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Abstract— This paper extends the method of virtual con-
straints and hybrid zero dynamics, developed for rigid robots
with a single degree of underactuation, to MABEL, a planar
biped with a novel compliant transmission. A time-invariant
feedback controller is designed for realizing exponentially stable
waking gaits in such a way that the closed-loop system preserves
the natural compliance of the system, and therefore the ener-
getic benefits of springs. This is accomplished by incorporating
the compliance into the hybrid zero dynamics. The compliant-
hybrid-zero-dynamics-based controller is implemented experi-
mentally and shown to realize stable walking gaits which make
use of the compliance to store and return energy to the gait.

I. I NTRODUCTION

MABEL is a bipedal robot with a series-compliant ac-
tuator. It was conceived as a testbed for exploring control
strategies that can take advantage of the compliance present
in a system in order to achieve energy efficient, stable loco-
motion. Here we show how the method of virtual constraints
can be used to accomplish this feedback objective.

The robot MABEL is planar, with a torso, two legs,
four actuators, and a novel drivetrain that uses a set of
cable-driven differentials to create a virtual prismatic leg
between the hip and the toe. The differentials also introduce
a compliant element, in series with an actuator along the
virtual leg, such that the leg length is directly controlledby
the actuator and the spring compression. Another actuator
controls the angle of the virtual leg with respect to the torso.
This design facilitates the placement of all actuators inside
the torso and thus keeps the legs relatively light for rapid
leg motion. Figure 1 illustrates the testbed. A more detailed
description of the robot is presented in [2], [3], and the
identification of the robot’s dynamic model is reported in
[4].

Compliance in legged robots is important for energy
efficiency and for robust locomotion over rough terrain.
Springs can be used to store and release energy to perform
the negative work of redirecting the center of mass upward
after leg impact [5]; they can also be used to isolate actuators
from mechanical shocks arising from leg impacts with the
ground. In MABEL, compliance is present in the form of a
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Fig. 1. (a) MABEL, an experimental testbed for bipedal locomotion. The
robot is planar, with a boom providing stabilization in the frontal plane. The
robot’s drivetrain contains springs for enchanced power efficiency. (b) The
virtual compliant legcreated by the drivetrain through a set of differentials.
The coordinate system used for the linkage is also indicated. Angles are
positive in the counter clockwise direction.

unilateral spring that compresses, but does not extend beyond
its rest length. This ensures that the compliance is present
when it is useful for shock attenuation and energy storage,
and absent when it would be a hindrance for lifting a leg
from the ground.

The presence of compliance has led to new control chal-
lenges that cannot be met with the initial theory developed
for RABBIT [6]. Firstly, compliance increases the degree
of underactuation, which in turn makes it more difficult to
meet the invariance condition required for a hybrid zero
dynamics to exist. This technical difficulty was overcome in
[7] with a technique called a “deadbeat hybrid extension”.
A second challenge arising from compliance is how to use
it effectively. A first attempt in [8] at designing a controller
for a biped with springs took advantage of the compliance
along a steady state walking gait, but “fought it” during
transients; see [9, p. 1790]. This drawback was overcome
on a hopper model in [9], [10], [11] by ensuring that the
feedback action resulted in the hybrid zero dynamics (HZD)
itself being compliant. The key idea was that the selection
of the virtual constraints specifies the subset of the robot’s
generalized coordinates that are to be actively controlled. If
the constraints have vector relative degree two in the senseof
[12], a complement of this subset forms the zero dynamics
of the closed-loop system, and hence these coordinates will
remain “passive”. By deliberately placing the compliance
in the zero dynamics, the closed-loop system preserves the
natural compliance of the system, and therefore the energetic



benefits of springs.
Motivated by these results, we extend the above work

to design a compliant HZD controller for walking gaits of
MABEL. The controller is implemented in real-time and
experimentally validated on the robot. All prior experimental
implementations of the virtual constraints have relied on
local PD controllers [6], [2]. However, on MABEL, enforcing
virtual constraints through PD controllers led to large track-
ing errors due in part to low gear ratios between the links
and the actuators. These errors are very pronounced for fast
walking gaits where the stance time is on the order of300 ms.
In light of this, we explore implementations of the theoretical
HZD-based controller. While zero dynamics controllers are
recognized to provide perfect tracking accuracy in theory,
they are often criticized for being overly dependent on high
model accuracy, and for being too complex to implement
in real-time. Here we demonstrate, for the first time, an
experimental implementation of a compliant HZD controller.
The tracking accuracy attained is far better than the simple
PD controllers used previously [1].

