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Abstract—This paper presents a systematic approach for the controllers may not ensure exponential stability of theitpeb
design of continuous-time controllers to robustly and expnen- set of adjustable parameters is introduced to the contswou
tially stabilize periodic orbits of hybrid dynamical systems. A time controllers. These parameters are then updated bghigh

parameterized family of continuous-time controllers is asumed | I t-based troll h tate traiectori oo
so that (1) a periodic orbit is induced for the hybrid system, evel event-based controllers when state rajectornessc

and (2) the orbit is invariant under the choice of controller Poincaré section [26], [19], [13], [27], [28]. The everaded
parameters. Properties of the Poincagé map and its first- and controllers are designed to render the Jacobian of the Bd@nc
second-order derivatives are used to translate the problemdf map around the fixed point a Hurwitz matrix.

exponential stabilization of the periodic orbit into a set d Bilinear One drawback of achieving stability via event-based con-

Matrix Inequalities (BMIs). A BMI optimization problem is t hen troll is th tentially | delay bet th
set up to tune the parameters of the continuous-time contréér so roflers Is the potentially large delay between the ocauree

that the Jacobian of the Poincaé map has its eigenvalues in the Of @ disturbance and the event-based control effort. Adtiara

unit circle. It is also shown how robustness against uncerfaty in  approaches attempt to achieve stability at the first level.

the switching condition of the hybrid system can be incorpoated  Reference [19] made use of a nonlinear optimization problem

into the design problem. The power of this approach is illustated 1 minimize the spectral radius of the Jacobian of the Po@ca

by finding robust and stabilizing continuous-time feedbacklaws for simult desi f iodi bit d o

for walking gaits of two underactuated 3D bipedal robots. map orsimu 3”6093 esigno per!o IC Orbits and con o
time controllers. Diehlet al. [29] introduced a smoothed
version of the spectral radius and a nonlinear optimization

|. INTRODUCTION problem to generate maximally stable periodic orbits. This

agproach was employed to design parameters and optimal

us- . ;

control inputs of a fully actuated bipedal robot wittdegrees

ti.me. controllers to ro bustly a_nd exponentially st_abilize- P of freedom (DOF). Both methods require recomputation of
riodic orbits of hybrid dynamical systems. Hybrid systemt%e Jacobian matrix at each iteration of the optimization.

exhibit characteristics of both continuous-time and dissr . :

i . For mechanical systems with many degrees of freedom and

time dynamical systems and are used to model a large range 0 . .

; . - underactuation (such as the 3D bipedal robot ATRIAS [27],

processes [1]- [4] including power systems [5] and meclanic , - .
. . .~~~ Which has13 DOF and6 actuators), the cost of numerically

systems subject to impacts [6]- [22]. Our motivation is tQ

design robust stabilizing continuous-time controllers 3D Computing the Poincaré map and its Jacobian make these

) . . . ethods impractical.

bipedal robots with high degrees of underactuatmn, but tHéThe contribution of this paper is to present a method based
results we present apply to non-hybrid as well as hyb”éjn sensitivity analysis and bilinear matrix inequaliti®&MV(s)
systems [23]- [25]. y y d

The most basic tool to investigate the stability of hybri(tjp or(lj:rsrltigarll sct(;rtl)ﬂirt]u%l:jtlT,eerfogtrﬁﬂg?ésoﬁgﬁtﬁ[ﬁgﬁer;&@ﬁ
periodic orbits is the method of Poincaré sections [23}p][2 P Y 9 P

[3], [6]. In this approach, the evolution of the system on th%vent—based controllers. The approach assumes that g faimil

. , . . parameterized continuous-time controllers has been wedig
Poincaré section, a hypersurface transversal to the gierio o L .
o : ; . so that (1) the periodic orbit is an integral curve of the ebbs
orbit, is described by a discrete-time system referred to as o ; .
oop system and (2) the orbit is invariant under the choice of

the Poincaré return map. In general, there is no closead-for : . s .

. : , : : arameters in the controllers. By investigating the progeof
expression for the Poincaré map, and this complicates he Poincaré map and its first- and second-order derivatae
design of continuous-time controllers. Hence, stabil@abf

2 . ) . . ... sensitivity analysis is presented. On the basis of the teitsi
periodic orbits for hybrid systems is often achieved withtmu analysis, the problems of robust and exponential stabsiity

Igvel feedback control architectures, in which continuous - 1o into a set of BMIs. A BMI optimization problem
time feedback laws are employed at the lower levels of the

control scheme to create the periodic orbit. As the loweelle > then set up tq tune the parametefrs. of the cont.muous-
time controllers. Finally, this approach is illustrateddesign

B. G. Buss was supported by NSF Graduate Student Reseatcwgigp CONtinuous-time controllers for two underactuated 3D dide
under Grant No. DGE 1256260. K. Akbari Hamed and J. W. Grizzége robots with8 and 13 DOF, respectively.
supported by NSF Grants ECCS-1343720 and ECCS-1231171. Some of the results in this paper (namely, those illustgatin
K. Akbari Hamed, B. G. Buss, and J. W. Grizzle are with the Depant ial bilizati f iodi bits f e DOF
of Electrical Engineering and Computer Science, Univerdlichigan, Ann exponential stabilization of periodic orbits for t

Arbor, MI, USA, {kavehah, bgbuss, gri zzIl e}@ni ch. edu bipedal robot) were already presented without mathenlatica

This paper addresses the problem of designing continuo



proofin [30]. This paper extends the analysis to a broadesscl A. Closed-Loop Hybrid Model

of systems and illustrates how to simultaneously optimiee t |4 this subsection, we assume that the continuous-time

continuous-time controller for robustness and exponksitia  controller can be expressed as the followiparameterized
bility. In particular, motivated by the problem of stableliWag feedback law

on uneven ground, the .sensit.ivity analysig is extended t@erhq u=T(z,¢), (3)
robustness of the orbit against uncertainty in the swiighin _ . _
condition of the hybrid system. Furthermore, the approadhWhich & := (&1,---.&) € E and= C RP represent the

is extended to hybrid systems with multiple continuousetinfinite-dimensionaparameter vectoandset of admissible pa-
phases. Proofs of the key theorems are provided. Finaky, fiRmeters respectively, for some positive integer Moreover,
paper extends the earlier results for full-state stabdigywell I @ & x = — U is aC> map and T" denotes the matrix
as stability modulo yaw for 3D bipedal robots. transpose. By employing the continuous-time feedback law
This paper is organized as follows. Section Il present3): the closed-loop hybrid model is parameterized as viadlo

the formal definitions related to hybrid systems and the { i = f9(x, &) = ¢8

(4)

Poincaré map. Required conditions on the periodic orbit Zgli NS s

and family of parameterized continuous-time controllers a
presented to set up the sensitivity analysis. Two families where the superscript “cl” stands for the closed-loop dyiscam
continuous-time controllers satisfying the required dbods and f¢(z,¢) := f(z) + g(z) ['(x, &) is the closed-loop vector
are presented. Section lll presents the BMI conditions fweld. For later purposes, the unique solution of the closed-
formulate an optimization problem to guarantee exponknti@op ordinary differential equation (ODE) = f%(x, &) with
stability. Section IV extends the sensitivity analysis toni the initial conditionz(0) = x( is represented by(¢, zo, &),

the modified BMI optimization problem for robust stabilitywhere¢ > 0 belongs to the maximal interval of existence.
Section V extends the analytical results to hybrid systeiitts wNext, thetime-to-reset functio” : X x = — R is defined
multiple continuous-time phases. In Section VI, we illagér as the first time at which the solutigs(t, 2o, £) intersects the
the method to design robust and stabilizing continuoug-tirswitching manifolds, i.e.,

controllers for two underactuated bipedal robots. Sectitin T(20,€) = inf {t > 0| o(t, 20, &) € S} . )

contains concluding remarks.
Remark 1 (Parameterized Reset Maj): the closed-loop
hybrid model of (4), the reset map is also parameterized. by
Il. SENSITIVITY ANALYSIS FOR STABILIZATION OF Our motivation for this is to extend the sensitivity appro#or
HYBRID PERIODIC ORBITS hybrid systems with multiple continuous-time phases in-Sec
ion V. In particular, hybrid systems with multiple contiows-

