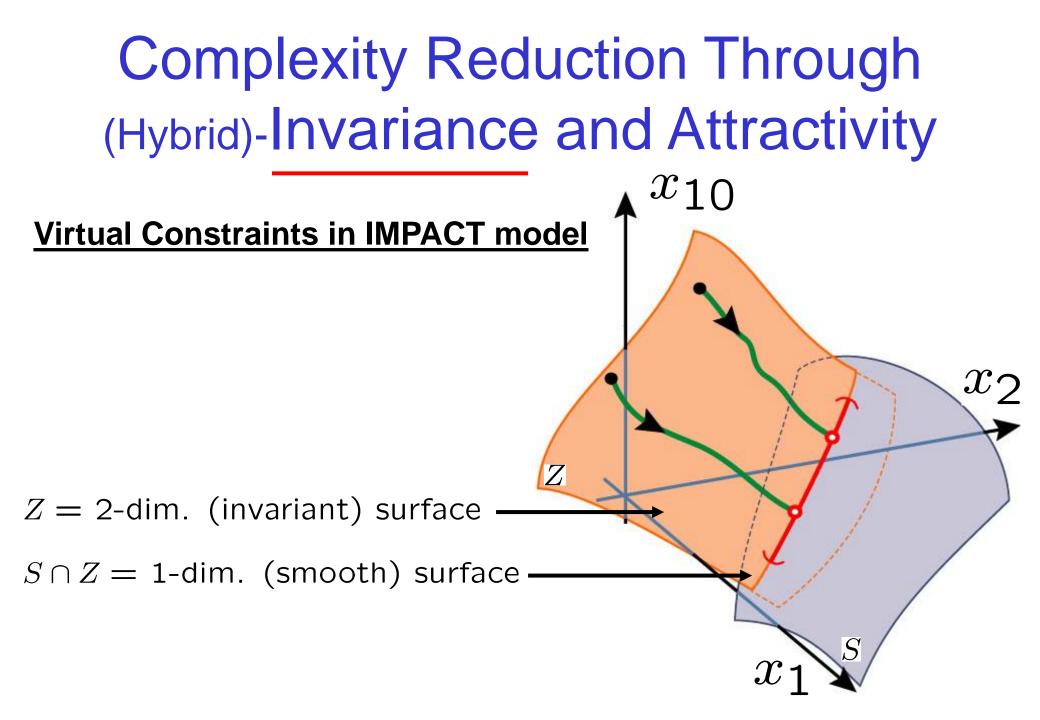
$$y = h(q) = h_0(q) - h_d(\theta(q)) \in R^2$$

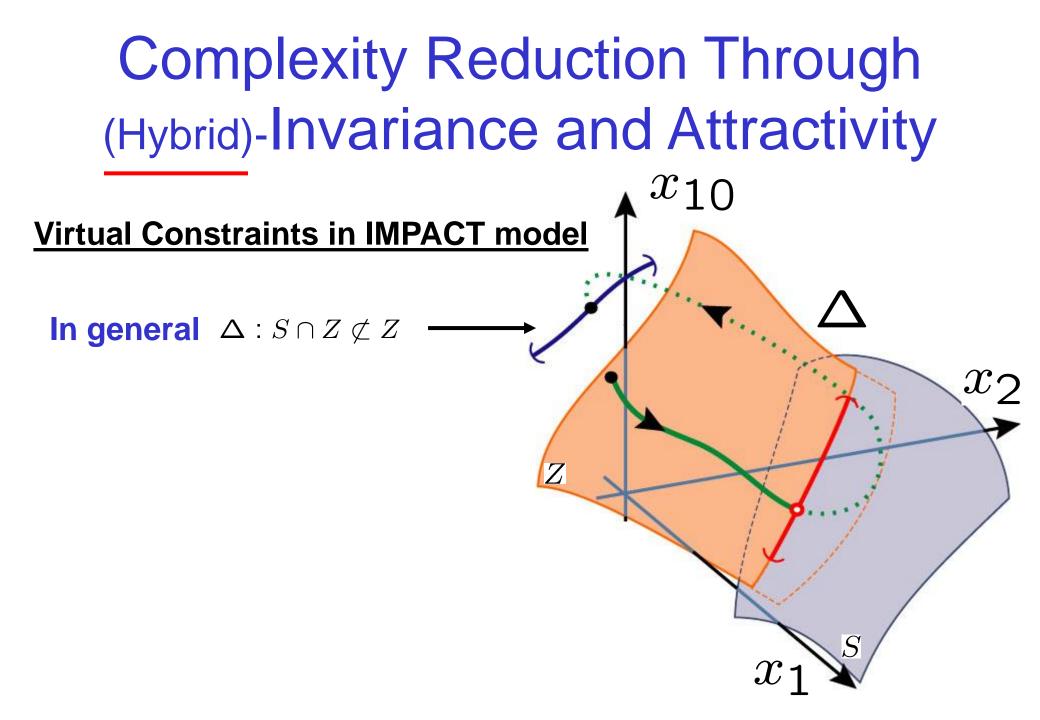
Design: $u^*(x)$ s.t. $y(t) \rightarrow 0$

