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Abstract— A plethora of driver convenience and safety au-
tomation systems are being introduced into production vehicles,
such as electronic stability control, adaptive cruise control, lane
keeping, and obstacle avoidance. Assuring the seamless and
safe integration of each new automation function with existing
control functions is a major challenge for vehicle manufactur-
ers. This challenge is compounded by having different suppliers
providing software modules for different control functionalities.
In this paper, we report on our preliminary steps to address
this problem through a fresh perspective combining formal
methods, control theory, and correct-by-construction software
synthesis. In particular, we begin the process of synthesizing
the control software module for adaptive cruise control from
formal specifications given in Linear Temporal Logic. In the
longer run, we will endow each interacting software module
with an assume-guarantee specification stating under which
environment assumptions the module is guaranteed to meet its
specifications. These assume-guarantee specifications will then
be used to formally prove correctness of the cyber-physical
system obtained where the integrated modules interact with
the physical dynamics.

I. INTRODUCTION

Adaptive Cruise Control (ACC) is a driver assistance
system designed to provide improved convenience and com-
fort with respect to conventional cruise control systems.
When there is no preceding vehicle in sight, an ACC-
equipped vehicle behaves just like one with conventional
cruise control, i.e., it will maintain a constant speed set
by the driver. When a preceding vehicle is detected and is
driving at a speed slower than the preset speed, an ACC-
equipped vehicle changes its control objective to maintaining
a safe headway (range) or time headway instead. These two
modes are commonly known as the speed (cruise) mode, and
distance (following) mode, respectively, and the preceding
vehicle is commonly called the lead vehicle.

ACC has been available on production vehicles since the
mid-1990s. Many of the early ACC systems shut off below
a given threshold speed. More recently, full-range (stop-
and-go) ACC is available that can bring a vehicle to a full
stop and then launch from standstill, and is thus capable of
dealing with congested urban traffic. In the last several years,
some auto makers (e.g., Volvo and Cadillac) have introduced
an automated full-braking function to leverage hardware
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already installed for ACC, tiptoeing the red-line between
comfort/convenience systems and active safety systems. This
trend is likely to continue as more automated vehicle control
functions are introduced on production vehicles.

In [1], NHTSA announced its policy on the development
of automated vehicles, and defined five levels of vehicle
automation: Level 0 (no automation), Level 1 (function-
specific automation, such as ACC or electronic stability con-
trol), Level 2 (combined function automation, such as ACC
plus lane keeping), Level 3 (limited self-driving), and finally
Level 4 (full self-driving). All new production cars in the US
are already at Level 1, because electronic stability control has
been required for all new cars in the US since 2012. A major
challenge for control engineers is that as more automation
functions are introduced (either required or as options), their
seamless integration with existing control functions must be
guaranteed. This requirement is important both to ensure
vehicle safety and for tort/liability considerations.

This paper is the first step towards the broader objective
of synthesizing correct-by-construction control software for
automation Level 2 and beyond. By correct-by-construction
we mean control software that is guaranteed to meet its for-
mal specifications given certain assumptions on the physical
plant and implementation platform. The formal specifications
considered in this paper are given in Linear Temporal Logic,
a common specification language for software systems. Here,
we begin the task of synthesizing correct-by-construction
control software for ACC in the special case that the lead
vehicle’s speed is constant. Two synthesis methods are used,
one performing set computation directly on the continuous
domain, and a second based on finite-state abstractions. The
two resulting correct-by-construction controllers are com-
pared by running simulations in Simulink and on a 16 degree
of freedom model in CarSim1. In subsequent work, we will
address stop-and-go ACC with variable lead-vehicle speed,
correct-by-construction control software for lane keeping,
and correct-by-construction control software when ACC and
lane keeping are simultaneously active.

II. ADAPTIVE CRUISE CONTROL

For ACC systems, the most important function is to
maintain a safe and comfortable range from the preceding
vehicle. Whether a range is safe or not is based on metrics
such as time-to-collision or deceleration needed to avoid a
crash. Whether a range is comfortable or not is subjective,

1CarSim is a vehicle simulation package that is widely used in industry.



and may consider additional factors such as value and rate
of change of range, time-headway, and jerk.