The objective of this section is to present the sensitivi ) .
Ime phases can be expressed as hybrid systems with one

analysis for exponential stabilization of periodic orbfty

hybrid systems. The results of this section will be utilizad continuous-time phase as in (4), in which the reset niap
Sections Ill and IV to set up the BMI optimization problems(epresents the composition of the flows for the remaining
ntinuous-time and discrete-time phases. Consequetitly,

We consider a hybrid system with one continuous-time pha%% !
as follows includes the parameters of the controllers employed during

other phases (see Section V for more details).
&= flx) +g@)u, =~ ¢S
X { at = A(z), z~ €S, (1) B. Periodic Orbit Assumptions

Throughout this paper, we shall assume that the following
in which z € X and X ¢ R""! denote thevector of state assumptions are satisfied.
variablesandn + 1-dimensionalstate manifoldrespectively.  Assumption 1 (Invariant Periodic Orbit)There exists a
The continuous-time control input is representedWy U, period-one orbitO for the parameterized closed-loop hybrid
wherel/ C R™ is an openset of admissible control values model (4) which ignvariantunder the choice of the parameter
In addition, f : X — TX and columns ofy are smooth (i.e., vector £&. This assumption can be expressed precisely as
C>) vector fields, in which T represents theangent bundle follows:
of the state manifoldt’. The switching hypersurfacé is the 1) There exists mominalinitial conditionz} € X' \ S such

n-dimensional manifold that the solution of the ODE = f°(z, &) with z(0) =
wj is independent of, i.e., 52 (¢, 25,£) = 0 forall £ > 0

S:={z € X|s(z) =0}, @) and all¢ € =, where “\” represents the set difference.
For later purposes, thisvariant andnominal solutionis

on which the state solutions undergo a sudden jump according

to there-initialization rule z* = A(z~). Here,s : X — R denoted by

is a real-valued and> switching functionwhich satisfies O (t) = p(t,x5,£), t>0. (6)
9s(z) # 0 for all z € S. Moreover,A : S — X denotes . : .
o . A o -
the C> reset map 2= () := lim, ~(r) and 2+ () = 2) The time-to-reset function, evaluated at x5, IS

lim,\ ¢ z(7) represent the left and right limits of the state boundedthat is,

trajectoryxz(t), respectively. T(x5,6) =T <oo, VEe€E.



3) The reset map\ satisfies theeset invariancecondition denotes the set closure @. Next to present the families
of controllers, we assume that there i& feedback law

Alwy,§) =g, VEEE, ) I'*(x), referred to as théeedforward termwhich generates
ie., %(I;,g) =0 for all ¢ € =, where the nominal trajectoryp*(¢) in the sense thap*(t) is the
. . unique solution oft = f(x) + g(z) I'*(z). Suppose further
zy=¢"(I") € S. (8) that the following assumption is satisfied.

Assumption 3 (Phasing Variableorresponding to the
periodic orbitO, there exists a real-valued agd° function
O={r=¢"(t)|0<t<T"} (9 6: X — R, referred to as thehasing variable which is
strictly monotonic (i.e., strictly increasing or decrewgi on
the orbitO, that is,

The invariant periodic orbi© is then given by

for which 7% is the fundamental period

Assumption 1 states th&l is a periodic orbit of the closed-
loop hybrid model (4) for alk € =.

Assumption 2 (Transversality ConditionJhe period-one
orbit O in (9) is transversalto the switching manifoldS in
the sense that

0(z) = %(1) [Nz, &) #0, VreO.

Under Assumption 3, the desired evolution of the state
s ! variables on the orbitD can be expressed in terms of the
g(f}) fe(z3,6) #0. (10) ' phasing variabl® rather than the time variabteIn particular,

From Assumption 2, it can be concluded that the periodlltca:t O(t) represent the time evolution of the phasing variable

orbit O is nottangent to the switching manifolfl at the point on O Then,_oqe can define tfdesired evolution of the state
. . variableson O in terms of6 as follows
z = z}. In the next subsection, we will present two examples
of continuous-time feedback laws satisfying Assumption 1. x4(0) == ©*(t) , (12)
t=0-1(0)
C. Two Families of Parameterized and Continuous-Time Fedd-which ¢t = ©~1(0) denotes the inverse of the functién=
back Laws Satisfying the Invariance Assumption o(t).

This subsection presents two families of parameterizedExample 1 (Feedforward and Linear State Feedback Law):
and continuous-time feedback laws satisfying the invagan 1 ne first family of parameterized continuous-time conel
condition in Assumption 1 for a given periodic ortit. If ~Can be expressed as
the hybrid system includes just one continuous-time phase, I T () — K (2 — 240 13
the reset map\ in (4) is not parameterized by and Item (,8): (@) (= 2a(8) (13)

3 of Assumption 1 is immediately satisfied. For the casghere K ¢ R™*("t1) represents aontroller gain matrix

of multiple continuous-time phases, Section V will presenbd be determined. Here, one can assume that the parameter
conditions under which Item 3 is met (see Part 1 of Theorewector¢ includes the elements of the gain matfix i.e., & :=

4). Here, we check Item 1 for the examples and we assuwey K) € R?, in which ved.) is the vectorization operator

that Item 3 is satisfied For this goal, we first present theandp := m (n+ 1). It can be easily shown th%(x,ﬁ) =0
following lemma. for all z € O and¢ e Z. Hence, from (11), the feedback law

Lemma 1 (Invariant Solution of the ODEXonsider the (13) preserves the orbip for all £ € =.

solution of the ODEi = f%(,&) with #(0) = zo. Then,  Example 2 (Input-Output Linearizing Feedback Law):

G2 (t,20,£) = 0 for all ¢t > 0 if and only if For the second family of continuous-time controllers, a
o parameterized output functiog(x,¢) with the property
——(z,¢) =0, Vt>0. dim(y) = dim(u) = m is defined as follows
23 w=p(t,x0,€)
Proof: See Appendix A. [ y(x, &) == H (z —zq(0)) , (14)

of IZSQJ;E?Onr’:alli:S(;r;eu;\:/:lelr:?:r;edlately conclude that Itemir11whichH € R™*("+1) js theoutput matrixto be determined,

¢ :=vedqH) € R?, andp := m (n + 1). The output function

ofe 0 y(z,€) in (14) vanishes on the orb® and we assume that

6—5(:6’6)’166 = % (f(x) + g(x) (z,£)) 2c® = is defined as an open subset®f such thaty(z,¢) has

or (11) uniform vector relative degreewith respect tou on an open

=g(z) a—g(x,é)‘mea neighborhood oD for all ¢ € Z. The input-output linearizing

-0 controller takes the form
—1
where F(QC,&) = (L(] L;_ly(xag)) ?y(xag)
O={e=¢ (t)|0<t<T"} =0U{a}} (15)

1 r—1
(Lo L y(@,9) Dok Ly y(,€)
IHere, we assume that the solutions of the hybrid system @)right =0

continuous. .
2Since the orbit is given here, Item 2 is satisfied in the sehae the wherek;,i = 0,1,--- ,r — 1 are constant scalars such that

fundamental period of the orbit is bounded. the polynomials”™ + k,_1s" ' 4+ --- + ko = 0 is Hurwitz.