The remainder of the paper is organized as follows.
Section II presents the mathematical hybrid model used for
walking. Section III provides the systematic procedure based
on virtual constraints that can be used to design a suite of
walking gaits. Section IV presents the design of the com-
pliant HZD controller and studies the stability of the fixed
point under the action of the proposed controller. Section
V presents the results of experimentally implementing the
designed controller. Finally, Section VI provides concluding
remarks.

II. MABEL M ODEL

This section develops the hybrid model appropriate for
a walking gait comprised of a continuous single support
phase and an instantaneous double support phase. Standard
hypotheses such as no slip during single support or at impact
are assumed; see [13, pp. 50-51] for a complete list of
assumptions. The impact model at double support is based
on [14]. The single support model is a pinned, rigid, planar,
5-link kinematic chain with revolute joints [13]. Because the
compliance is unilateral, it will be more convenient to model
it as an external force when computing the Lagrangian,
instead of including it as part of the potential energy.

A. MABEL’s unconstrained Dynamics

The configuration spaceQe of the unconstrained dynamics
of MABEL is an open simply-connected subset ofS

7 ×R
2:

five DOF are associated with the links in the robot’s body,
two DOF are associated with the springs in series with the
two leg-shape motors, and two DOF are associated with the
horizontal and vertical position of the robot in the sagittal
plane. A set of coordinates suitable for parametrization ofthe
robot’s linkage and transmission is,qe := ( qLAst

; qmLSst
;

qBspst
; qLAsw

; qmLSsw
; qBspsw

; qTor; p
h
hip; p

v
hip ), where, as

in Figure 1 and [2, Fig. 3],qTor is the torso angle, andqLAst
,

qmLSst
, andqBspst

are the leg angle, leg-shape motor position
and Bspring position respectively for the stance leg. The

swing leg variables,qLAsw
, qmLSsw

and qBspsw
are defined

similarly. For each leg,qLS is uniquely determined from
qmLS andqBsp by

qLS = 0.0318qmLS + 0.193qBsp. (1)

This reflects on the fact that the cable differentials place the
spring in series with the motor, with the pulleys introducing a
gear ratio. The coordinatesphhip, p

v
hip are the horizontal and

vertical positions of the hip in the sagittal plane. The hip
position is chosen as an independent coordinate instead of
the center of mass because it was observed that this choice
significantly reduces the number of terms in the symbolic
expression for the dynamics.

The equations of motion are obtained using the method
of Lagrange. In computing the Lagrangian, the total kinetic
energy is taken to be the sum of the kinetic energies of the
transmission, the rigid linkage, and the boom. The potential
energy is computed in a similar manner with the difference
being that the transmission contributes to the potential en-
ergy of the system only through its non-elastic energy (the
mass). This distinction is made since the unilateral springis
considered as an external input to the system. The resulting
model of the robot’s unconstrained dynamics is determined
as

De (qe) q̈e + Ce (qe, q̇e) q̇e +Ge (qe) = Γe, (2)

where,De is the inertia matrix,Ce contains Coriolis and
centrifugal terms,Ge is the gravity vector, andΓe is the
vector of generalized forces acting on the robot, expressed
as,

Γe = Beu+ Eext (qe)Fext+

Bfricτfric (qe, q̇e) +Bspτsp (qe, q̇e) ,
(3)

where the matricesBe, Eext, Bfric, and Bsp are derived
from the principle of virtual work and define how the actuator
torquesu, the external forcesFext at the leg, the joint friction
forces τfric, and the spring torquesτsp enter the model
respectively. The dimension ofu is four, corresponding to
the two actuators on each leg for actuating leg shape and leg
angle.