A. Past Work

Adaptive cruise control started as an extension of conven-
tional cruise control (CCC), which was how it was described
in relevant ISO [2] and SAE [3] standards. In these early
design concepts, ACC was a phase or mode of the overall
control system, and even rode-on existing CCC hardware
architecture: in the ACC mode, the speed command to the
CCC servo-loop was adjusted to achieve the desired range
control objective (e.g., [4]). This nested control architecture
resulted in slower response (in comparison to when throttle
and brake are controlled directly), which was observed
in prototype ACC vehicles in field tests [5]. Comparison
between the velocity-command approach and acceleration
command approach was analyzed in [6].

The potential of ACC-equipped vehicles for improving
traffic flow and safety has been studied extensively since
the 1990s [7][8]. In addition to traffic flow and safety, string
stability [9][10][11][12], congestion [13], fuel economy [14]
and integration with crash avoidance [15] have also been
studied. An extensive survey on ACC designs, including the
underlying control concepts, is given in [16]. In recent years,
MPC is widely used in ACC design [17].

Although driver assistance and safety modules such as
ACC have been investigated for many years, the emphasis
on the correctness of a module’s software implementation is
much more recent. Safety verification of evasive maneuvers
for autonomous vehicles is addressed in [18]. By computing
the reachable set of each vehicle under different types of
uncertainties and disturbances, safety is ensured whenever
the reachable sets for different vehicles are disjoint. The
computation of reachability sets for hybrid systems is known
to be expensive and in [19] verification is done through
counterexample-guided search. Rather than working with a
detailed model of the system to be verified, an abstraction
is used. Verifying the abstraction leads to counterexamples
that may be spurious, i.e., they may not be true behaviors
of the real system. However, since reachability analysis on
the abstraction is cheaper, a two-step approach is taken: 1)
the abstract model is used to obtain counterexamples; 2)
the counterexamples are proved or disproved on a detailed
model of the system to be verified. The previous approaches
to verification fall in the class of model checking, given
a specification one checks (by reachability computation or
counterexample-guided search) if the specification is met. A
different approach, considered in [20], is theorem proving.
Here, one writes the assumptions about the system and its
environment in a convenient logic and proves a theorem
stating that the desired specification follows from the as-
sumptions. A related approach is the use of satisfiability
(SAT) and satisfiability modulo theory (SMT) solvers instead
of a customized logic as was done in [21]. Unlike all the
aforementioned approaches, we do not verify an existing
software module. Instead, we synthesize a software module

that is guaranteed to satisfy the specification by construction,
hence the term correct-by-construction.

B. Simplified Model For Constant Lead Vehicle Speed

The vehicle is modeled as a (lumped) point mass m
moving along a straight line. The net action of braking and
engine torque applied to the wheels is lumped as a net force
Fw acting on the mass of the vehicle, while the combined
aerodynamic and rolling resistance is gathered into a net
force F r,

mv̇ = Fw − Fr. (1)

In the above equation, Fw is viewed as the control input and
is assumed to be bounded by

− 0.3mg ≤ Fw ≤ 0.2mg, (2)

where g is the gravitational constant. Such a bound is
consistent with non-emergency braking and acceleration, and
thus with the “driver convenience” notion of ACC. The term
Fr is represented by

Fr = f0 + f1v + f2v
2. (3)

We limit the admissible velocities to a bounded set V =
[vmin, vmax] with vmin ≥ 0.

To include a lead vehicle in the system description, we use
a hybrid system model with two discrete modes M1 and M2,
called no lead car and lead car mode, respectively.
The lead car mode M2 has an additional continuous
state h which measures the headway to the lead car. The
continuous dynamics of M1 are those of equation (1) while
the continuous dynamics in mode M2 contain an additional
equation describing the dynamics of the headway:

mv̇ = Fw − f0 − f1v − f2v
2

ḣ = vL − v
(4)

The two modes have different state spaces, mode M1 has
state space V while mode M2 has state space V ×H, where
H = [0, hmax] for an upper limit hmax on the radar range.

In practice, the system is in M2 if there is a car within
the radar range, and in M1 otherwise. Switching between the
two states is governed by lane changes of lead cars, which
are modeled using reset maps R1,2 : V → 2V×H, R2,1 :
V ×H → V and R2,2 : V ×H → 2V×H.