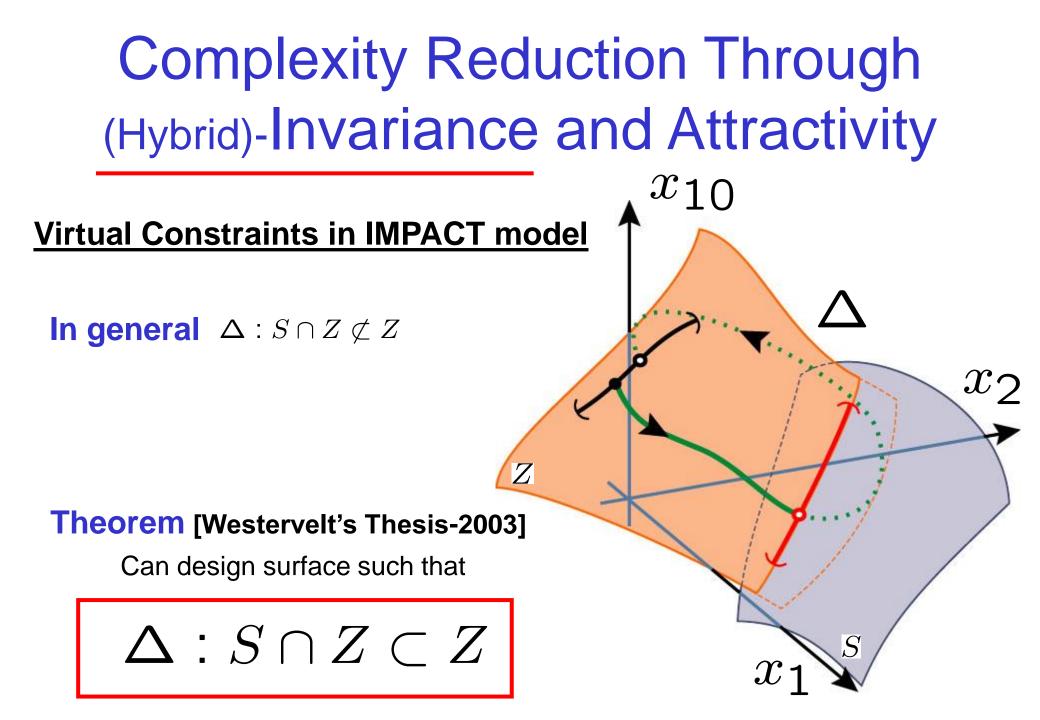
Create: 2-dim. invariant surface: $Z = \{(q, \dot{q}) \mid y(q) = 0 \& \dot{y}(q, \dot{q}) = 0\}$