B. Dynamics of Stance

For modeling the stance phase, the stance toe is assumed
to act as a passive pivot joint (no slip, no rebound and
no actuation). Hence, the Cartesian position of the hip,
(

phhip, p
v
hip

)

, is defined by the coordinates of the stance leg
and torso. The springs in the transmission are appropriately
chosen to support the entire weight of the robot, and hence
are stiff. Consequently, it is assumed that the spring on
the swing leg does not deflect, that is,qBspsw

≡ 0. The
stance configuration space,Qs, is therefore a co-dimension
three submanifold ofQe. It follows from (1) that qmLSsw

and qLSsw
are related by a gear ratio;qmLSsw

is taken
as the independent variable. With these assumptions, the
generalized configuration variables in stance are taken as
qs :=

(

qLAst
; qmLSst

; qBspst
; qLAsw

; qmLSsw
; qTor

)

. Defining



the state vectorxs := (qs; q̇s) ∈ TQs, the stance dynamics
can be expressed in the standard form as,

ẋs = fs(xs) + gs(xs)u. (4)

C. Stance to Stance Transition Map

An impact occurs when the swing leg touches the ground,
modeled here as an inelastic contact between two rigid bod-
ies. It is assumed that there is no rebound or slip at impact.
Mathematically, the transition occurs when the solution of
(4) intersects the co-dimension one switching manifold

Ss→s :=
{

xs ∈ TQs | pvtoesw = 0
}

. (5)

In addition to modeling the impact of the leg with the
ground and the associated discontinuity in the generalized
velocities of the robot [14], the transition map accounts for
the assumption that the spring on the swing leg is at its
rest length, and for the relabeling of robot’s coordinates so
that only one stance model is necessary. In particular, the
transition map consists of three subphases executed in the
following order: (a) standard rigid impact model [14]; (b)
adjustment of spring rest length in the new swing leg; and
(c) coordinate relabeling.

The stance to stance transition map,∆s→s : Ss→s → TQs,
is similar to the one developed in [11, Chap. 5], [1] and
further details are omitted for the sake of brevity.

D. Hybrid model of Walking

The hybrid model of walking is based on the dynamics
developed in Section II-B, and transition map derived in
Section II-C. The continuous dynamics with discrete state
transitions is represented as,

Σs :

{

ẋs = fs(xs) + gs(xs)u x−

s /∈ Ss→s

x+
s = ∆s→s(x

−

s ) x−

s ∈ Ss→s

. (6)

III. G AIT DESIGN USINGZERO DYNAMICS

This section presents a feedback controller for achieving
exponentially stable, periodic walking gaits on MABEL.
In addition to orbital stability, a key objective is to take
advantage1 of the spring in the robot’s drivetrain that is
placed in series with the leg-shape motor andqLS. Inspired
by analysis in [9, p. 1784] and [11, Chap. 6] for monopedal
hoppers with compliance, this will be accomplished by
controlling variables on the motor end of the spring and
letting the joint end of the spring, which sees the large
ground reaction forces, remain passive. In this way, the robot
in closed-loop with the controller will respond to impulsive
forces at impact in a manner similar to a pogo stick. In
particular, the closed-loop system will use the compliance
to do negative work at impact (i.e., decelerating the center
of mass and redirecting it upward), instead of it being done
by the actuators, thereby improving the energy efficiency of
walking.

It will be shown that the method of virtual constraints and
hybrid zero dynamics is flexible enough to accomplish the

1The reader wishing to understand immediately the utility of the compli-
ance should consult Figure 10.

control objectives outlined above. The method of Poincaré is
used to verify stability of the closed-loop system. Prior toex-
perimentally testing the controller, simulations with various
model perturbations are performed to establish robustnessof
the designed controller. The controller is then experimentally
validated on MABEL.

A. Virtual Constraint Design for Stance

Recall that virtual constraints are holonomic constraints
on the robot’s configuration variables that are asymptotically
imposed through feedback control. They are used to synchro-
nize the evolution of the robot’s links throughout a stride
in order to synthesize a gait [13]. One virtual constraint is
designed per independent actuator.