Employing the feedback law (15) results in the following he situation is more critical in mechanical systems withhhi

output dynamics degrees of freedom and high degrees of underactuation. For
these systems, the numerical calculations are time comgumi

(r) (r=1) 4 ... - X ’ . X VA .
vyt kery o thoy =0, (18) " In particular, employing nonlinear optimization algorith to

for which the origin (y,9,--- ,¥"~Y) = (0,0,---,0) is tune the parameter vectgrwould require extensive recom-

exponentially stable. Next, we show th%%(x,g) —= 0 for putation of the high dimensional Jacobian matrix at each

all 2 € O and¢ € =. To do this, we define thparameterized itération. To resolve this problem, we turn our attention to

zero dynamics manifoldorresponding to the outpytz, ¢) as  the sensitivity analysisFor this purpose, lef* € = repre-

follows sent anominal paraPmeter )vectorBé/ ccf)mputfifng th(le Tayltlnlr
series expansion %, &) around<s™ for sufficiently smal
2(6) = {w € X|y(2.6) = Lyy(.&) e el o0) on f; (z.¢ ¢ Y

== Ly y(w,€) = 0}, op b sep
The decoupling matrixL, L y(z,£) has full rank and is 9z[k +1] = (@(f}vf*) +Z 9607 (I;vi*)ﬁ&> dx[k],
square on an open neighborhood®fand hence, the control =1 1)
driving y(x,£) to zero is unique on each zero dynamica,hereAg = (A&, -+, AE)T = £ — ¢ The objective is to

manlilfol;j le’ bp- 226]. F#rtlféermore, thehorlfm s Ccl)mn;;)ﬁri:]; tune A¢ such that the originz = 0 becomes exponentially
to all of the various manifolds. Hence, the control reseict giap16 for (21). To do this, we first present the following

to the orbit is independent gf theorem to numerically calculate the first- and second+orde
Jacobian matrices in (21). Next, Sections Il and IV will
D. Poincagé Return Map and Sensitivity Analysis present BMI optimization problems to tum®g.
The objective of this subsection is to present the PoincareTheorem 1 (Calculation of the Jacobian Matrices):
return map and sensitivity analysis for exponential sizion Consider a parameterized closed-loop system satisfying
of the periodic orbit® for the closed-loop hybrid model (4). Assumptions 1 and 2. Let
Here, the Poincaré section is taken as the switching mianifo Oy " "
S and the Poincaré return map is definedasX x = — X (t,0,€) = 5 {t70,€) € R D)
by® represent therajectory sensitivity matrixand define the final
P(z,8) := ¢ (T(A(,£),§), Az, §),¢) (17)  value of the trajectory sensitivity matrix on the orldit as

which results in the following discrete-time system follows

alk + 1] = P(2[k],€), k=0,1,---. (18)

D3(8) := ®(T7, 20, 6)-

Then the Jacobian matri%(a:;,g) depends on¢ only
According to Assumption 1 and construction procedure (ﬁhrough@}(ﬁ) and T(x},g) = %_A(I;.,g); ie.,
z} is afixed pointof the Poincaré mag for all { € =, i.e., op ¢

One immediate consequence of (19) is that in which s 122 (g0)
BP % - H * * — I " N _ fa Ox j
8—€($f,§):0, Vge:, (vaé. ) (n+1)x(n+1) %(I;)fd(x’;,f*)

and hence, an event-based control action cannot be emplofed Projection matrix independent @ Furthermore, the
to modify the stability property of the periodic orki? [26], Sensitivity matricesre given by

[7, Chap. 4]. Linearization of the discrete-time system)(18 o*P ., . o o 09 .
around the fixed point’ then results in &0z (3, €7) = (2}, €7) I (€7) Y2}, €")
oP ., A
dulk +1] = ——(a},€) alk], k=0,1,-,  (20) + H(z},£7) 23 (€ )a& (x7.€7),  (23)
in which §z[k] := z[k]— 2. In order to exponentially stabilize fori=1,---,p.

the periodic orbit®, we would like to tune the constant Remark 2 (Variational Eq_u_a_tion)‘:rhgoreg)) 1 simplifies
parameter vecto¢ such that the Jacobian matr§ (7, ¢), the calculation of the sensitivity matr'c%‘%ia_m (27,£%),1 =
when restricted to theangent spacd - S, becomes Hurwitz. 1+ P Py relating them to the final value of the trajectory
However, in general there is no closed-form expression fﬁﬁi‘s't'v'ty matrix on O, i.e. ®3(¢"), and its derivatives
the Poincaré mapP(x,£) nor for its Jacobian‘g—’:(x;,g). e (€). In addition, ®%(£) can be obtained by numerical
Therefore the Poincaré map is usually obtained by nunlerigategration of a matrix differential equation, referreda® the
integration of the closed-loop hybrid model (4), while tiaed- variational equation24], as follows
bian matrix2Z (%, ¢) is obtained by numerical differentiation. cl

oz \" f + * 8f * * *

(I)(taIng) = 8:10 (90 (t)vé.) (I)(taIOag)v OStST
SHere, the Poincaré map is considered framto X', whereas in Section N

I, a set of coordinates for the tangent spagefd:’ will be presented. (IJ(O, Lo; 5) = I(n+1)x(n+1)-




Finally, one can employ numerical differentiation apptees; for all = in an open neighborhood of; and all{ € =.
like the two point symmetric differencaethod, to calculate Differentiating (29) with respect ta: around (z, £) results

%(5*). In particular, fori =1,--- ,p, i
3‘1)} 1 D s(x:;) D, QD(T*, xg, 5) D, T(:CS’ 5)
57, (€)= 35 (24 +de) — (e —de). +D () Dy pl(T*,43,6) = 0
where{ey, - ,¢e,} is the standard basis f@&? andd > 0 is which in combination with (27), (28) and the transversality
) y Cp

a small perturbation value. assumption results in

Remark 3 (Simplified Jacobign Matricesyheorem 1 also . %(x;) @;.(g)
relates the sensitivity matrice%(x},g*),i =1,---,pto Dy T(x5,8) = — D5 () fol(z%, €%) (30)
the sensitivity of the reset map Jacobian, if,(z7, &%) (see ety P

(23)). For hybrid systems with one continuous-time phase, tIn particular, the Jacobian of the time-to-res_et functi_(m d
reset mapA is independent of, and hence, one can simplifyPends or¢ only through®7(¢). Replacing (30) in (26) yields

(22) and (23) as follows (22), from which (23) follows immediately. |
oP
— (%, €) = II(a%, &) D%(E) Y(x%) (24) I1l. TRANSLATION OF THE STABILIZATION PROBLEM INTO
%”52 ! d afp* ! A SET OFBMIs
—P(x;,g*) =1I(z%,£") ! (£)Y(x}),  (25) The objective of this section is to translate the problem of
0gi0x ' 0% ' exponential stabilization of the origiix = 0 for the linearized
where Y(z}) := %2 (x}). The calculation ofg_g;(;c;;,g*) in discrete-time system (21) into a set of BMIs. To this end, we