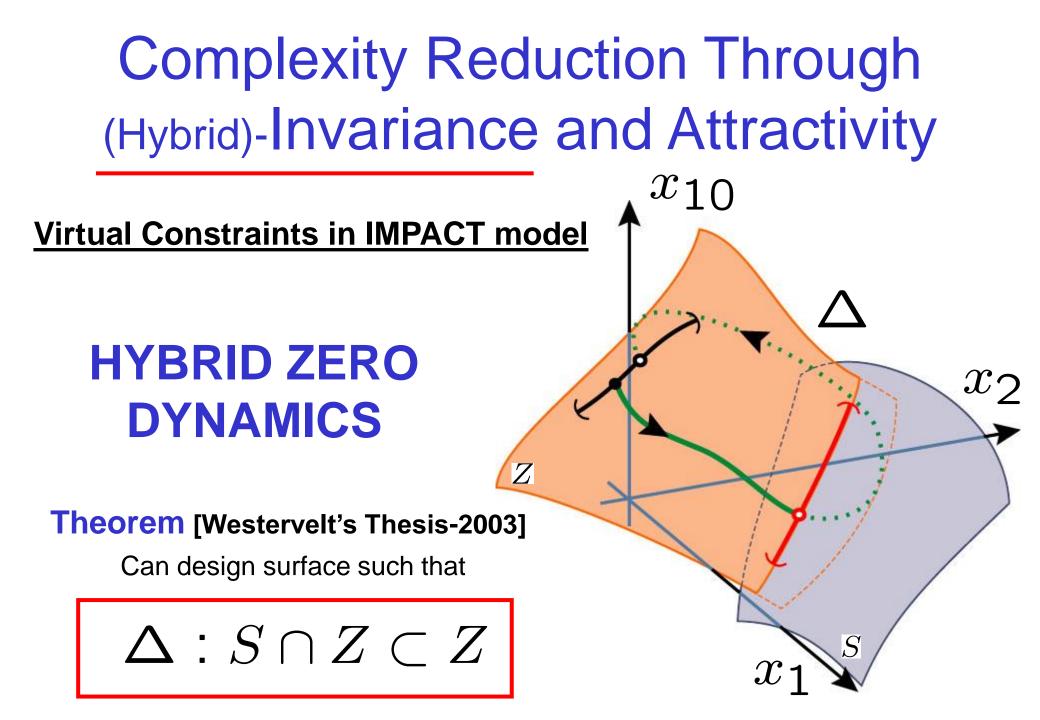
Virtual Constraints in ODE model

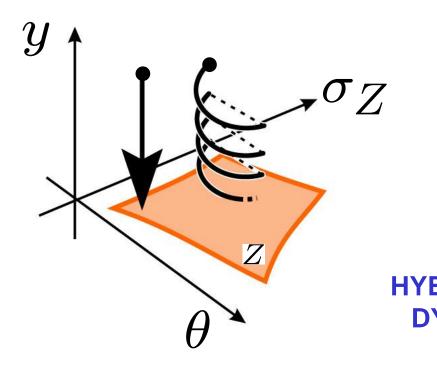

$$\dot{x} = f(x) + g(x)u^*(x)$$

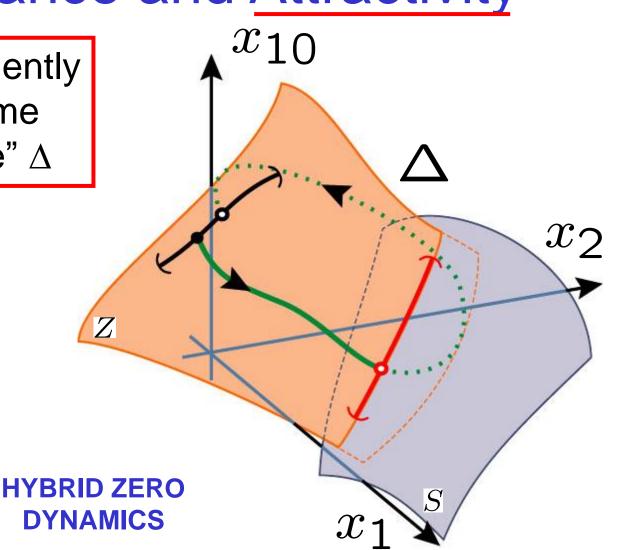

$$y = h(q) = h_0(q) - h_d(\theta(q)) \in R^4$$

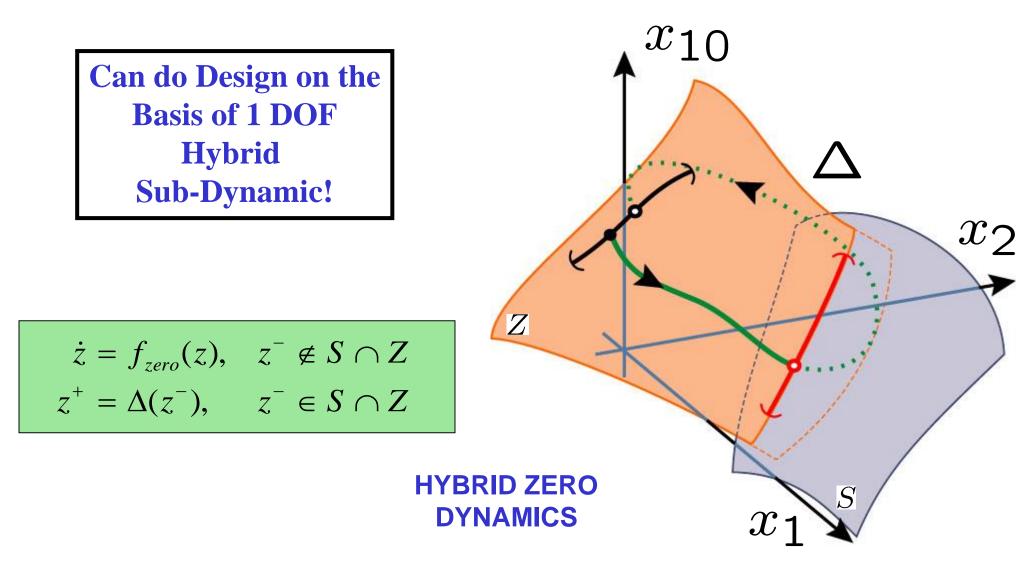

Design:
$$u^*(x)$$
 s.t. $y(t) \rightarrow 0$


Byrnes-Isidori Zero Dynamics

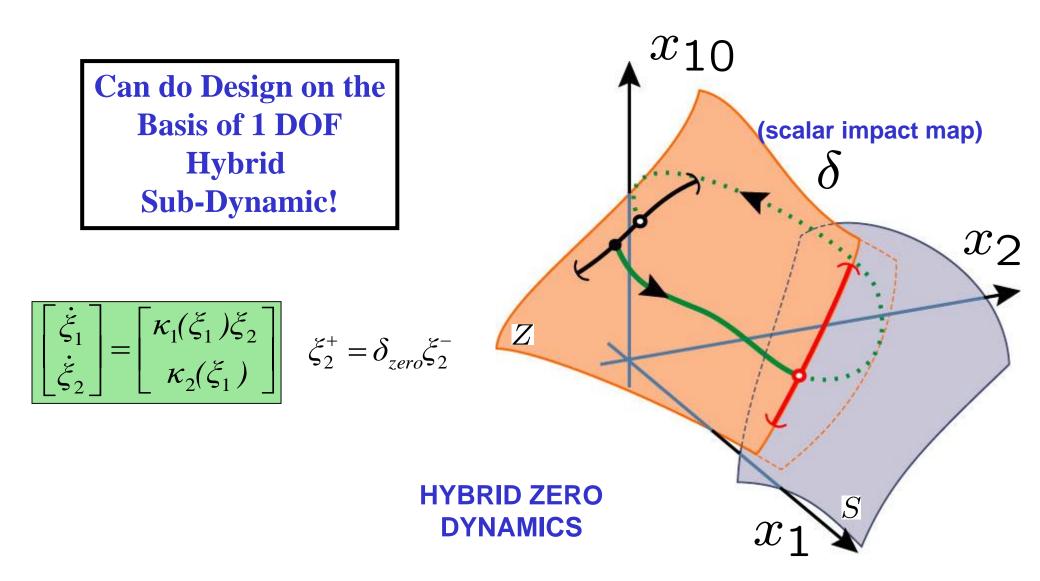

Create: 2-dim. invariant surface: $Z = \{(q, \dot{q}) \mid y(q) = 0 \& \dot{y}(q, \dot{q}) = 0\}$







Render surface sufficiently attractive to overcome impulse "disturbance" Δ



Hybrid Zero Dynamics for Bipeds

Hybrid Zero Dynamics for Bipeds

Hybrid Zero Dynamics Analysis

 $L_{zero} = K_{zero} - V_{zero} =$ Lagrangian of swing phase model

$$\frac{d}{dt}\frac{\partial L_{zero}}{\partial \dot{\theta}} - \frac{\partial L_{zero}}{\partial \theta} = 0 \implies \begin{bmatrix} \dot{\xi}_1 \\ \dot{\xi}_2 \end{bmatrix} = \begin{bmatrix} \kappa_1(\xi_1)\xi_2 \\ \kappa_2(\xi_1) \end{bmatrix}$$

$$L_{zero} = \frac{1}{2} \left(\frac{\dot{\xi}_1}{\kappa_1(\xi_1)} \right)^2 - \left(\int_{\theta^+}^{\xi_1} - \frac{\kappa_2(\xi)}{\kappa_1(\xi)} d\xi \right)$$