R1,2(v) = {(v, h̄) : h̄ ∈ H}, R2,1(v, h) = (v),

R2,2(v, h) = {(v, h̄) : h̄ ∈ H}.
(5)

Here R1,2 models a transition from the no lead car
mode M1 to the lead car mode M2, where the headway is
initialized to some h̄ ∈ H. Similarly, R2,2 models situations
where the radar reading suddenly changes as a result of lane
changes undertaken by cars in front.

The switching is assumed to be non-deterministic, except
for the case when h reaches hmax in mode M2, in which
case a forced transition to mode M1 occurs. The complete
hybrid model is shown schematically in Fig. 1. The vehicle
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ḣ = vL − v

R1,2R2,1

R2,2

M1:

M2:

Fig. 1: Hybrid system model.

parameters2 we assume have been taken from the “S-Class
Sedan” model in CarSim. We also restrict the domain to
vmin = 0, vmax = 35, hmin = 0, hmax = 300, where the
latter models the radar range.

For simplicity, we make the following assumptions:
(A.1) The velocity vL of the lead car is known and constant,

i.e., v̇L = 0. In the following we assume vL = 12 m/s.
(A.2) There is at most one lead car within the radar range at

all times, i.e., R2,2(v, h) = ∅ for all (v, h) ∈ V ×H.

C. ACC Formal Specification

In this section we formalize the adaptive cruise control
requirements using Linear Temporal Logic (LTL). Introduc-
ing the time headway, defined as τ = h/v, we summarize
the requirements defined by the International Organization
of Standardization, see [2, Chapter 6], as follows.

1) ACC operates in two modes: the no lead car
mode and the lead car mode;

2) in no lead car mode, a preset desired speed vdes
eventually needs to be reached and maintained;

3) in lead car mode, a desired lower bound on safe
time headway τdes to the lead vehicle and an upper
bound on a desired velocity vdes eventually needs to be
reached and maintained; and the time headway needs
to satisfy τ ≥ 1 at all times,

4) independently of the mode, the input constraint (2)
needs to be satisfied at all times.

Note that in requirement 3) different choices of time or range
headway are possible, see e.g. [22].

We proceed with the translation of requirements 1)–4)
into LTL. The basic building blocks of an LTL specification
are the so called atomic propositions. The set of atomic
propositions represents the quantities necessary to express
the desired behavior. For example, to be able to refer to
the two modes of ACC in the specification, we introduce
the atomic proposition M1 that is satisfied when the vehicle
is in no lead car mode and the atomic proposition M2

that is satisfied when the vehicle is in lead car mode.
We also introduce the atomic propositions G1, G2, S1, and
S2. We use G1 and G2 to express requirements 2) and 3),
i.e., a desired velocity vdes and a desired lower bound on
time headway τdes as well as an upper bound on desired
velocity vdes, should be attained (and maintained) if the
vehicle satisfies M1 and M2, respectively. We identify G1

2In SI units, m = 1370 kg, f0 = 3.8 × 10−3 × mg N, f1 = 2.6 ×
10−5 ×mg Ns/m, f2 = 0.4161 Ns2/m2.
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Fig. 2: State space regions for mode M2.

and G2 with subsets of the state space of (4) in the sense
that G1 and G2 are satisfied whenever the state of the hybrid
system belongs to the following sets:

G1 =
{
v : v ∈ [v−, v+]

}
, (6)

G2 =
{

(v, h) : h/v ≥ τdes, v ≤ v+, h ∈ H
}
. (7)

Here v− and v+, define the interval of tolerated deviation
around the desired speed vdes. The set G2 is depicted in Fig.
2. The sets S1 and S2 are used to express the constraints that
need be satisfied at all times, i.e., the distance constraint and
input constraint. These sets are given by

S1 = {(v, h) : h/v ≥ 1, v ∈ V, h ∈ H} , (8)
S2 = {Fw : Fw ∈ [−0.3, 0.2]}. (9)

In summary, the set of atomic propositions is given by
{M1,M2, G1, G2, S1, S2}.

The specifications considered in this paper can be ex-
pressed using the atomic propositions, the propositional logic
conjunction “∧” and negation “¬”, and the temporal oper-
ators always “�” and eventually “♦”. Disjunction “∨” and
implication “⇒” can be constructed from conjunction and
negation. We interpret LTL formulas over infinite sequences
(µ, ξ, ν) where the signal µ : N → {M1,M2} specifies
the current mode of the system and ξ : N → R2 is
a sample-and-hold trajectory of (4) given the input signal
ν : N → R generated by the ACC. We refer to the triple
of such sequences (µ, ξ, ν) as a behavior of the closed-loop
system, i.e., (4) controlled by the ACC.