(23) for hybrid systems with multiple continuous-time pess first present a set of coordinates for the tangent spacs Tin
will be addressed in Section V (see Part 2 of Theorem 4). (20), (21) and Theorem 1, the Poincaré map is considereal fro
Proof: According to Items 2 and 3 of Assumption 1,X to X. In order to study the exponential stability behavior
T(z3,&) = T* and A(I;.,g) =z} for all £ € =. This fact of the periodic orbitO, we need to pre and post multiply

together with (17) implies that the Jacobian of the Poiacaitie Jacobian matri)%(:c},f) by constantprojection and lift

return map can be expressed as matrices, respectively, to obtain a linear operator froenth

. . s . . dimensional tangent space,<S to T,-S. In particular, let

D1 P(z},€) = D1 (T, 25,€) D1 T, &) D Al &) Toro € R™* (1) and g € R(n+1)xn éenoteprojection and

+ Do (T, 25,§) D1 A2, £). lift matrices respectively. Next, assume that € R"*! is a
(26)  small perturbation such th%(x}) dz =0 and letoz € R”
Furthermore, be the corresponding coordinates fQJ‘;ZB', ie.,
Dy QO(T*V:CEK)?&) = @(T*,Ig,g) 0z = Tproj ox
= fCI (o(T™, Iavg)ag) 27) ox = mjg 02.
= @}, 9) Then, from (21), the evolution ofz[k],k = 0,1,--- can be
= f(a},¢), expressed as

in which we have made use of the invariance condition (see bt 1] = (

P
(11)) in the last equality. P (T, x5, &) can also be expressed 9z Ao + Z Ai Afi) oz[k], k=0,1,---,

=1

as (31)
* 0P (mx where
D2 (,O(T 7:6076) = 6_950(T 7:6035) op
=T, z,&) (28) Ao = Tproj or (CC},f*) ik € R™*"™
= &5 o*r . . .
(I)f(é.) A; = Tproj —8gzax(xf’§ )7T|ift eRan’ i=1,---,p.

From the switching and invariance conditions (see Item 2 of (32)

Assumption 1),
Remark 4 (Properties of the Projection and Lift Matrices):

s(p(T",2g,£)) =0, VEEE The projection and lift matrices have the following progest
which together with the Implicit Function Theorem implies (i) Tproj it = Lnxn
that s
s(p(T(x,8),2,€)) =0 (29) (i) 5= (@) min = 0.
4Following common convention for the partial derivativesaa®® function NeXt’ we present the followi_ng theorem to transmt? the
oz, xw), tuning of the constant perturbation vectht for exponential
ap ' stabilization oféz = 0 into a set of BMIs.
Djp(e1, - 2v) = m=(@1, -y 2w), =100 Theorem 2 (BMls for Stabilizations of the OriginJhe

J .
following statements are correct.



1) There exists am x np matrix B such that

p
Ag+ D A A& = Ay + B (Inxn ® AL),

=1

in which “®” denotes the Kronecker product.

2) The origindz = 0 is exponentially stable for (31) if there

existiW = W' € R™", A¢ € RP, and a scalap > 0
such that the following BMI is satisfied

W AW + B (Inxn @ AE) W

>0,
* (1—p)w

(33)

in which “x” denotes the transpose of the blogk 2).

Proof: For Part 1, we claim there exists a matiix ¢
R™*"P such that for allA¢ € R?,

p
D AiAG =B (Inxn @ AE). (34)
i=1
To show this, let us partition th& matrix as
B = [Bl B2 Bna]
where B; € R"*? for j = 1,--- ,n. From the definition of
the Kronecker product,
A€ 0
0O --- 0
B (Inxn ® AE) = [By B,]
0 - A¢
Hence, thej-th column of B (I,,x, ® A¢) is B; A¢ for j =
1,---,n. To satisfy (34), one can conclude that
p
Bj A = A5, ) A&, (35)
1=1

where A;(:, j) represents thg-th column of A;. Next, differ-
entiating both sides of (35) with respect &£ together with

oAE T . :
afg =el,i=1,---,pyields

P

Bj:ZAi(:aj)eva J=1-,n (36)
i=1

which completes the proof of Part 1.

For Part 2, from (33), it can be concluded th&t> 0 and
(1—u) W > 0 which together with > 0 result ing € [0, 1).
Let us consider the Lyapunov functidrik] := V (dz[k]) :=
§z[k]T W—16z[k]. Next, using Schur’'s Lemma,

W (Ao + B (Inxn ® AE)) T W (Ag + B (Inxn ® AE)) W

W< —uW.
(37)
Pre and post multiplying (37) withV ~! yields AV [k] :=
V[k +1] = V[k] < —u V[k], and hence,
)\max(Wil)
[6z[K]]l2 < \/m(l — ¥ [|6z[0]|2 (38)

for k = 1,2,---, in which A\y,in(.) and A\pax(.) denote the
minimum and maximum eigenvalues, respectively. |

In order to have a good approximation based on the Taylor
series expansion in (21), we are interested in solutions of
(33) with minimum 2-norm of A¢. Moreover, according to
the upper bound for the discrete-time solutions in (38), we
would like to maximize the convergence rate, or equivajentl
minimize —u. Hence, to tune the constant perturbatifg,
we set up the following BMI optimization problem

i - + 39
plin —wpty (39)
W AW + B (Iyn @ AW
s.t. 0 (Inx 3 >0

* 1—-—pmWw
[Ag]3 < v
w0,

in which w > 0 is a positive weight as #&adeoff between
improving the convergence rate and minimizing th@orm
of A¢. In addition, using Schur's LemmdA£||2 < v can
also be expressed as the following linear matrix inequality

IPXP

Finally, the optimization problem (39) becomes

in —wp+ 40
wkin —wpty (40)
W Ao W + B (ILnxn ® AE) W
s.t. >0

* (1-—pWw
Lpxp A8 >0

x
= 0.

For later purposes, we remark thg@l — ;. represents an upper
bound for the spectral radius &fy + B(l,,xn @ Af).

IV. ROBUST STABILIZATION OF THE PERIODIC ORBIT AS
A BMI OPTIMIZATION PROBLEM

The objective of this section is to address the robust
stabilization of the periodic orbi® against uncertainty in the
switching condition of (2) as a BMI optimization problem.
Our motivation for this problem comes from stable bipedal
walking over uneven ground [12], [16]. To make this precise,
we assume a general form of the switching manifold in (2)
and denote it byS,;, parameterized by a scaldy as follows

Si:={zx e X|s(x)=d}, (41)

in whichd € D and D := [~dmax, dmax] C R denotes a
closed neighborhood of the origin for some positivg..
One can assume thalt represents the height of the ground
during stepping down or stepping up in bipedal walking. In
the new notationS, = S, whereS was already defined in (2)
as the nominal switching manifold. In what follows, we shall
considerd as adisturbance Corresponding to the switching
manifold S;, theextended time-to-reset functidn : X x = x



D — R>( is defined as the first time at which the solution Theorem 3 (Extended Jacobian Matrice§uppose  that

o(t, zo, &) intersectsSy, i.e., Assumptions 1, 2 and 4 are satisfied. Then,
s oP. , , oP
TB(IOagvd) T 1nf{t>0|(p(t,x0,§) ESd}' (42) %(xfagao) :a—x(xj’g) (48)
Qne i.mmediate r_esult of (42_) is 'Fhﬁt(:co,g,o) = T(_:co,g)_, oP. . . 0 9z %, &) 49
in which T'(z, £) is the nominal time-to-reset function given d (2},£0) = 5 (%) fOh, €%) (49)
in (5). Next, we extend the definition of the impact map to all o (0 f’
points onX’ x = x D as follows. for all £ € Z. In particular, 2% (2%, £, 0) is independent of,
Assumption 4 (Extended Reset Mappr all (z,£,d) € e,
X x E x D, theextended reset maip defined as P, oP.  , .
= P S (17,6,0) = 5 (a5,€7,0). (50)
Aol &, d) = A, ). Proof: See Appendix B. [
In particular, the extended reset map doesnot depend on  Using the Taylor series expansion 8f=(x%,¢,0) around
d. &* and an analysis similar to Part 1 of Theorem 2, (47)