KineticEnergy PotentiaEnergy

Theorem: [Westervelt's Thesis-2003] There exists an exponentially stable periodic orbit of the hybrid zero dynamics if, and only if,

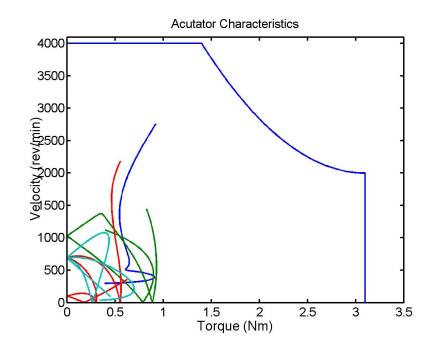
a)
$$(\delta_{zero})^2 < 1$$
 (energy loss at impact)

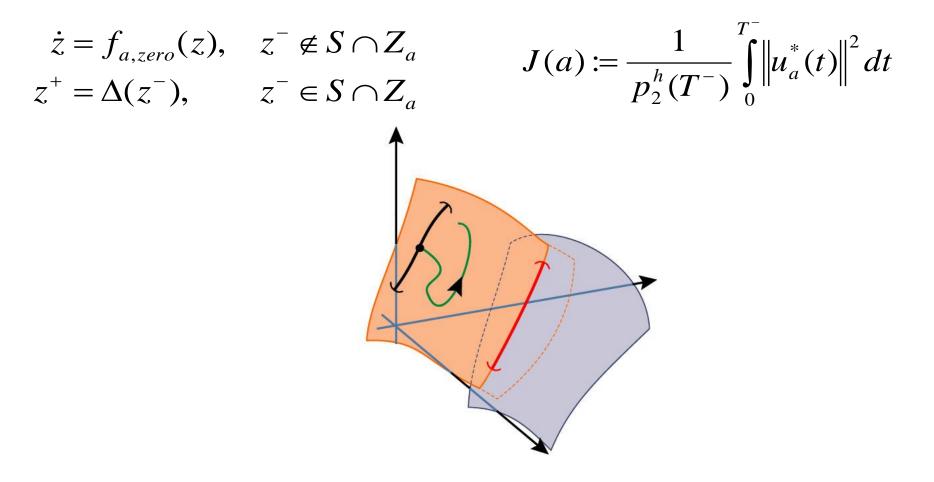
b)
$$\frac{\delta_{zero}^2}{1 - \delta_{zero}^2} V_{zero}(\theta^-) + V_{max} < 0$$
 (evolution of energy during SS)

Theorem: [Grizzle-Abba-Plestan 2001] Above orbit is asymptotically stabilizable in the full-order model.

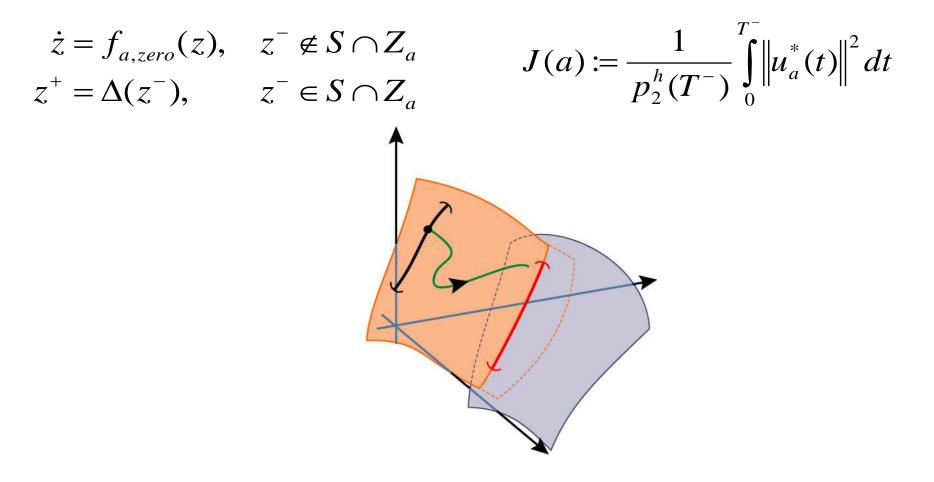
- Finitely parametrize the outputs: $y = h_a(q) = h_0(q) h_d(q, a)$
- Impose invariance condition:

$$h_a \circ \Delta \Big|_{(S \cap Z_a)} = 0$$
$$L_f h_a \circ \Delta \Big|_{(S \cap Z_a)} = 0$$

