# Continuous-Time Controllers for Stabilization of Periodic Orbits for Hybrid Systems: Application to an Underactuated 3D Bipedal Robot 

Kaveh Akbari Hamed, Brian G. Buss, and J. W. Grizzle

## I. Proof of Theorem 1

According to the invariance condition, $T\left(x_{i}^{*}, \xi\right)=T^{*}$ for all $\xi \in \Xi$. This fact together with (14) implies that the Jacobian of the Poincaré return map can be expressed as

$$
\begin{align*}
\mathrm{D}_{1} P\left(x_{f}^{*}, \xi\right) & =\mathrm{D}_{1} \varphi\left(T^{*}, x_{i}^{*}, \xi\right) \mathrm{D}_{1} T\left(x_{i}^{*}, \xi\right) \mathrm{D} \Delta\left(x_{f}^{*}\right)  \tag{33}\\
& +\mathrm{D}_{2} \varphi\left(T^{*}, x_{i}^{*}, \xi\right) \mathrm{D} \Delta\left(x_{f}^{*}\right)
\end{align*}
$$

In our notation for a $\mathcal{C}^{1}$ function $h\left(z_{1}, \cdots, z_{r}\right)$,

$$
\mathrm{D}_{j} h\left(z_{1}, \cdots, z_{r}\right):=\frac{\partial h}{\partial z_{j}}\left(z_{1}, \cdots, z_{r}\right), \quad j=1, \cdots, r .
$$

Furthermore,

$$
\begin{align*}
\mathrm{D}_{1} \varphi\left(T^{*}, x_{i}^{*}, \xi\right) & =\dot{\varphi}\left(T^{*}, x_{i}^{*}, \xi\right) \\
& =f^{\mathrm{cl}}\left(\varphi\left(T^{*}, x_{i}^{*}, \xi\right), \xi\right) \\
& =f^{\mathrm{cl}}\left(x_{f}^{*}, \xi\right)  \tag{34}\\
& =f^{\mathrm{cl}}\left(x_{f}^{*}, \xi^{*}\right)
\end{align*}
$$

in which in the last equality, we have made use of the invariance condition. $\mathrm{D}_{2} \varphi\left(T^{*}, x_{i}^{*}, \xi\right)$ can also be expressed as

$$
\begin{align*}
\mathrm{D}_{2} \varphi\left(T^{*}, x_{i}^{*}, \xi\right) & =\frac{\partial \varphi}{\partial x}\left(T^{*}, x_{i}^{*}, \xi\right) \\
& =\Phi\left(T^{*}, x_{i}^{*}, \xi\right)  \tag{35}\\
& =\Phi_{f}^{*}(\xi)
\end{align*}
$$

From the switching and invariance conditions,

$$
s\left(\varphi\left(T^{*}, x_{i}^{*}, \xi\right)\right)=0, \quad \forall \xi \in \Xi
$$

which together with the Implicit Function Theorem implies that

$$
\begin{equation*}
s(\varphi(T(x, \xi), x, \xi))=0 \tag{36}
\end{equation*}
$$

for all $x$ in an open neighborhood of $x_{i}^{*}$ and all $\xi \in \Xi$. Differentiating (36) with respect to $x$ around $\left(x_{i}^{*}, \xi\right)$ results in

$$
\begin{aligned}
\mathrm{D} s\left(x_{f}^{*}\right) \mathrm{D}_{1} \varphi\left(T^{*}, x_{i}^{*}, \xi\right) & \mathrm{D}_{1} T\left(x_{i}^{*}, \xi\right) \\
& +\mathrm{D} s\left(x_{f}^{*}\right) \mathrm{D}_{2} \varphi\left(T^{*}, x_{i}^{*}, \xi\right)=0
\end{aligned}
$$

which in combination with (34), (35) and the transversality assumption results in

$$
\begin{equation*}
\mathrm{D}_{1} T\left(x_{i}^{*}, \xi\right)=-\frac{\frac{\partial s}{\partial x}\left(x_{f}^{*}\right) \Phi_{f}^{*}(\xi)}{\frac{\partial s}{\partial x}\left(x_{f}^{*}\right) f^{\mathrm{cl}}\left(x_{f}^{*}, \xi^{*}\right)} \tag{37}
\end{equation*}
$$