The motivation for Assumption 4 comes from bipedadpecomes
walking on rough ground, in which the instantaneous impacts, [ + 1] = (Av,e + Be (Itng1)x (nr1) @ AE)) S [k]
map, based on rigid body contacts [22], dosst depend +C, d[]
explicitly on the ground height. Now we are in a position © ’
to present thextended Poinc& mapP,. : X x = x D — X, in which the subscripté

(51)

stands for the extended map and

given by oP.
Age == 5(a%,£%,0) c R X (n+1)
Po(x,&,d) = o (T (Ac(2,€),6,d) , Ac(,6),6),  (43) 32
) .7_e * oo (n+l)x(n+l) - _ 1 ...
which results in theextendeddiscrete-time system Aie T 960x (¢},€7,0) €R vi=1p
oP,
alk+1] = P (lk], €,dlk]), k=01,  (44) Cc =m(r}.£,0)  eRODA
in which d[k] € D represents the disturbance input. Be =[Bie -+ Bpiie] € ROvDx(ile
Remark 5 (Geometric Description ét): For everyz € ) )
X, one can defined := s(z) so thatz € S;. Then Bie =Y Aie(hd)el,  j=1, n+ 1
P.(x,¢,d) € S;. One immediate result of this fact is that i=1

for a fixedd € D, P.(.,¢,d) mapsS,; to S4, whereas the  Remark 6 (Relation among Sensitivity MatriceByom
nominal Poincaré map(., &) in (17) mapsSy to Sy. Under (32) and (48), the sensitivity matrices are related to the
Assumptions 1 and 4z is a fixed point ofP. for d = 0 and extended sensitivity matrices follows

all¢ ez, ie,
Ao = mproj Ao,e it

P.(x},£,0) =2}, VEeE. (45) Ai =Tproj Aiemite, i=1,---,p.
Furthermore, the extended map(.,¢,0) is equal toP(.,£),  Now we turn our attention to the robustness problem.
that is For this purpose, we assume th#t] # 0 is an unknown
P.(.,£,0)=P(.,¢), VEeE. (46) disturbance andi[k] = 0 for k = 1,2,---. The initial

_ _ . _ condition is also assumed to coincide with the fixed point,
Consistent with our perspective thatrepresents a distur-j g x[()] = 2} € 8. Then, from the discrete-time system
bance, we will study the robustness of the nominal fixed p0|m4) (1] € Sy andz[k] € Sy for k= 2,3, (see Fig. 1

a’; of the undisturbed system (i.l[k] = 0 V k).> According a5 a geometric description of the problem for bipedal wagkin
to the invariance condition in (45), linearization of (449and | particular,z[2] can be considered as an initial condition for
(x},€,0) results in the return map P in (18). Next, the objective is to tune the

constant perturbation vectak¢ to minimize the2-norm of

oxlk +1] = %Pe (x%,€,0) 6x[k] + 881;6 (23,€,0)d[k]. (47) the deviationdz[2] = z[2] — «7} for all possible disturbances
r d[0] € D, that is,
In this latter equatiomjz (k] := z[k] -z belongs to the: +1-
dimensional tangent spaceTt = R™"!. The following the- HAllgl Jhax, ([ £ 0z[2]|2, (52)
orem presents a numerical approach to calculate the Jacobia
matrices in (47). where F € R*("+1) is a given constant matri.From the
problem statementjz[0] = 0 and (51) result indz[1] =

5Alternatively, one could study the behavior of (44) under anstant
disturbance (i.e.d[k] = d V k), assuming that a corresponding fixed point 7Reference [32] considered robustness to uncertainty inintiact con-
were known. dition during motion planning by designing the orbit so asnimimize a
6We note that from (45)6 ,0)=0forall £ € = function of the deviation from the periodic orbit after aglmstep disturbance.




C. d[0], and hence,

max || F dz[2]|2
d[0]eD

= diax || F (Ao.e + Be (Int1)x (nr1) @ AE)) Ce ||, -

Next, using Schur’'s Lemma, the optimization problem (52) is
equivalent to the following LMI optimization

min 7
A&n
Iixi F(Aoe+ Be (Itns1)x(nt1) @ AL)) Ce =0
* 1/ drnax ’
in which 7 is an upper bound fomax g cp ||F 6x[2]| 2.
Finally, one can combine the stabilization and robustness P,y Fell1LE0)
optimization problems to end up with the following BMI N
problem
) Fig. 1. Geometric description of the robustness problem for
WA Wy pp A wen £y (53)  pipedal walking. Herex[0] = 23 € Sy and d[0] € D is
st assumed to be a nonzero and unknown disturbance. Further-
- more, d[k] = 0 for all k = 1,2,---. In this casexz[l] =
W AW+ B (Inn @AW | P, (z[0],&,d[0]) € Sy andz[2] = Pe(2[1],€,0) € So. The
* 1-—pWw evolution of z[k] for k = 3,4,--- can then be described by
r the Poincaré return map in (18). The objective is to fikd
Ina F(Aoe+ Be (It (nen) © AE)) Co >0  to minimize||F 6z[2]|- for all possibled|0] € D.
* 1/ diax
Loy AC . : .
N >0 assumed to b€°. Furthermore, during the continuous-time
L 7 phasei € {1, 2}, the control input: takes the form
p =0, ,
u = Fz(xu 51)7

wherew; andw, are positive weights corresponding to the . . -
convergence rate and robustness, respectively. wherel’; : X xZ* — U is aC* feedback law and* € =' de-

notes the parameter vector of phas@he closed-loop vector
field is then given byi = f%(z, &%) := fi(z)+g:(x) [i(w, £),
V. HYBRID SYSTEMS WITHMULTIPLE CONTINUOUS-TIME  \yhose unique solution with the initial conditiar{0) = zq is

PHASES represented by; (t, zo,¢'). The time-to-reset function during
This section extends the sensitivity analysis of Subsectighasei € {1,2}is T; : X x 2" — R>o where
[I-D to exponentially stabilize the periodic ortii? for hybrid (20, €)= inf {t> 0] itz £y e s, 3
[3 9 L (ANS) ) 1= J

systems with multiple continuous-time phases. In paricul
the section investigates Item 3 of Assumption 1 and calcand;j # i € {1,2}. Theone-phase map’;_,; : Si—,; x =/ —
lates the sensitivity matrices of the reset-map Jacobian, iS;_,;, i # j € {1,2}, is defined as

g—g;(a:;,g*),i = 1,---,p, in the sensitivity calculations of i ; ;
(23). To simplify the analysis, we study hybrid systems with Pisj(x, &) =5 (T (Rinj(2), &) , Aisy(2),67) -
two continuous-time phases as follows Using [7, Theorem 4.3], the closed-loop hybrid model with

two continuous-time phases can now be expressed in the

o s
¥y { t=h@)+a@u o ¢S standard form (4) as

zt = A o(x7), T €812 . | )
(54) 59 { P e ¢S 55)
2{ i = fao) + go@)u, @ E S B=AESE), o ESi
xt = AQ%I(I7)7 xr € 82%1, in which
A(z,€%) == Aoyy 0 Pi_yo(w, 7). (56)

in which the state variable vectarc X ¢ R**! and control
inputu € U C R™ are assumed to mmmorduring phases 1 is the composition of the flow of phase 2 and the rest map from
and 2. For every # j € {1, 2}, the switching manifoldS;_,; phase 2 to phase 1¢™ denotes the function composition, and
is taken asS;,; = {x € X|s;-;(z) = 0}, wheres,_,; : o

&= [ ] € ==

(1]

X — R is aC* switching function from phaséto phasej.
52

. by =2 (57)
The vector fieldsf;, columns ofg; and reset mapa,_,; are



is thefull parameter vector. Now we are in a position to inves- Definition 1 (Left-Right Symmetry)fhe hybrid model of
tigate Iltem 3 of Assumption 1 and to calcul%@i(z;, £*),i = bipedal walking in (54) is said to have theft-right symmetry
1,---,p in the sensitivity matrices (23). ' if the following conditions are satisfied.