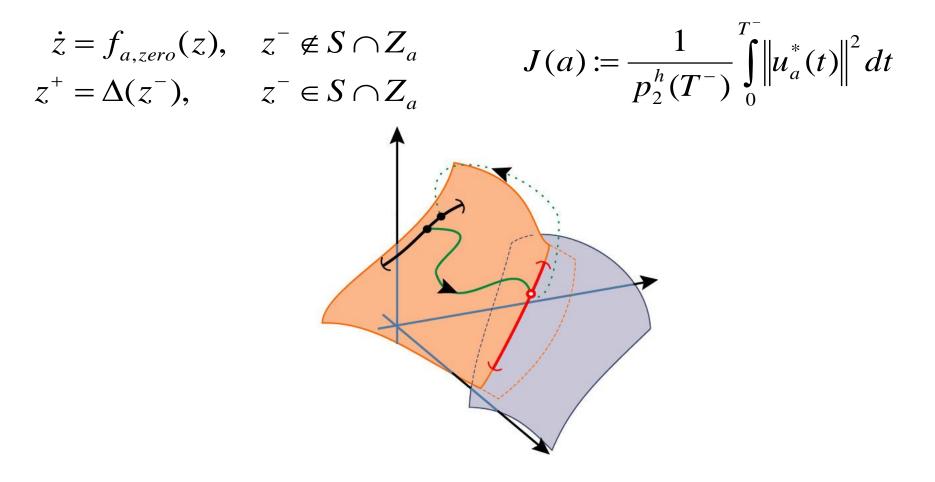

Stability guaranteed if, and only if, two inequalities hold

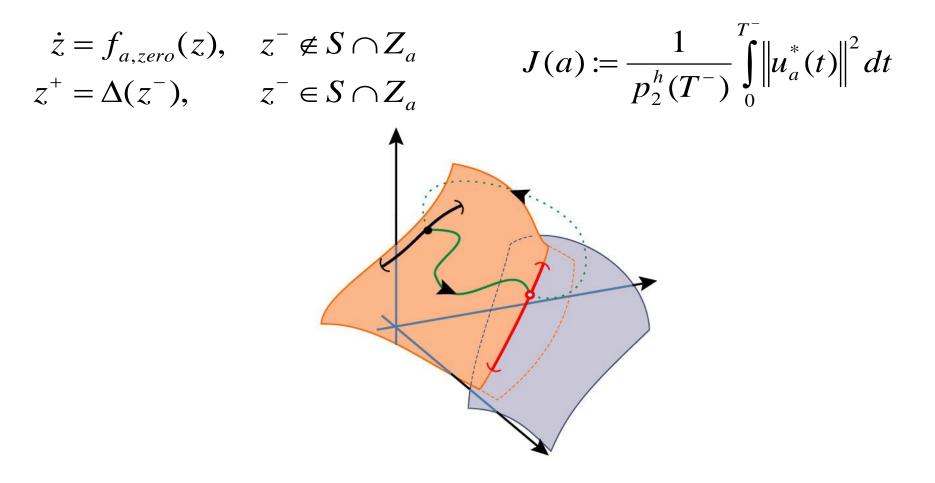

a)
$$(\delta_{zero})^2 < 1$$

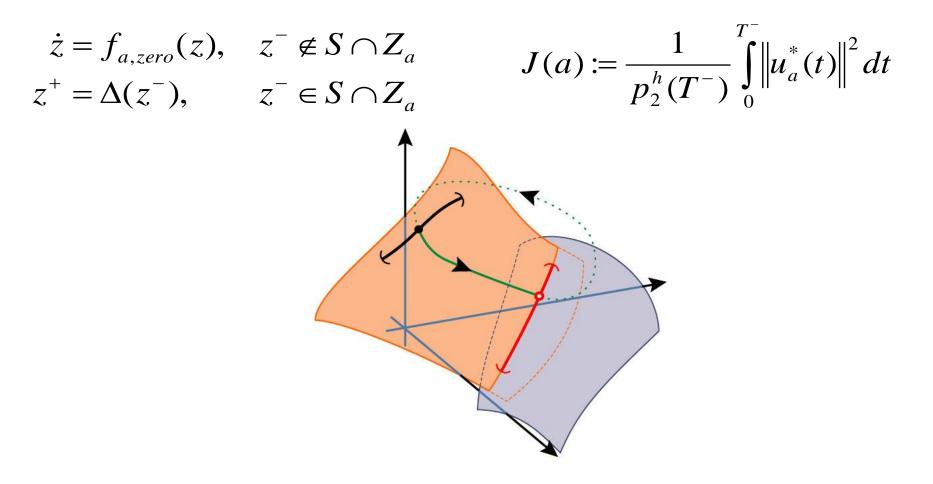
b) $\frac{\delta_{zero}^2}{1 - \delta_{zero}^2} V_{zero}(\theta^-) + V_{max} < 0$

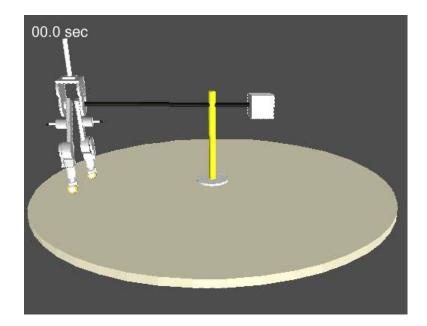

$$\dot{z} = f_{a,zero}(z), \quad z^- \notin S \cap Z_a$$

 $z^+ = \Delta(z^-), \qquad z^- \in S \cap Z_a$


$$J(a) \coloneqq \frac{1}{p_2^h(T^-)} \int_0^{T^-} \left\| u_a^*(t) \right\|^2 dt$$


- Can also include contact constraints
- They can be written as affine functions of the (squared) velocity
 Actuator limitations, etc.




 Achieve performance by tuning parameters via optimization on 2-dimensional model, subject to previous constraints.