A behavior (µ, ξ, ν) is said to satisfy �p or ♦p if the
atomic proposition p holds true at every time step or at
some future time step(s), respectively. A closed-loop sys-
tem satisfies a LTL formula ϕ if every system behavior
(µ, ξ, ν) satisfies ϕ. For reasons of space, we do not provide
the syntax and semantics of LTL and refer the interested
reader to [23]. Instead, we continue with two examples.
Consider the simple formulas ϕ1 = �(M1 ∧ G1 ∧ S2) and
ϕ2 = ♦(M2 ∧G2). A behavior satisfies ϕ1 if µt = M1 and
(ξt, νt) ∈ G1 × S2 holds for all t ∈ N. A behavior satisfies
ϕ2 if µt = M2 and ξt ∈ G2 holds for some time t ∈ N.

The ACC specification can be described by the LTL
formula ψ:

�
(
(M1 ∨ S1) ∧ S2

)
∧�

( 2∧
i=1

�Mi =⇒ ♦�Gi

)
. (10)



The first term �
(
(M1 ∨ S1) ∧ S2

)
ensures that the input

constraint and the distance to the lead vehicle constraint are
always met. Note that the distance constraint only needs to
be satisfied in mode M2, hence the disjunction M1∨S1. We
specify with the second term �

(
∧2
i=1 �Mi =⇒ ♦�Gi

)
that the desired velocity/time headway Gi should eventually
be reached and kept invariant, given that the system is in
mode Mi.

Notice that the specification gives no guarantees of reach-
ing the desired time headway and velocity, when the system
switches between M1 and M2 infinitely often. This is in
compliance with the ISO standards [2], which does not
specify what the system should guarantee in such a scenario.
Moreover, when the controller for mode Mi is constructed,
as long as the system is in Mi, it guarantees progress towards
Gi. This property is desirable and it holds by construction
because the controller cannot know if a mode change is going
to occur in the future or not.

D. Problem statement

The goal of this paper is to synthesize a controller for the
hybrid system in Figure 1 with reset maps given by (5) so
that every behavior of the closed loop system satisfies the
specification ψ given in (10). However, if the lane-change
behavior of the lead car is not properly constrained, e.g. if a
car with very low speed cuts right in front of the ACC-
equipped car traveling at higher speed, no controller can
prevent collisions, hence ψ cannot be satisfied.

Motivated by this fact, the formal controller synthesis
problem can now be stated as follows:

Problem 1: Assume (A.1) and (A.2) hold. Synthesize a
controller and a control domain D ⊆ V × H so that every
behavior (µ, ξ, ν) of the closed-loop system satisfies ψ if the
values of R1,2(v) are restricted to D for all (v, h) ∈ V ×H.

In what follows, we present two approaches to this prob-
lem.

Remark: Both approaches seek to synthesize controllers
with control domains that are as large as possible. In general,
finding a maximal D can be hard [24]. The presented
approaches are approximate in the sense that although the
synthesized controllers are provably-correct, the synthesized
control domains are not necessarily maximal.

III. SOLUTION BY COMPUTATIONS ON THE CONTINUOUS
STATE SPACE

In this section a solution strategy based on set compu-
tations on the continuous domain V × H is presented. We
proceed by separately synthesizing controllers for the two
modes M1 and M2, such that, respectively, the specifications

♦�G1 ∧�S2 (11)
♦�G2 ∧�(S1 ∧ S2) (12)

are satisfied when there is no mode switching. Then, we
show how these two controllers can be implemented together
to satisfy the original specification in Eq. (10) when mode
switching is allowed.