Theorem 4 (Extended Sensitivity Analysisgt O = O; U 1) dim(¢!) = dim(£2) = py.
O, be a transversal periodic orbit for the closed-loop hybrid2) There arestate symmetry matrixs, € R+Dx(+1)

model with two continuous-time phases, in whi€h repre- and parameter symmetry matrigs € RP**P1 such that
sents.the portion of the orbit in phase= {1,2}. Then the Sz Sz = Itni1)x (n+1)r Se Se = Ip, xp,, and
foll)oleimg stlaterr:jegtsfa;e corret(?t. . o fal) — S, f1(S. @)
ems 1 and 3 of Assumption 1 are satisfied i
| P 92(2) T2(2,€%) = Sz 91(S2 ¥) D1 (S, ¢ &%)
C
Wwe)| =0 ie{12) s2o1(@) - =s1-2(50)
¢ r€0s Ao i () =8 A1 52(Sz 1)
2) Lft {x?,*l} = O1 N 812, {275} = 02N Sz, and for all z € X and all¢2 € =2.
Ty =}, Suppose fUFTer*th"’ff Qenotes the nominal o responding to the hybrid model (54), Section V already
parameter vector. The'gz(fffaﬁ );i=1,---,pin(23) presented a hybrid model with one continuous-time phase
can be expressed as whose reset map was parameterized lfgee (55)). However,
O, . . Doy, . PPis. . . according to the symmetry and [28, Theorem 4], an altereativ
75, (@},€") = — —(2}2) 9.0 (@71.€"), and equivalent hybrid model with one continuous-time phase
_ > ’ can now be presented whose reset mamdéependendf &.
in which This simplifies the sensitivity analysis as well as the BMI
0?P1 o . . optimization. To make this clear, we present the following
&0 (@5.1,€7) theorem.
TN Theorem 5 (Half Map):Assume that the hybrid model of

0™
= T0y(2 5, 6%) — L2 (¢¥)

96 (1) walking has the left-right symmetry. L&D = O; U Oy be

N a symmetric periodic orbit in the sense thay = S, O;.
5 (@70 €") T (7].0) Suppose further thag! and £? are chosen according to the
9ea=t (2% ,) f5 (¢ 5,€*)  symmetry relation

ox

H2(2%,9,€") = Lins1)x (n+1) —

2 _ 1
and @7} ,(§) denotes the final value of the trajectory =5 (58)
sensitivity matrix ®o(, zo, &) = g—fﬁ(t,wo,ﬁ) on the Then, the following statements are correct.
orbit 0. 1) The Poincaré return map : S;,2 xE' xE2 — Sy, for
Proof: See Appendix C - the closed-loop hybrid model with two continuous-time
’ PP ' phases can be factorized as
VI. APPLICATION TOUNDERACTUATED 3D BIPEDAL P(x,6",6%) = Phar (Phalf (Ivfl) 751) J
RoBOTS in which Py is the half mapgiven by
The objective of this section is to illustrate the sendijivi Prat (z,gl) =Py (Sm x,gl) . (59)

analysis and BMI optimization to systematically designustb

and stabilizing continuous-time feedback laws for peigodi
3D bipedal walking. Models of bipedal walking are hybrid
with continuous-time phases to describe the evolution ef th u &= fx,&Y) 7 ¢ Sise
mechanical system according to the Euler-Lagrange eqsatio £ ot = Alz™) €89
and discrete-time phases to represent the instantanepastisn ’ ’
between the swing leg end and the ground [22]. The state in which ¢ :=¢' and A(z) := Ay, (S, x) is indepen-

2) The half map is the Poincaré return map for the following
hybrid system with one continuous-time phase

(60)

vector for these systems is takenaas= (¢",¢")", in which dentof &.
g € Q denotes thegeneralized coordinates vect@and Q Proof: The proof is immediate from the construction
represents theonfiguration spaceThe state manifold is the procedure (59) and [28, Theorem 4]. [ ]
tangent bundlet := TQ. Remark 7 (Reduced-Order Sensitivity Analysisjom
Theorem 5,
- itivi i Ri oP OR ?
gyrr?;(iltjr;ed Order Sensitivity Analysis based on Left-Right o (x;’gl’gg) _ ( 8;alf (x;7§1)) 61)

For models of bipedal robots with left-right symmetryand hence, the periodic orlil is exponentially stable for the
the number of sensitivity matrices in the sensitivity asaly hybrid model with two continuous-time phases if and only if
as well as the number of decision variables in the BMP; is exponentially stable for (60). Consequently, one can ap-
optimization are reduced significantly. The objective dfth ply the sensitivity analysis to the Jacobian mat#geat (7, £1)
subsection is to present a systematic way for this reducedth fewer parameters rather the%?(x;,gl,g). Finally, £2
order sensitivity analysis. can be obtained according to the symmetry relation (58).
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B. Virtual Constraints C. PENBMI Solver

This subsection applies the analytical results of the psper In order to solve the stability and robustness BMI optimiza-
the virtual constraints approachVirtual constraints are kine- tion problems in (40) and (53), we make use of the solver
matic relations among the generalized coordinates erdord@ENBMI® integrated with the MATLAB environment through
asymptotically by continuous-time feedback control [6]],[ the YALMIP?. PENBMI is a general-purpose solver for BMI
[19], [33], [34], [35]. It has been shown that for mechanicabptimization problems which guarantees the convergence to
systems with more than one degree of underactuation, theritical point satisfying the first-order Karush-Kuhneker
choice of virtual constraints affects the stability of trexipdic optimality conditions [36].
orbit [19]. Reference [19] showed that controlling the atéa
coordinates for a five-link underactuated 3D bipedal rolbotc ) _
not stabilize a periodic walking gait. Next, basedmhysical D- Five-Link Walker
intuition, a different choice of virtual constraints was proposed This subsection illustrates the results of the paper togdesi
to stabilize the same orbit. However, for ATRIAS, a relategbbust and stabilizing virtual constraints for a walkingitga
robot with additional degrees of freedom due to seriesielaspf an underactuated 3D bipedal robot with degrees of
actuators, the same intuition did not lead to a stable p&riodreedom an@® degrees of underactuation. The robot model was
orbit [27]. This underlines the importance of havingystem- previously presented in [19]. The robot consists of a torsh a
atic method for choosing these constraints. This subsectigiio identical legs with revolute knees and point feet. Eaigh h
relates the problem of choosing virtual constraints to tMi B has two degrees of freedom. It is assumed that there is no yaw
optimization. This will be illustrated on the dynamical ned&l motion about the stance leg end. Furthermore, the roll, (i.e.
of the five-link 3D bipedal robot of [19] and of ATRIAS.  ¢,) and pitch (i.e.,¢2) angles at the leg end are unactuated,