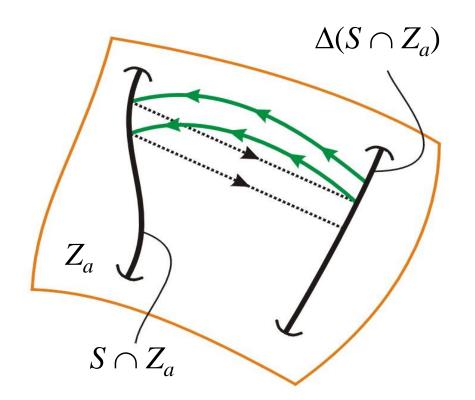
$$\dot{z} = f_{a,zero}(z), \quad z^- \notin S \cap Z_a$$
$$z^+ = \Delta(z^-), \qquad z^- \in S \cap Z_a$$

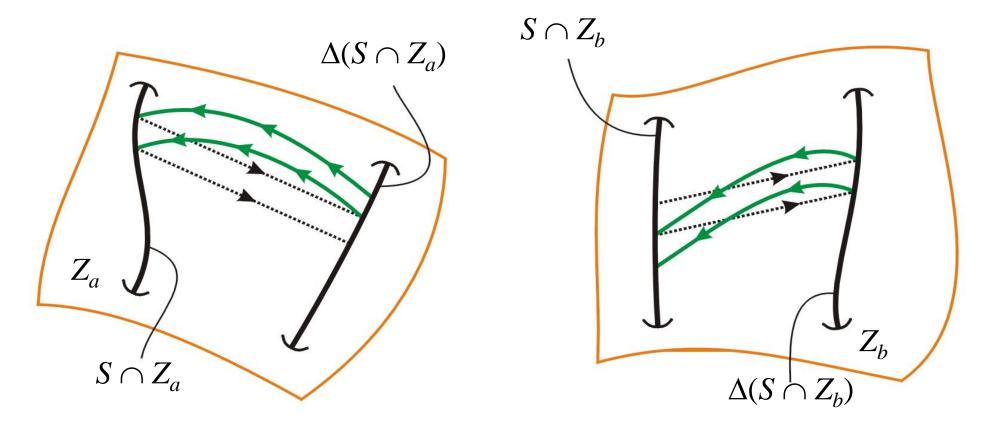
$$J(a) \coloneqq \frac{1}{p_2^h(T^-)} \int_0^{T^-} \left\| u_a^*(t) \right\|^2 dt$$

LAG: Laboratoire Automatique de Grenoble

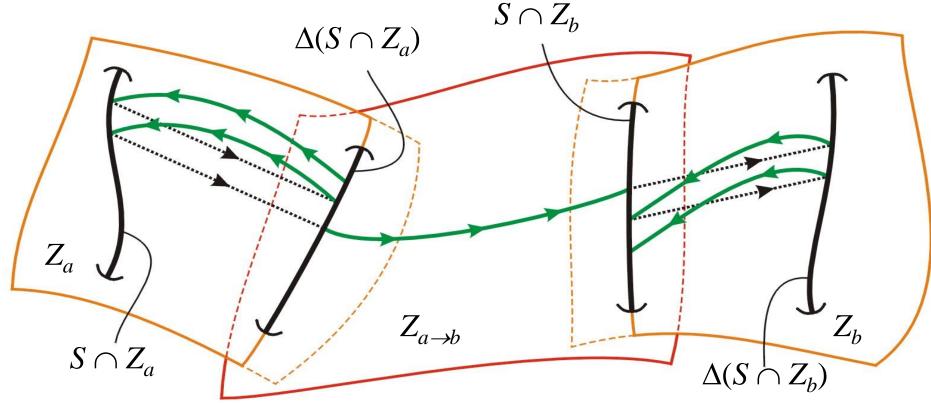
GeomView Animation by Evan Leung

Robustness Experiment

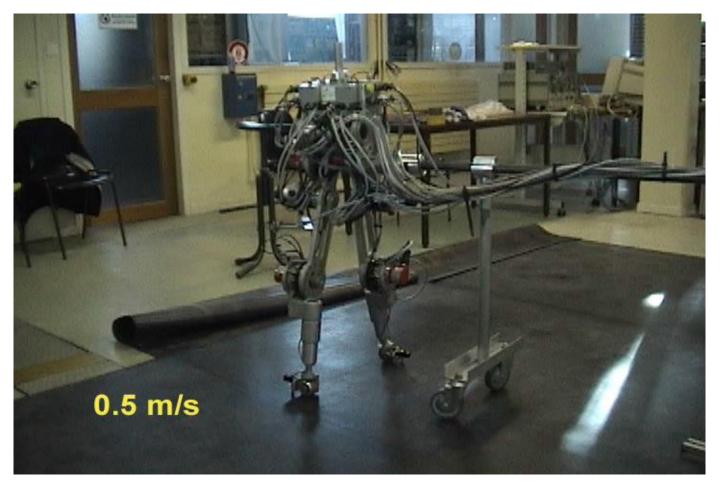

Robot + Controller = Time-Invariant, Hybrid, Exp. Stable, Oscillator!


Composition of Walking Motions

 Introduce controller to transition from domain of one Poincaré map to another

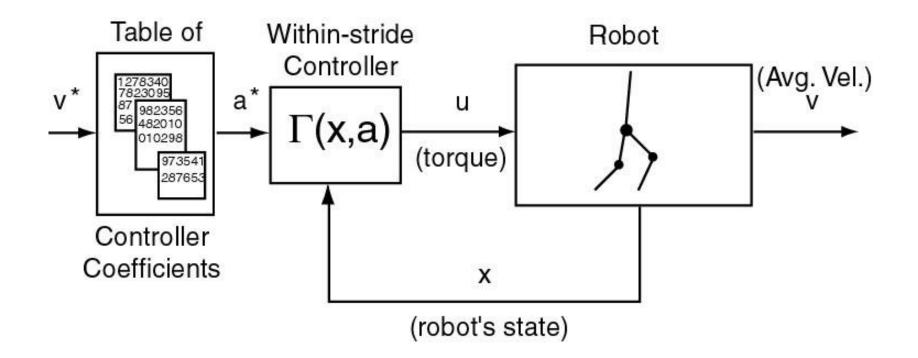

Composition of Walking Motions

 Introduce controller to transition from domain of one Poincaré map to another


Composition of Walking Motions

 Introduce controller to transition from domain of one Poincaré map to another

Westervelt, Grizzle, & Canudas-de-Wit (2003)

