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I. PROOF OF THEOREM 1

According to the invariance condition, T'(z}, &) = T* for
all £ € =. This fact together with (14) implies that the
Jacobian of the Poincaré return map can be expressed as

+ D2 (T, 27, ) D A(x).
In our notation for a C! function h(z1,- -, z),
oh
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Furthermore,
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in which in the last equality, we have made use of the
invariance condition. Dy (T, x},£) can also be expressed
as
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= 03().
From the switching and invariance conditions,
S(SO(T*axjvf)):Ov VEeE
which together with the Implicit Function Theorem implies

that
s(p(T'(z,8),x,§)) = (36)

for all = in an open neighborhood of z; and all £ € =.
Differentiating (36) with respect to = around (z7, &) results
in
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which in combination with (34), (35) and the transversality
assumption results in
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Next, replacing (37) in (33) follows that

aP * * * * *
In particular, from (38), the Jacobian of the Poincaré map,
i.e., %(x?,f), depends on £ only through the final state
trajectory matrix @;(5). One immediate consequence of (38)
is that

(38)
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for i =1,--- ,p which completes the proof.

Il. PROOF OF THEOREM 2, PART 1

We claim there exists a B € R™*™ matrix such that for
all A¢ € RP,

(I ®Af). (39)

p
> AiAG =B
=1
To show this, let us partition the B matrix as follow
B=[B1 B B,],

where B; € R™*P for j =1,---,
the Kronecker product,

n. From the definition of

AE -+ 0
0O --- 0
B (I®Af) = B Bl | . _
0 .. Af

Hence, the j-th column of B (I ® A¢) becomes B; A¢ for

j=1,---n.In order to satisfy (39), one can conclude that
Bj A¢ = ZA §) A&, (40)
=1
where A;(:,j) represents the j-th column of A;. Next,
differentiating (40) with respect to A¢ together with %AA% =
ej,i=1,---,p yields

p
Bi=> Ai(.j)el, j=1,--,n (41)

=1

which completes the proof.