The virtual constraints are parametrized byθs, a strictly
monotonic function of the joint configuration variables, and
can be expressed in the form

y = hs (qs) = Hs
0qs − hs

d (θs) . (7)

If a feedback can be found such thaty is driven asymptot-
ically to zero, thenHs

0qs → hs
d (θs) and thus the controlled

variablesHs
0qs evolve according to the constraintHs

0qs =
hs
d (θs). Here, the controlled variables are selected to be

the rotor angle of the stance leg-shape motor,qmLSst
, the

swing leg variables,qLAsw
, qmLSsw

, and the absolute torso
angleqTor. Each of these variables has relative degree two.
From hereon, the rotor angle of the stance leg-shape motor
is simply referred to as stance motor leg shape.

1) Deciding what to control:The torso is selected as a
controlled variable instead of the stance leg angle, because,
for MABEL, the torso represents over 65% of the mass
of the robot, and hence the position of the torso heavily
influences the gait. The stance motor leg shape,qmLSst

,
is chosen instead of the stance leg shape,qLSst

, so that
the joint side of the spring remains passive, as discussed
above. Mathematically, with this choice, the spring variable
will become a part of the zero dynamics, thereby rendering
the zero dynamics compliant. From (1), ifqmLSst

is held
constant, thenqLSst

responds to the spring torque through
qBspst

. On the other hand, ifqLSst
were selected as a

controlled variable, then the actuator is forced to cancel the
spring dynamics.

The swing leg virtual constraints are similar to the con-
trolled variables on RABBIT, a robot without compliance.
This is because under the assumption that the swing spring
is at its rest position throughout stance,qBspsw

≡ 0, which
from (1) shows that the motor leg shape,qmLSsw

, is related
to the leg shape,qLSsw

, through a gear ratio.
In summary, the controlled variables are

Hs
0qs =









qmLSst

qLAsw

qmLSsw

qTor









, (8)

andhs
d represents the desired evolution of each of the virtual

constraints,hd
mLSst

, hd
LAsw

, hd
mLSsw

, and hd
Tor respectively.



For MABEL, we chooseθs to be the absolute angle formed
by the virtual compliant leg relative to the ground, i.e.,

θs (qs) = π − qLAst
− qTor. (9)

2) Specification of the constraints:Virtual constraints for
the stance phase of MABEL are inspired by the constraints
designed for Thumper in [10], [11]. The stance phase is bro-
ken up into subphases: the motor-compression phase (mc),
the stance-compression phase (sc), the stance-injection phase
(si), and the stance-decompression phase (sd). The breakup
into subphases facilitates the design of virtual constraints
that make use of the compliance effectively. A key idea is to
hold the stance motor leg shape at a constant value shortly
after impact in order to allow the spring (which is in series
with this actuator) to absorb the impact shock entirely. Note
that if the motor position is held constant, then its velocity is
zero and the motor performs no mechanical work. The spring
then does the negative work of decelerating the center of
mass and redirecting it upwards; the spring stores this energy
and returns it later to the gait instead of the actuator doing
negative work and dissipating it as heat. This effectively
preserves the natural compliant dynamics of the system and
prevents the actuator from fighting the spring.

Figure 2 illustrates the evolution of each of these con-
straints onqmLSst

, qLAsw
, qmLSsw

, andqTor.
Another key subphase involves the torso. Because it is

heavy, we have observed that making the pre-impact torso
velocity close to zero at the end of the gait helps in avoiding
excessive forward pitching of the torso just after swing
leg impact. This is achieved by designing the torso virtual
constraint such that for the last part of the gait, the torso
position is held constant, making its velocity zero.

Thus for the constraint onqmLSst
, themc phase serves as

a transient to smoothly drive the motor velocity to zero, and
the sc phase serves to hold the motor position constant for
the benefits discussed above. During thesi phase, the motor
is repositioned, which under nominal conditions, serves to
straighten the stance leg during mid-stance for ground clear-
ance. Under large perturbations, this motion will cause the
actuator to inject (or remove) energy through compression
(or decompression) of the spring by rapidly repositioning
the motor end of the compliance. For the torso constraint,
the first three phases are treated as one, which serves as a
transient phase to drive the torso velocity to zero. During
the sd phase, the torso position is held constant as discussed
above. The swing leg virtual constraints are standard, and
not discussed further.