During phasei € {1,2} of the hybrid model of walking whereas all of the internal joints are independently aetliat
(54), the virtual constraints are defined as thalimensional The structure and configuration variables of the robot dyrin

output function the right stance phase are shown in Fig. 2. Here, the phasing
P i variable is defined as the angle of trigual leg connecting the
vi(q,€") == H' (¢ — qq(0i(q))) , (62) stance leg end to the stance hip in the sagittal plane. A gierio

in which m = dim(u) is the control input dimensior#l’ is orbit O is ther_1 designed u_sing the motion planning a_lgorithm
a constant output matrix to be determingd,:= ved H?), of [19]._The virtual (_:onstramts controller of [19] can sll&te
andqi(6;) represents the desired evolution of the generaliz&if Orbit. However, it cannot handle rough ground walking. T
coordinates vectog on the orbit®; in terms ofé;. Moreover, resolve this pro_blem, the set of nomlnal.controlled vaeabl
0;(¢) denotes the phasing variable during phaas a function IS taken to be simply the actuated coordinates
of the configuration variableg (see Assumption 3). We note )T 63)
that in (62), H" g denotes the set ofontrolled variables ’
whereas H' ¢j(6;) represents the desired evolution of the, which 771* € R6*® is the nominal value of thél! matrix.
controlled variables on the orbit. If the output functior2)6 By employing this nominal output function, the dominant
has uniform vector relative degree= 2 on the periodic orbit, eigenvalues of thé5 x 15 Jacobian matrix of the half map be-
the continuous-time controller;(x, ") is then taken as the come{—3.3475,0.8558, —0.2064}, and hence( is unstable.
input-output linearizing feedback law of Example 2. Next, we let¢ = veqH') € R* and employ the reduced-
Remark 8 (Symmetry in Virtual Constraintdjor mechan- order sensitivity analysis as given in Remark 7. Theorm
ical models of bipedal robots, the state symmetry matrix @ the extended sensitivity matrices . versus the elements
be expressed aS, = block diagS;, S;}, where S, is the of the H! matrix is depicted in Fig. 3. From this figure,
position symmetry matriSuppose further that, is anoutput  the most important sensitivity matrices around the nominal
symmetry matrixwith the propertyS, S, = Inxm. If the output function correspond to the first column of tig"
output functions and phasing variables during phasesd2  matrix, which is related to the roll anglg. According to this

H"Y™ q:= (q3,q4,95, 96,97, qs

are chosen such that observation, we reduce the dimension of the BMI optimizatio
y2(q,€2) = Sy y1(Sy g, Se %) problem1(53) b_y Igttingﬁlg para}meterizes only the first column

02(q) = 0:(S, ) of the H! matrix, i.e., H' = H* + [A{ Ogx1 -+ Ogx1].

2 117q For robust stability, letiem := (v, vém) " € R? denote the
for all ¢ € Q and&? € =2, then one can conclude that horizontal components of the robot's center of mass (COM)

) L velocity expressed in the world frame. Next, thematrix in
H" =5, H" 5, (52) is taken as
or equivalently, the symmetry relation (58) is satisfiedhwit F= Bgcm (})
X

Se =5, ®S,. In addition, it can be shown that all conditions
of Definition 1 are satisfiéd Hence, we can apply the reducedto minimize the deviation in the COM velocity just before im-
order sensitivity analysis and BMI optimization of Remark pact during uneven ground walking. Solving the optimizatio

to tune H'.
http://www.penopt.com/penbmi.html
8The proof is similar to the one of [28, Theorem 7] 10nhttp://users.isy.liu.se/johanl/yalmip/
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Fig. 2: A five-link 3D bipedal robot during the right StanceFlg. 3: Plot of the2-norm of the extended sensitivity matrices

1 .
phase with point feet and the associated configurationbiasa versus the compongnts of ”‘?ex 8 H* matrix around the
nominal output function. Here,= row + 6(column— 1).

[19].
problem (53) withw; = 30, we = 40 and dpax = 1(cm) e
results in the following controlled variables 04
rgs + 0.4173 1 =S
qa + 0.5094 ¢ 2z’
-0.2
+ 0.8000
o ¢ = qs q1 . (64) o
de — 0.8000 a1 [=Roll
a7 +0.2130 1 R ¥ e
Lgs +0.0966 g1 Fig. 4. Phase portraits of the closed-loop hybrid system for

Corresponding to thigl! matrix, the dominant eigenvalues ofthe roll and pitch coordinates durirgy) consecutive steps of
the Jacobian of the half Poincaré map, calculated basedeonWalking corresponding to the optimal solutions of (53). The
Taylor series expansion (21), afe-0.9329,0.9341, 0.3463}. circles represent the initial condition of the simulator.
Next, the dominant eigenvalues of the real Jacobian of the
half Poincaré map becon{e-0.9319, 0.8269, 0.5869}. Figure
4 depicts the phase portraits of the roll and pitch anglemdur d[k] € [—dmax, dmax] is considered, in whichlyax = 0.01
80 consecutive steps on flat ground. Here, the simulation @f)- It is further assumed thafk| is periodic with the period
the closed-loop system is started off the orbit with an err® 7 steps, i.e.d[k + 7] = d[k] for all k = 0,1,---. Figure
of 6 (deg/s) on each component of the generalized velocRyPresents the ground height profifgt] and corresponding
vectorg. Convergence to a stable limit cycle is clear. z andy components of the COM velocity deviatioem|k]
The results of the sensitivity analysis shown in Fig. #r the robust optimal solution versus the step numbethe
and the optimized virtual constraints (64) have an impartafnimation of this simulation can be found at [37].
interpretation. The nominal output function

y(q,€) = ho(q) — ha(Bpien(q)), (65) E. Exponential Stability Modulo Yaw

coordinates the links based only upon a phasing variabIeThe five-link walker of Subsection VI-D does not have yaw

Bpitcn(q) = 0(¢) defined in the sagittal plane. Thus it ignoreénoﬁon al::}out the stancek_leg en]:j. FO;.IbipZda! robotslkyvith yaw
deviations from the periodic orbit in the roll direction. ¢on- motion, there are two kinds of stability during walking on

- ; : flat ground:full-state stability and stability modulo yaw
trast, the optimized output function, which can be expréss . . o )
adl P P P 38]. This subsection extends the sensitivity analysisetmed

in Subsection 11-D for exponential stabilitynodulo yawin
y(q,€) = ho(q) — ha(Bpiten(q)) — ha(Bron (q)), (66) 3D bipedal walking. To achieve this goal, without loss of
generality, we assume that the first component of the state
vectorz represents thgaw positionof the robot with respect
to the world frame and we denote this componentayy.
%rom theequivariance propertyf [38], if the feedback laws

responds to roll angle errors by adjusting the desired ¢oois
of the controlled variables. This new output enhances Igiabi
of the periodic orbit by coupling pitch and roll in a way tha

would be difficult to discover through intuition. ir(iv,éi),i € {1,2} do not depend on the yaw position
To evaluate the robustness of the closed-loop system . : _
I.e., Zyaw), then the first column of the Jacobian matrix

uneven ground walking, a ground height profil§] with ?9_1;(557751752) becomes1,0,--- ,0)T. In particular, there is