[^0]Next, replacing (37) in (33) follows that

$$
\begin{equation*}
\frac{\partial P}{\partial x}\left(x_{f}^{*}, \xi\right)=\Pi\left(x_{f}^{*}, \xi^{*}\right) \Phi_{f}^{*}(\xi) \Upsilon\left(x_{f}^{*}\right) \tag{38}
\end{equation*}
$$

In particular, from (38), the Jacobian of the Poincaré map, i.e., $\frac{\partial P}{\partial x}\left(x_{f}^{*}, \xi\right)$, depends on $\xi$ only through the final state trajectory matrix $\Phi_{f}^{*}(\xi)$. One immediate consequence of (38) is that

$$
\frac{\partial^{2} P}{\partial \xi_{i} \partial x}\left(x_{f}^{*}, \xi^{*}\right)=\Pi\left(x_{f}^{*}, \xi^{*}\right) \frac{\partial \Phi_{f}^{*}}{\partial \xi_{i}}\left(\xi^{*}\right) \Upsilon\left(x_{f}^{*}\right)
$$

for $i=1, \cdots, p$ which completes the proof.

## II. Proof of Theorem 2, Part 1

We claim there exists a $B \in \mathbb{R}^{n \times n p}$ matrix such that for all $\Delta \xi \in \mathbb{R}^{p}$,

$$
\begin{equation*}
\sum_{i=1}^{p} A_{i} \Delta \xi_{i}=B(I \otimes \Delta \xi) \tag{39}
\end{equation*}
$$

To show this, let us partition the $B$ matrix as follow

$$
B=\left[\begin{array}{llll}
B_{1} & B_{2} & \cdots & B_{n}
\end{array}\right],
$$

where $B_{j} \in \mathbb{R}^{n \times p}$ for $j=1, \cdots, n$. From the definition of the Kronecker product,

$$
B(I \otimes \Delta \xi)=\left[\begin{array}{lll}
B_{1} & \cdots & B_{n}
\end{array}\right]\left[\begin{array}{ccc}
\Delta \xi & \cdots & 0 \\
0 & \cdots & 0 \\
\vdots & \cdots & \vdots \\
0 & \cdots & \Delta \xi
\end{array}\right]
$$

Hence, the $j$-th column of $B(I \otimes \Delta \xi)$ becomes $B_{j} \Delta \xi$ for $j=1, \cdots, n$. In order to satisfy (39), one can conclude that

$$
\begin{equation*}
B_{j} \Delta \xi=\sum_{i=1}^{p} A_{i}(:, j) \Delta \xi_{i} \tag{40}
\end{equation*}
$$

where $A_{i}(:, j)$ represents the $j$-th column of $A_{i}$. Next, differentiating (40) with respect to $\Delta \xi$ together with $\frac{\partial \Delta \xi_{i}}{\partial \Delta \xi}=$ $e_{i}^{\top}, i=1, \cdots, p$ yields

$$
\begin{equation*}
B_{j}=\sum_{i=1}^{p} A_{i}(:, j) e_{i}^{\top}, \quad j=1, \cdots, n \tag{41}
\end{equation*}
$$

which completes the proof.


[^0]:    K. Akbari Hamed was supported by DARPA Contract W91CRB-11-1-0002. B. G. Buss was supported by NSF Graduate Student Research Fellowship under Grant No. DGE 1256260 and J. W. Grizzle was supported by NSF grant ECCS-1231171.
    K. Akbari Hamed. B. G. Buss, and J. W. Grizzle are with the Electrical Engineering and Computer Science Department of the University Michigan, Ann Arbor, MI, USA, \{kavehah, bgbuss, grizzle\}@umich.edu