Remark 1: The choice of the variables to be controlled
in the virtual constraints makes the zero dynamics compli-
ant. The choice of the evolution of the virtual constraints
facilitates efficient use of the compliance.

3) Discussion: The use of subphases in the evolution
of the stance motor leg shape and torso introduces more
independent parameters to be specified in the constraint
design. One benefit is that it approximately decouples the
evolution of these angles from one phase to another; chang-
ing the evolution in one phase does not strongly affect
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qs+Tor = qs−Tor
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qs+LAsw
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(
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)
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Fig. 2. The general shape of the stance phase virtual constraints. The thick
(red) solid lines illustrate the evolution of each of the virtual constraints as
a function ofθs. Each virtual constraint is broken into subphases (mc, sc,
si, sd), locally expressed by5th order B́ezier polynomials. The thin green
lines show the evolution of corresponding locals that parametrizes the
local Bézier curve. The torso and swing virtual constraints combinemultiple
subphases. The (red) dashed lines are correction polynomials introduced to
create hybrid invariance of the zero dynamics.

the other as long as the boundary condition is maintained.
This facilitates intuitively specifying the initial shapeof the
virtual constraints and makes the optimization task easier.
We imposeC1 continuity between successive subphases. This
ensures continuity of position and velocity at the boundary
of two phases of a virtual constraint. However, acceleration,
and consequently, the actuator torques, are allowed to be
discontinuous at phase boundaries.

For later use, we can organize the virtual constraints for
each phase separately. Construct the index set for the virtual
constraints,V := {mLSst,LAsw,mLSsw,Tor}, and for each



p ∈ P := {mc, sc, si, sd}, we can define the output,

yp = hp (qs, αp) = Hp
0 (qs)− hp

d (θs, αp) , (10)

and,

hp
d (θs, αp) =











hd,p
mLSst

(θs)

hd,p
LAsw

(θs)

hd,p
mLSsw

(θs)

hd,p
Tor (θs)











. (11)

The B́ezier coefficients for each phase can be organized as,

αp =









αp
mLSst

αp
LAsw

αp
mLSsw

αp
Tor









. (12)

B. Stance Zero Dynamics

The organization of the stance phase into four subphases
creates four continuous dynamics and discrete transitionsbe-
tween them. As discussed in Section III-A.3, for each phase
p ∈ P, an output functionyp has been associated with the
continuous stance dynamics defined in (4). Differentiating
the output twice2 with respect to time results in

d2yp
dt2

= L2
fs
hp (xs, αp) + LgsLfshp (qs, αp) , (13)

whereLgsLfshp (qs, αp) is the decoupling matrix. Under the
conditions of [13, Lemma 5.1],

u∗ (xs, αp) := − (LgsLfshp (qs, αp))
−1

L2
fs
hp (xs, αp) ,

(14)

is the unique control input that renders the smooth four-
dimensional embedded submanifold

Zαp
= {xs ∈ TQs | hp (qs, αp) = 0,

Lfshp (xs, αp) = 0}
(15)

invariant under the stance dynamics (4); that is, for every
z ∈ Zαp

,

f∗

p (z) := fs (z) + gs (z)u
∗ ∈ TzZαp

. (16)

Achieving the virtual constraints by zeroing the correspond-
ing outputs reduces the dimension of the system by re-
stricting its dynamics to the submanifoldZαp

embedded
in the continuous-time state spaceTQs. Zαp

is called the
zero dynamics manifold and the restriction dynamicsż =
f∗
p |Zαp

(z) is called the zero dynamics.
From Lagrangian dynamics (the derivation is standard

[13, Chap. 5] and skipped for sake of brevity), a valid set
coordinates onZαp

is

xp
zd =









ξ1
ξ2
ξ3
ξ4









=













θs
qBspst

∂Ls

∂q̇Bspst

∂Ls

∂q̇Tor













. (17)

2It is straightforward to check that the variables to be controlled have
vector relative degree two.