A. Linearized Model

The solution strategy presented in this section relies on
computation of reachable sets. Such computations are cur-
rently hard to perform for a nonlinear system and we there-
fore linearize the polynomial system (4) around a nominal
velocity v̄ to obtain

v̇ =
1

m
(F̄w − f̄0 − f̄1v),

ḣ = vL − v.
(13)

Here f̄0 = f0 − f2v̄
2 and f̄1 = f1 + 2f2v̄. Assuming that a

control input F̄w has been computed for the linearized system
(13), the modified control Fw = F̄w+f2(v− v̄)2 can be used
to make the nonlinear system behave in accordance with the
linear system. Effectively, this linearization procedure moves
the nonlinearity from the system dynamics to appropriate
bounds on the input. To ensure that Fw stays inside the
required range, we conservatively restrict F̄w to the interval

− 0.3mg ≤ F̄w ≤ 0.2mg − γ, (14)

where γ = maxv∈[vmin,vmax] f2(v − v̄)2. The correction
term γ is small for typical parameter values and the level
of conservativeness thus not very severe. By construction,
the following now holds.

Proposition 1: For any (v0, h0), (v1, h1) ∈ V×H, if there
exists an input F̄w : [0, τ ]→ [−0.3mg, 0.2mg−γ] that steers
the state of (13) from (v0, h0) to (v1, h1) in time τ , then
there exists an input Fw : [0, τ ] → [−0.3mg, 0.2mg] that
steers the state of (4) from (v0, h0) to (v1, h1) in time τ .

It is therefore sufficient to study reachability for the lin-
earized system, which is described in the subsequent section.

B. Backwards-Time Reachability for Linear Systems

A polyhedral set, or polyhedron, is a set defined by linear
inequalities. In this section we outline how the following
problem can be solved numerically:

Problem: Given a final polyhedral set X1 = {x ∈ Rn :
Lxx ≤ lx}, a linear time-invariant system

Ξ : ẋ = Ax+Bu+K, (15)

a time step ∆T , and (possibly state-dependent) linear con-
straints on the input represented as Hxx + Huu ≤ hxu,
find an initial set PreΞ(X1) ⊂ Rn such that for all x0 ∈
PreΞ(X1), there exists a constant control u0 such that

1) the control constraint Hxx0 +Huu0 ≤ hxu is satisfied,
2) the final set X1 is reached at time ∆T by applying

u0, i.e. Adx0 +Bdu0 +Kd ∈ X1, where Ad = eA∆T ,
Bd =

∫∆T

s=0
eAsBds and Kd =

∫∆T

s=0
eAsKds define

the time-discretized version Ξd of Ξ. �
The constraint 1) above can be expressed as Lx(Adx0 +

Bdu0 +Kd) ≤ lx and combined with 2) the joint constraint
on initial state and input can be written as[

LxAd LxBd

Hx Hu

] [
x0

u0

]
≤
[
lx − LxKd

hxu

]
. (16)

Let L be the left-hand side matrix and l the right-hand side
vector in (16), they define a polyhedron P = {(x, u) ∈



Rn×m : L
[
xT uT

]T ≤ l} in x − u-space containing all
possible combinations of initial states and inputs that reach
X1. To separate out the set of all initial states, we project
it onto the x-coordinates. If Πx is the x-projection operator,
then PreΞ(X1) = Πx(P ). The projection of a polyhedron
can be computed by using for example the Multi-Parametric
Toolbox (MPT) [25].

C. Finding and Steering to a Controlled-Invariant Set

In this section we outline how to solve a problem of type

♦�G ∧�S (17)

by performing reachability calculations.
Ab equivalent condition to ♦�G for deterministic systems

is ♦G∧ (G→ �G), i.e. ensure that G is eventually reached
and that the system never leaves G after reaching it for the
first time. To find a strategy for staying in G we search for
a controlled-invariant set C contained in G, where control-
invariance is defined as follows.

Definition 1: A set C is controlled-invariant for the
discrete-time system Ξd if for any x0 ∈ C, there exists an
input u such that (x0, u) satisfies the input constraint and
such that Adx0 +Bdu+Kd ∈ C.

In the following, we propose two methods for finding a
controlled-invariant set C contained inside a given set G.
Both methods rely on finding fixed points for the operator
KG(C) = PreΞ(C) ∩G.

The outside-in Algorithm 1 starts with the whole set G and
gradually shrinks it until only the controlled-invariant part
remains. This algorithm converges to the maximal controlled-
invariant set contained in G [26], [27]. However, it may
not terminate in a finite number of iterations and manual
termination gives an over approximation of the maximal
controlled-invariant set in G. On the other hand, if a ‘small’
controlled-invariant set C∗ can be found inside G, the inside-
out Algorithm 2 grows C∗ as much as possible inside of G.
The initial ‘small’ controlled-invariant set C∗ can for ex-
ample be some natural equilibrium point of the system. The
advantage of Algorithm 2 is that the iteratively updated set C̃
is controlled-invariant in every iteration. It can therefore be
terminated early and still produce a non-maximal controlled-
invariant set inside of G.