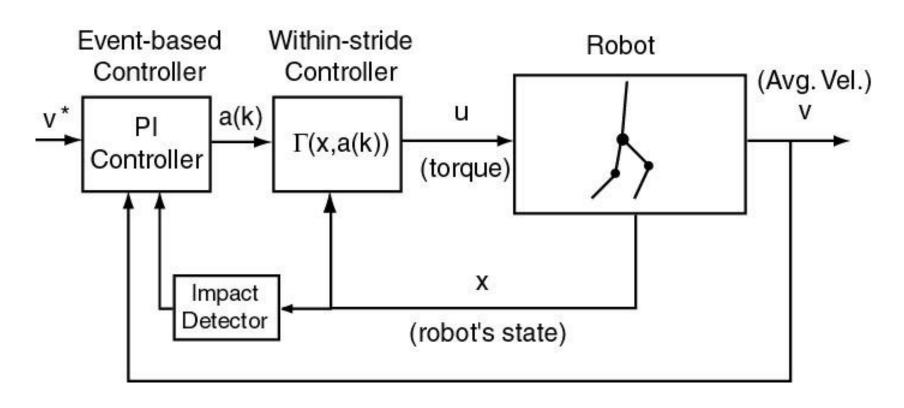

Experimental Implementation $0.5 \rightarrow 0.6 \rightarrow 0.7 \rightarrow 0.8 \rightarrow 0.7 \rightarrow 0.6 \rightarrow 0.5 \rightarrow \dots$

LAG: Laboratoire Automatique de Grenoble

Event-Based Control

Key Idea: Use the parameters of the within-stride controller as control knobs

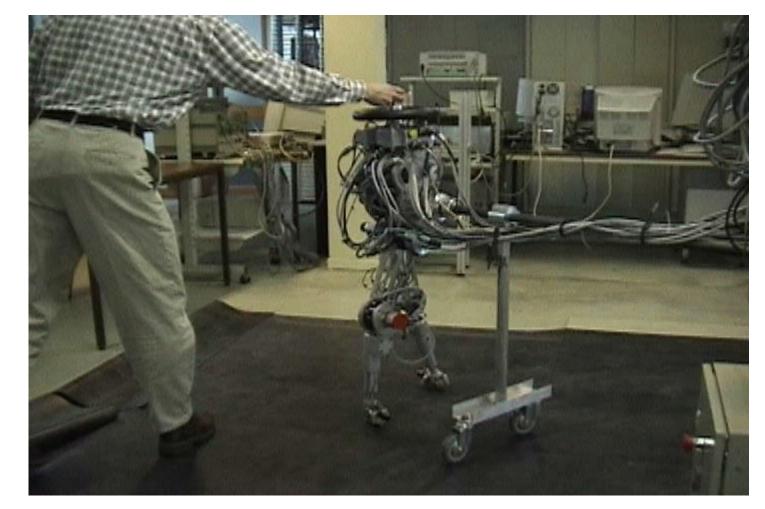
Event-Based PI Control


Key Idea: Use the parameters of the within-stride controller as control knobs

Event-Based PI Control

Key Idea: Use the parameters of the within-step controller as control knobs

- Maintain invariance
- Modify "posture (surface)" to change speed



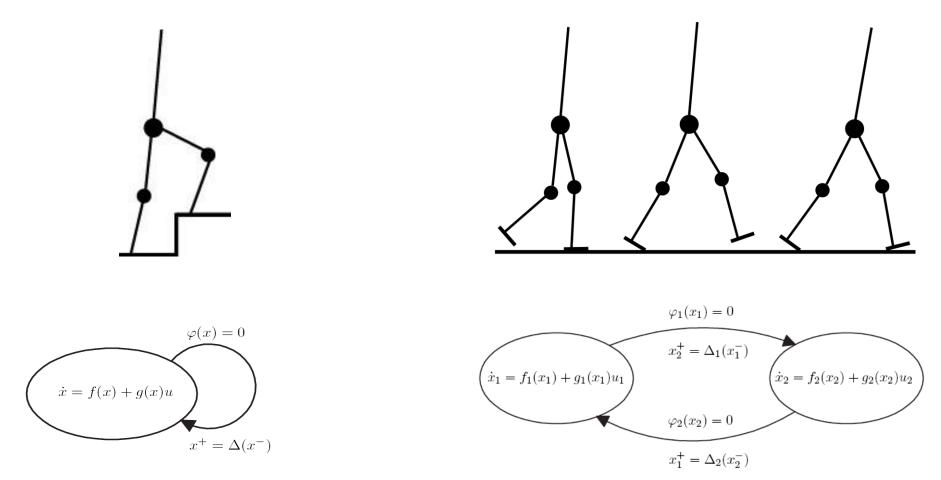
Experimental Implementation (PI control to reject perturbation)

Extra mass shifts fixed point to faster walking speed

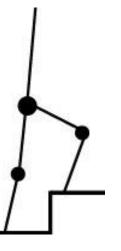
Event based control recovers original walking speed

Westervelt, Grizzle, & Canudas-de-Wit (2003)