This set of coordinates explicitly contains theBspring vari-
able, which illustrates clearly that the zero dynamics is
compliant:

ẋp
zd =









ξ̇1
ξ̇2
ξ̇3
ξ̇4









=













Lfsθs
LfsqBspst

∂Ls

∂qBspst

+ τsp

∂Ls

∂qTor













. (18)

C. Event Transitions

The division of the stance phase into subphases when spec-
ifying the virtual constraints in Section III-A necessitates the
specification of the transition maps between the subphases.
In preparation for the next section, we model the hybrid
dynamics on the zero dynamics manifold by concatenating
the solutions of the parameter-dependent hybrid systems for
each subphase

Σp :



















xp ∈ Zαp

ẋp = f∗
p (xp)

Sp→q =
{

xp ∈ Zαp
| Hp→q (xp) = 0

}

x+
q = ∆p→q

(

x−
p

)

.

The model captures the continuous-time dynamics of the
system in phasep ∈ P and the discrete transition to phase
q ∈ P, with the only valid choice of transitions for walking
being (p, q) ∈ {(mc, sc) , (sc, si) , (si, sd) , (sd,mc)}.

The switching surfaces,Sp→q, for the transitions for walk-
ing are defined by the zero level sets of the corresponding
threshold functionsHp→q : TQs → R, with, Hmc→sc :=
θs − θ−mc, Hsc→si := qBspst

− 5◦, Hsi→sd := θs − θ−si , and
Hsd→mc := pvtoesw . The transition maps,∆p→q : Sp→q →
TQs, provide the initial conditions for the ensuing phase
q ∈ P, with, ∆mc→sc := id, ∆sc→si := id, ∆si→sd := id,
and ∆sd→mc := ∆s→s, where id is the identity map and
∆s→s is as defined in Section II-C.

D. Fixed Point for Walking

A periodic walking gait is designed by selecting the free
parameters in the virtual constraints. Using the hybrid system
developed in the previous section, we formulate the problem
as a constrained optimization to optimize the cost functionJ1
specified in [13, Sec. 6.3.3]. This section presents a nominal
fixed point of 0.8 m/s obtained by optimization. Figure 3
illustrates the nominal evolution of the virtual constraints
and other configuration variables for one step. It is seen that
the stance motor leg shape is held constant for the first part
of the gait right after impact, and both the stance motor leg
shape and the torso are held constant towards the final part of
the gait. Interestingly, the torso moves less than two degrees
throughout the step.

Figure 4 illustrates the evolution of the leg shape and the
stanceBspring variables. Notice that the spring compresses to
its peak value, and thesc → si transition is triggered as the
spring decompresses to five degrees. The injection of energy
in the si-phase causes the spring to compress again. Figure
5 illustrates the actuator torques used to realize the gait.



170

180

190

200

210

 

 

100

200

300

400

500

600

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−10.5

−10

−9.5

−9

−8.5

−8

 

 

Time (s)

de
g

de
g

de
g

qLAst

qLAsw

qmLSst

qmLSsw

qTor

Fig. 3. Evolution of the virtual constraints and configuration variables for
a nominal fixed point (periodic walking gait) at a speed of0.8 m/s and step
length0.575 m. The dots on the stance motor leg-shape virtual constraint
illustrate the location of transition between consecutivesubphases.

0

5

10

15

20

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

 

 

Time (s)

de
g

de
g

qLSst

qLSsw

qBspst

Fig. 4. Evolution of the leg shape and stanceBspring variables corre-
sponding to the nominal fixed point. The dot on theBspring plot illustrates
the location of thesc to si event transition and corresponds toqBspst

= 5
◦.

These torques are small in comparison to the peak torque
capacities of the actuators:30 Nm at umLA and 55 Nm at
umLS. The torques are discontinuous at phase boundaries, as
noted earlier.