Algorithm 1 Outside-in controlled-invariant set computation.

function CONINVOI(Ξ, G)
C̃ := G, C := ∅
while C̃ 6= C do

C := C̃, C̃ := PreΞ(C) ∩G
return C

Finally, when a controlled-invariant set C ⊆ G has been
found, we find a list of sets C2, C3, . . . such that Ci is
reachable from Ci+1 using Algorithm 3. By ensuring that all
sets Ci are contained in the safe set S and denoting C1 = C,
the control strategy defined as “when in Ci go to Cmax(1,i−1)

in finite time” will satisfy (17). This control strategy can be

implemented using any method capable of generating input
that takes the plant to a set defined by linear inequalities.
A natural choice is to use Model-Predictive Control (MPC)
with a quadratic cost criterion for the discrete-time system
Ξd, which will result in a piecewise-constant control signal
for the continuous system. The domain D of this controller
is ∪Ii=1Ci.

Algorithm 2 Inside-out controlled-invariant set computation.

function CONINVIO(Ξ, G,C∗)
C̃ := C∗, C := ∅
while C̃ 6= C do

C := C̃, C̃ := PreΞ(C) ∩G
return C

Algorithm 3 Find a chain of sets in S that reaches C1.

function CONTROLCHAIN(Ξ, C1, S, I)
for i=2:I do

Ci = PreΞ(Ci−1) ∩ S
return C2, . . . CI

D. Application to ACC problem

In this section we construct controllers K1 and K2 for
the two modes M1 and M2 such that the specifications
(11) and (12) are satisfied. The sets of initial conditions for
which these controllers satisfy their respective specifications,
denoted D1 ⊂ V and D2 ⊂ V ×H, will define the necessary
restrictions on the reset maps of the hybrid system.

In mode M1 the requirement on K1 is ♦�G1, which
can be interpreted as regular (non-adaptive) cruise control.
It is possible to use the method presented in Sect. III-C
to synthesize K1. For simplicity, we chose to use Model-
Predictive Control (MPC) to design K1, it satisfies (11) for
any trajectory starting in D1 = V .

Turning to controller design for mode M2, we now apply
the solution strategy in Section III-C to find a controller
K2 that satisfies (12). If Ξ denotes the linearized dynamics
(13), we proceed as follows; 1) call CONINVOI(Ξ, G2) or
CONINVIO(Ξ, G2, C

∗) to find a controlled-invariant set C1

contained in G2, 2) call CONTROLCHAIN(Ξ, C1, S1, I) to
find a chain of sets C2, . . . CI1 in S1 such that Ci is reachable
from Cmax(1,i+1).

For this example on a 3.4 Ghz iMac, using a time step
∆T = 0.5s, Algorithms 1 and 2 finish in 0.015 and
0.017 seconds, respectively, and return an over- and under-
approximation of the same controlled-invariant set C1 ⊂ G2.
The call to Algorithm 3 takes 0.02 seconds on the same
computer and yields two additional sets C2 and C3 such that
Cmax(1,i−1) is reachable from Ci. These sets are depicted in
Fig. 3.

Let K2 be a controller that implements the control strategy
‘when in Ci, go to Cmax(1,i−1)’. By construction, K2 then
satisfies (12) for initial conditions in D2 = ∪iCi.

Proposition 2: A controller that uses the controller K1

when in mode M1 and the controller K2 when in mode M2
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Fig. 3: The overlapping sets C1 ⊂ C2 ⊂ C3. The control-invariant
set C1 is pictured in green and is entirely visible. C2 and C3, which
are both subsets of G, are colored in blue and constitute the region
from where C1 is reachable.

solves Problem 1 with control domain D = D2.
Proof: Let Γ(v,h)(D1) be the lifting of D1 to V × H,

that is, Γ(v,h)(D1)
.
= V × D1. The result follows from the

facts that R2,1(D2) ⊆ D1 and D2 ⊆ Γ(v,h)(D1) ∩ D2.
To discriminate between the control signals that correctly

implement ‘when in Ci, go to Cmax(1,i−1)’, we use MPC
with optimization weights that punish deviations from the
desired speed or the desired time headway, depending on
the current state of the system. This allows us to tune the
controller in order to enhance the driving experience while
still honoring the formal safety specifications.