Natural Progression

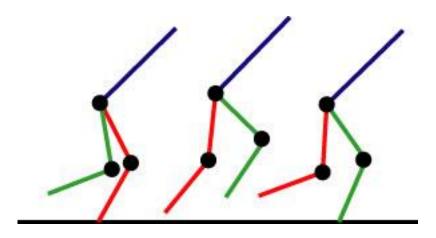

Grizzle, Abba & Plestan 1999

RABBIT


Plestan, Grizzle, Abba & Westervelt 2000 Westervelt, Grizzle & Koditschek 2001

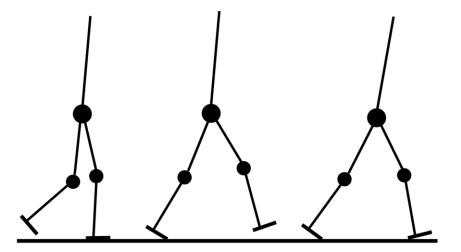
Stairs or Slopes

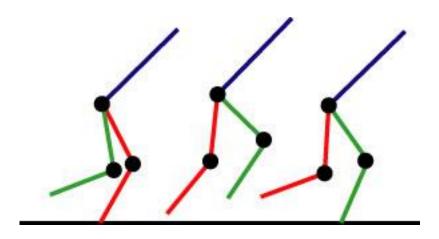
Stairs or Slopes


Adding Feet

- Single Continuous-Phase
 - underactuated
- Ben Morris, M.S. Work

- Multiple Continuous-Phases
 - fully-actuated
 - underactuated
 - over-actuated
- Jun Ho Choi, ACC-2005 (submitted)


Running



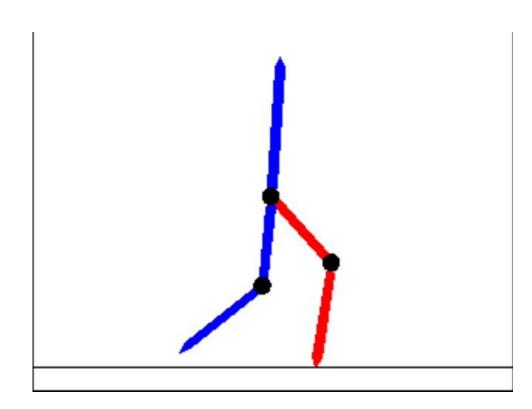
- single support
- flight
- varying degree of actuation
- CDC 2004

- Multiple Continuous-Phases
 - fully-actuated
 - underactuated
 - over-actuated
- Jun Ho Choi, ACC-2005 (submitted)

<u>Running</u>

- Multiple Continuous-Phases
 - single support
 - flight
 - varying degree of actuation
- CDC 2004 (Chevallereau, Westervelt)

- Theory parallels HZD of walking
- Novel part: event-based control of the flight phase
- Closed-form computation of reduced Poincaré map
- Experiments started...

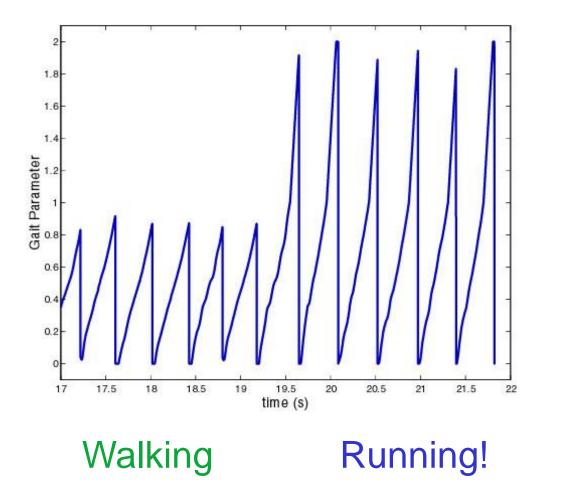

B. Morris C. Chevallereau

G. Buche E. Westervelt

Running

- Theory parallels HZD of walking
- Novel part: event-based control of the flight phase
- Closed-form computation of reduced Poincaré map
- Experiments started...

B. Morris C. Chevallereau


G. Buche E. Westervelt

Six Steps Toward Infinity Our First Running Experiment (September 2004)

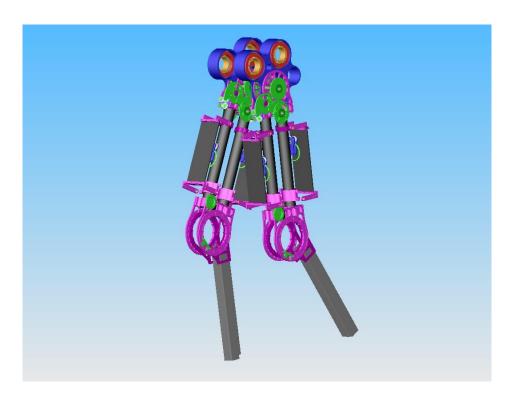
Six Steps Toward Infinity Our First Running Experiment (September 2004)

Score Sony ∞ Rabbit 6

Power Automatically Cut 🛞

Many Open Problems

- RunningExperimental verification!
- Controlled compliance (equivalent of tendons, muscles, ...)
 - Energy efficiency
 - Impact attenuation
- Higher degrees of underactuation
- Remove the boom: 3-dimensional (non-planar) robots! [preliminary result: Doi, Hasegawa, & Fukuda, Humanoid Robots Conf., Oct. 2004]
- Much more is unknown than is known... rough terrain, vision, reflexes, ...


Conclusions

- Models for legged robots are hybrid (ODE + Impact Map).
- Control strategy should be tailored to assist analysis and design
 - Hybrid zero dynamics
 - High analytical insight follows from low-dimensional geometry.
- Robot + Controller is a stable, time-invariant, hybrid, oscillator.
- Experiments are hard...but informative and exciting.
- Fortunately, we had time to think before experimenting.

Robot at Michigan

- Stay tuned! A robot is being designed.
- Joint with A. Rizzi & J. Hurst (CMU).