IV. CLOSED-LOOP DESIGN AND STABILITY ANALYSIS

The feedback presented in (14) renders the zero dynamics
manifold invariant under the stance phase dynamics. It is
used in the optimization process of gait design in order to
evaluate the torques along a solution of the model respecting
the virtual constraints. The feedback (14) does not however
render the solution stable or attractive in any way. The classic
input-output linearizing controller

u = u∗ (xs, αp)− LgsLfshp (qs, αp)
−1

(

Kp,P

ǫ2
y +

Kp,D

ǫ
ẏ

)

,
(19)

with p ∈ P makes the zero dynamics manifold invariant and
attractive [13, Chap 5].

This controller does not however, render the zero dynamics
manifold hybrid invariant. It was discovered in [8], [7] that,
in the presence of compliance, while the feedback controller
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Fig. 5. Actuator torques corresponding to the nominal fixed point. Note
that the torques are discontinuous at subphase boundaries,and as discussed
in Section III-A.3, this occurs due to the choice of virtual constraints.

(19) will render the zero dynamics manifold of a given
phase invariant under the continuous dynamics, it will not
necessarily render it invariant under the transition maps,that
is, at transitions from one phase to another, invariance is
lost. The loss of invariance manifests itself as an impulsive
disturbance to the control law at each transition off the
periodic orbit. These perturbations do not prevent asymptotic
stability from being achieved, but they do cause the actuators
to do more work. The reference [7] proposed a supplemental
event-based controller that eliminates this issue and, in fact,
creates ahybrid zero dynamicsfor the closed-loop system,
that is, the zero dynamics manifold is invariant under the
continuous dynamics as well as the transition maps.

For the related robot, Thumper, [11] and [10] propose
an event based control at each phase transition. This is not
practical here, however, because we have certain phases with
extremely small duration (themc phase for instance). Here,
we create a hybrid zero dynamics by updating parameters
only at the impact event (swing leg contacts the ground).

Following [7], [15], the virtual constraints are modified
stride to stride so that they are compatible with the initial
state of the robot at the beginning of each step. The new
output for the feedback control design is,

yc = hs

(

qs, y
s+, ẏs+

)

= Hs
0qs − hs

d (θs)− hs
c

(

θs, y
s+, ẏs+

)

.
(20)

The output consists of the previous output, (7), and an
additional correction term that depends on the previous
output evaluated at the beginning of the step, specifically,
ys+ = Hs

0q
+
s −hs

d (θ
+
s ), andẏs+ = Hs

0q̇
+
s − ∂hd(θs)

∂θs
θ̇+s . The

values ofys+, andẏs+ are evaluated at the beginning of each
step and held constant throughout the step. The functionhs

c

is taken here as

hs
c (θs) =









0
hc
LAsw

(θs)
hc
mLSsw

(θs)
hc
Tor (θs)









, (21)

with each hc
v (θs), v ∈ V\{mLSst} taken to be twice



continuously differentiable functions ofθs such that,














hc
v (θs, y

s+, ẏs+) = ys+

∂hc
v

∂θs
(θ+s ) = ẏs+

θ̇
+
s

hc
v (θs, y

s+, ẏs+) = 0,
θ+
s +θmc+

v

2 ≤ θs ≤ θmc−
v

. (22)

With hc
v designed this way, the initial errors of the output and

its derivative are smoothly joined to the original virtual con-
straint at the middle of the first phase of the corresponding
virtual constraint. This is illustrated in Figure 2 with thick
(red) dashed lines.

As noted in the definition ofhs
c in (21), we have enforced

hc
mLSst

≡ 0 since themc phase is too short to handle
significant transients without large actuator torques, and
further we want to enforce the virtual constraint in the
sc phase to be constant in order to effectively use the
compliance. To overcome this, we propose an event-based
control action specific for themLSst virtual constraint that
updatesαmc

mLSst
, αsc

mLSst
, αsi

mLSst
at the beginning of each step

such that during themc phase, the virtual constraint only
drives the motor leg shape velocity to zero, and during
the sc phase, the virtual constraint keeps the motor shaft
locked at a constant position. Not until thesi phase does the
modified virtual constraint smoothly join the nominal virtual
constraint. This correction term is also illustrated in Figure
2 with thick (red) dashed lines.