IV. SOLUTION VIA PESSOA

In this section we describe how we compute a controller
that enforces the desired behavior (10) on the system (4)
using the MATLAB toolbox PESSOA [28]. The computation
is based on a discrete abstraction of the system (4).

The abstraction is computed by a discretization of the
state space, input space and time. The result is a finite
state transition system Σ = (Q,U, δ), where Q is the set
of states, U is the set of inputs and δ : Q × U → 2Q is
the transition relation. Note that Q forms a grid on the state
space. Therefore the sets G1, G2 and S1, S2 can easily be
mapped to Q by computing the grid points that fall inside the
regions. We denote the corresponding sets in Q as G1,a, G2,a

and S1,a, S2,a. To be able to satisfy the input constraints we
set U = S2,a.

A. Controller Synthesis

We use JψK to denote the states for which there exists a
control strategy that enforces ψ. From the set JψK we can
easily construct a strategy. For reasons of space, however, we
will only discuss the computation of JψK and at an intuitive
level.

All the controller synthesis algorithms in PESSOA are
based on fixed-point solutions to certain types of games on
finite graphs. Termination of these algorithms is guaranteed
by the finiteness of the set of states Q. The interested reader
is referred to [29] for further details on the algorithmic
solution of such games.

To find JψK, PESSOA first handles the safety part of
the specification, i.e. �S1,a, by solving safety game via

Algorithm 5. The result is a set valued controller that
determines the largest set of inputs that can be applied to
each state while enforcing the safety specification. We then
restrict the inputs of the abstraction to the inputs given by
this controller and obtain a new system that will be used to
compute the remaining specification via Algorithm 4. Since

Algorithm 4 Computation of JψK.

function SYNTHESIZE(Σ, G1,a, G2,a)
X̃ := Q, X := ∅
while X̃ 6= X do

X := X̃, X̃ :=
⋂2

i=1J♦�Gi,a ∧�XK
return X

we assume that the system can change from any mode to
any other mode at any time, the resulting controller should
be able to enforce ♦�Gi,a for i = {1, 2} at all times.

The first iteration of the algorithm computes⋂2
i=1J♦�Gi,aK. These are the states from which there

exist controllers that enforce ♦�G1 and ♦�G2. However,
since the modes can change nondeterministically, this is not
enough. These controllers also have to make sure that, the
system always remains in the set

⋂2
i=1J♦�Gi,aK. Hence, in

the next iteration we add this safety constraint and compute⋂2
i=1J♦�Gi,a ∧ �

⋂2
i=1J♦�Gi,aKK. We continue the same

procedure until a fixed-point is reached.
Note that at each iteration of Algorithm 4, we compute

a controller which enforces ♦�Gi,a ∧�Ki−1, where Ki−1

is the set of states computed in iteration i − 1. This is a
“reach and stay while stay” specification which is supported
in PESSOA. Again first, PESSOA handles the safety part
of the specification and then it computes the domain of the
controller for the “reach and stay” part via Algorithm 6.
In these algorithms, we denote the predecessor operator by,
PreΣ : 2Q → 2Q, where PreΣ(Q′) = {q ∈ Q | ∃u ∈ U :
δ(q, u) ∈ Q′}.

Algorithm 5 Computation of J�KK.

function STAY(Σ, K)
X̃ := Q, X := ∅
while X̃ 6= X do

X := X̃, X̃ := PreΣ(X) ∩K
return X

Algorithm 6 Computation of J♦�KK.

function REACHSTAY(Σ, K)
X̃ := Q, X := ∅, Ỹ := ∅, Y := Q

while Ỹ 6= Y do
Y := Ỹ
while X̃ 6= X do

X := X̃, X̃ := (PreΣ(X) ∩K) ∪ PreΣ(Y )

Ỹ := X̃, X̃ := Q

return Y
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Fig. 4: The domain of the controller enforcing (10) on the sys-
tem (4), i.e. JψK. Each point represents a discrete state. 90% of the
points in the h-coordinate have been removed for visibility.