Under the new control law defined by (20), the behavior of
the robot is completely defined by the event transition maps
and the swing phase zero dynamics, withhs

d replaced by
hs
d+hs

c. The stability of the fixed-pointx∗ can now be tested
numerically using a restricted Poincaré mapρ : S ∩ Z →
S ∩ Z whereZ = {xs ∈ TQs | yc (qs) = 0, ẏc (qs) = 0},
the switching surface is taken to be the switching surface at
the si → sd event transition, i.e.,S = Ssi→sd, and

ρ (xs) = φ (TI ◦∆si→sd (xs) ,∆si→sd (xs)) , (23)

where,φ (t, x0) denotes the maximal solution of (4), with
initial condition x0 at time t0 = 0 and u as defined in
(19). Hybrid invariance is achieved because the transition
map for these events,∆si→sd is the identity map, and
∆si→sd (Ssi→sd ∩ Z) ⊂ Ssi→sd ∩ Z.

Using the restricted Poincaré return map (23), we can
numerically calculate the eigenvalues of its linearization
about the fixed-point. For the gait presented in the previous
section, we obtain the eigenvalues

eig

(

∂ρ (xs)

∂xs

)

=







0.7258

2.6380e− 5

−1.8001e− 6






. (24)

From [7, Cor. 2], the feedback (19) and (20) renders the
periodic orbit of the closed-loop system exponentially stable
for ǫ in (19) sufficiently small, andKP , KD such thatλ2 +
KDλ+KP = 0 is Hurwitz.

V. EXPERIMENTAL VALIDATION OF COMPLIANT HZD
CONTROLLER

This section documents experimental implementation of
the compliant HZD controller of Section IV on MABEL

qTor qmLSst

PD HZD PD HZD
RMSE 1.44◦ 0.89◦ 29.82◦ 0.28◦

Peak 3.1◦ 2.4◦ 59.1◦ 39.5◦

TABLE I

ERROR COMPARISON BETWEEN APD AND THE COMPLIANT HZD

BASED CONTROLLER.

focusing on achieving greater fidelity in the tracking of the
virtual constraints. The controller was first coded in C++
and evaluated on a detailed simulation model of the robot
that included encoder quantization and numerical estimation
of velocity variables from encoder measurements. The con-
troller was tested under various model perturbations, such
as errors in the torso mass, spring stiffness, torso center
of mass position, and deviations in initial conditions. These
simulations are not discussed here for the sake of brevity.
The simulation model was then replaced with the physical
robot. The experimental protocol is identical to the one used
in [6, Sect. 4]. Walking speed is measured with respect to
the center point of the hip between the two legs. Video of
the experiment is available on YouTube [16].

We report, for the first time, an experimental implementa-
tion of the full compliant hybrid zero dynamics controller
to successfully achieve walking on MABEL. The virtual
constraints depicted in Figure 3 are implemented with the
full I/O linearizing controller (19), and with correction
polynomials as in (20). The tracking accuracy obtained is
far better than the PD controllers used previously [1]. The
output coordinates are normalized to approximately the same
magnitude for better conditioning of the decoupling matrix.

Figure 6 illustrates the tracking ofqTor and qmLSst
, and

Figure 7 illustrates the tracking of the swing leg virtual
constraints. Table V compares the errors between a PD and
the compliant HZD controller developed here.

Figure 8 illustrates the stance and swingBspring values
over a few steps. Notice that thesc → si transition occurs
close to the designed value on one leg. Figure 9 depicts the
control torques at the actuators, and are seen to be fairly
noisy. The average walking speed for this experiment is0.9
m/s. Figure 10 depicts the instantaneous power plot at the
leg shape.

VI. CONCLUSION

A controller was designed to achieve exponentially sta-
ble walking while recruiting the compliance in the robot’s
drivetrain to perform most of the negative work required
to decelerate the downward motion of the robot’s center
of mass after impact. This rendered the closed-loop system
energy efficient and demonstrated the benefit of compliance
even for walking. The analytically derived control law was
experimentally validated on MABEL, resulting in the first
ever real-time implementation of a complete hybrid zero
dynamics based controller in experiments. The tracking accu-
racy attained was far better than that of simple PD controllers
used in prior experiments on RABBIT, and MABEL.
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