B. Solving the ACC problem

When using PESSOA to synthesize a controller, the first
step is the computation of a discrete abstraction Σ of (4).
The computation is based on the algorithms described in [30]
and supported by PESSOA. For our case, we chose the state
space and input space discretization parameters to be η = 0.5
and µ = 0.2, respectively. Moreover, we use ∆T = 0.5
for the sampling time. Afterwards, we run the algorithms
described in the previous subsection and obtain a controller
that enforces the formula ψ given in (10) on the system (4).
It took 56.1 seconds to synthesize the controller on a 3.4
GHz iMac. Fig 4 illustrates the domain of the controller
synthesized in PESSOA. Even though this controller was
computed using the nonlinear model, its domain is com-
parable to the domain of the controller in Figure 3 based
on a linearized model. This shows that the approximations
conducted in Section 3 were not severe.

The controller synthesized by PESSOA is given by a large
look-up table which is stored on the hard disk in terms
of a binary decision diagram (BDD). Based on the current
mode and state of the system, the BDD provides all inputs
that are valid so that the closed-loop system satisfies the
specification. It is straightforward to implement the controller
on an embedded device, since it reduces basically to query
the BDD at each sampling time. The time to query the BDD
is at least two magnitudes smaller than the sampling time
and therefore does not constitute a problem.

V. EVALUATION AND COMPARISON IN CARSIM

The two controllers designed in Sections III and IV have
been tested in a Simulink environment using the polynomial
model (4). Fig. 5a shows simulation results in the following
scenario; at t = 0 the speed of the ACC-equipped car is 5
m/s and there is a lead car 250 m away which leaves the
lane at t = 50 s. A new car cuts 100 meters in front at
t = 100 s and leaves the lane at t = 150 s. As can be seen,
the formal requirements on input, velocity and time headway
are satisfied for the two modes.

The controller from section III has also been tested in
CarSim, as are shown in Fig. 5b. A video is also avail-
able at http://web.eecs.umich.edu/cpswiki/
public_media/.

VI. DISCUSSION

We made some simplifying assumptions with regard to
the lead car speed (A.1) and the number of cars within the
radar range (A.2). Next, we discuss implications of these
assumptions and how they can be relaxed.

A cruise controller that has practical value must be able
to handle a lead car that changes speed. Relaxing the
assumption (A.1) introduces environmental uncertainty into
the system and increases the dimension of the state space
from two to three. The theory of approximate finite-state
abstractions, upon which PESSOA is based, already supports
adversarial environments such as a lead car with changing
velocity. Similarly, for the invariant-set based approach, the
notions of a controlled-invariant set and reachability can
be replaced with those of a robustly controlled-invariant
set and “robust” reachability for systems with uncertainty.
The increase in the dimension of the model, from two to
three states, will render the synthesis of a controller in
PESSOA or based on invariant-sets more challenging from
a computational point of view.

On the other hand, the assumption (A.2), is rather technical
and it is adopted to avoid the pathological cases where lead
cars cut into the lane infinitely often in a way to prevent
maintaining the desired time headway while always in mode
M2. The synthesized controllers are still correct when this
assumption is relaxed to either (i) R2,2(v, h) = D for all
(v, h) ∈ V × H and there are finitely many resets, or (ii)
R2,2(v, h) = G2 for all (v, h) ∈ V ×H.

VII. CONCLUSIONS

In this paper, we formalized the ACC problem using a
hybrid dynamical system model with two modes and an LTL
specification. Then, we presented two solution approaches to
synthesize correct-by-construction control software for ACC.
Both approaches rely on a fixed-point-based characterization
of the LTL specification, one computing such fixed-points
directly on the continuous state-space, the other on a finite-
state abstraction of the nonlinear dynamics.

It can happen that an ACC system cannot maintain safety
within specified limits on braking (e.g., (2)), such as in the
event of a car cutting dangerously close into a lane. In
this case, the ACC system is expected to alert the driver
through automated emergency braking and/or other feedback
cues, and hand control of the vehicle back to the driver.
An advantage of the presented formal methods is that the
safe set (i.e., control domain D) is explicitly computed and
thus conditions for passing control to an emergency braking
module are clearly defined.
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Fig. 5: Simulation results for (a) both controllers in Simulink and (b) the controller from Section III in Simulink and CarSim. The plots
show, from top to bottom: speed, headway, time headway, and normalized applied wheel force.
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