UNote that the termhg(6ro1(q)) vanishes on the orbit. Furthermore, the@N eigenvalu_e s cor_r.esponding to the yaw position. H.e_nlce*
pseudo-phasing variabl (¢) need not satisfy Assumption 3. for exponential stability modulo yaw, we apply the sengifiv
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001 ; ; ; ; denoted byy;r andgqr for the right leg (again see Fig. 6) and
T I I I I I I I I I T by ¢1. and¢o for the left leg. To control these angles, two
—0.01- ‘ ‘ ‘ ‘ ‘ ‘ A DC motors in series with harmonic drives are located at each
0 of the hips. The angles of the outputs of harmonic drives with
% 0-11 i . \ \ , , . . , R respect to the torso are representedghyir and g4ror for
Eo L RTnRpenE e v nE e e nr Tt the right leg andy,, i and gy for the left leg. In addition,
10 20 %0 a0 50 60 7 u1R, Uor, uiL andusg. denote the torques generated by the
AR et ot o1 ,.141 corresponding DC motors. The hips are driven by two DC
Lot VTR R R ORI L motors, located in the torso. In the frontal plane, the asgfe
0 10 20 ‘ ‘ 50 60 70 the right and left hips with respect to the torso are represken
by ¢3r andgs., respectively (again see Fig. 6). The generated
Fig. 5: Plot of a ground height profild[k] (m) and the torques by the hip motors are denotediay andus, . Finally,

corresponding: andy components of the deviation in the five-the generalized coordinate vector of ATRIAS can be expresse
link robot's COM velocity (i.e.,dvem[k]) (M/s) for the optimal a5

solution of (53) versus the step number

30 40
Step Number

q:= (qu, qyT,q2T5 1R, 92R, 1L, G2L

+ (67)
4griR; dgr2R; 43R, QgriL, dgr2L , q3L) )
analysis to 5 in which the first seven components gf are unactuated,
8_P(I; £, e?) whereas the remaining six components are actuated. The
ax 7S ) )

control inputu is taken as the following-dimensional vector
in which %—i(w?,gl,ﬁ) represents thén — 1) x (n — 1)

matrix obtained by removing the first row and column of
or (x},§1,§2). This approach can also be applied to the haffurthermore, the phasing variable is defined as the angle of

L T
U = (U1R7U2R7UBR7U1L7U2LaUSL) .

oz : ) .
map developed in Theorem 5. For this goal, we assume titiag virtual leg in the sagittal plane.
on the orbit®, the symmetry condition for the yaw position In what follows,O = O;UQO is a periodic orbit for walking
can be given as at 1.1 (m/s) designed using the motion planning algorithm of
* [27].
yan(t +T7) = —2yan(t), ¥t 2 0. 1) Stability Modulo Yaw:To stabilize the periodic orbi®
Then, the(1,1) element of the state symmetry mati, is module yaw, the nominal controlled variables are taken as

o T Pna * 1 r
1, and hence, the first column &W"(xf,g ) would be L(qgrir + ggror)

(—=1,0,---,0)". Similarly, for exponential stability modulo 1 n )
yaw, one can apply the sensitivity analysis to the— 1) x 2\dgrik T dgrat
(n — 1) matrix 3 HY g = dgr2R — 4griR ’ (68)
aPhaIf x 1 Ggr2L — qgriL
) ) ) 43R
obtained by removing the first row and column of _a% (wsw— zcom) (x'5) 4.

gt (7}, €1). _
Remark 9 (Equivariance Property for Virtual Constraints)where the first and second components are the stance and
In the virtual constraints approach, it can be shown thaj) if GWing leg angles, respectively. The leg angle is defined in
the columns corresponding to the yaw position in the outpiite sagittal plane as the angle between the torso and thelirt
matrices H are zero and (ii) the phasing variablés(q) line connecting the hip to the leg end. The third and fourth
do not depend on the yaw position, then the input-outpg@mponents of the controlled variables in (68) are the stanc
linearizing feedback law (15) is independent of yaw an@nd swing knee angles, respectively. We note that since the

hence, the equivariance property of [38] is satisfied. legs are actuated through springs, the leg and knee angles
have been defined at the outputs of the harmonic drives. These
E ATRIAS components can stabilize periodic orbits for planar wajkin

, . of ATRIAS [27]. The fifth component is then defined as the
ATRIAS 2._1 is a human s_,cale and .underactuated 3p bipedalnce hip angle in the frontal plane. Finaltyy(q) — zcom(q)
robot with point feetandseries-compliant actuatoyslesigned  yengtes the horizontal distance between the robot's COM and
fqr energy _efficient _and robust walking [27], [39], [40] (Se%wing leg end in the frontal plane. Hetes,(q) andzcom(q)
Fig. 6). During the single support phase, the mechanicalioggnresent the horizontal coordinates of the swing leg end an
of the robot hasl3 DOF and6 actuators. Hence, the Systenopy in the frontal plane, respectively (see Fig. 6). Thetsixt
is highly underactuated with degrees of underactuation. Thecomponent of the controlled variables in (68) is taken as

robot consists of a torso and two identical legs. the linearized approximation of the distance function acbu
The orientation of the torso with respect to an inertial Worly, o o pit O, just before the impact (ies%). The idea of

frame can be described by threeler anglesy., ¢,7 andq.t,  controlling the distance between the COM and swing leg end
referred to as thgaw, roll andpitch. In the sagittal plane, the

angles of the shin and thigh links with respect to the torgo ar 2t is assumed that phase 1 corresponds to the right stanee.pha
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Segintial Plaoe Froutal Plaasy

Fig. 7: Plot of the2-norm of the extended sensitivity matrices
versus the components of tiiex 13 H' matrix around the
nominal output function (68). Hereé,= row+ 6(column—1).

Fig. 6: Sagittal and frontal planes of ATRIAS 2.1 during théh€ half Poincaré map beconfe-1.0000, —0.8183, 0.8686 +
right stance phase with the associated configuration vesab 0-1011i, —0.1104}. The controlled variables (69) can also be
The Euler angles.t (yaw), ¢,7 (roll) and g, (pitch) describe interpreted as defining a modified output of the form (66).

the rotation of the torso framerzryrzr with respect to the ~ Figure 8 depicts the phase portraits of the closed-loop
world frame0ozoy02o. system during50 consecutive steps of walking. Here, the

simulation starts at the end of the left stance phase on the

periodic orbit (see the circles in the plots). During thertbu
in the frontal plane originated in [19]. For the five-link mttof ~ Step, an external horizontal force with a magnitude @i(N)
Subsection VI-D, the distance function can stabilize thi¢, gais applied to the COM of the robot fo50% of the step.
whereas for the ATRIAS structure, it cannot. In particulaf-onvergence to the periodic orbit is clear. The otbias been
the dominant eigenvalues of ths x 25 Jacobian of the designed to walk along thg-axis of the world frame which
half Poincaré map arg—1.0000, —1.3011, 0.8363, —0.1602}.  corresponds to the yaw angjer being zero. However, since
Since the distance function is defined in the frontal planis, i the orbit is exponentially stable modulo yaw, the horizébnta
yaw invariant and hence, from Remark 9, the eigenvalie disturbance changes the direction of walking by shifting th
corresponds to the yaw position. phase portrait in the yaw coordinates.

Figure 7 represents thiznorm of the extended sensitivity To evaluate the robustness of the closed-loop system, we
matrices versus the elements of tHé matrix. From this fig- simulated walking over a periodic sequence of ground height
ure, the most important sensitivity matrices relate to wola disturbanced[k| € [—dmax, dmax] With the period20. The
1—7 and13. However, the first column corresponds to the yawaximum disturbance sizé,,.. = 0.03 (m) corresponds to
position and we do not consider it for stability modulo yaws.75% of robot’s leg length. Figure 5 presents the evolutions of
According to these observations, we I&¢ parameterize only the disturbancé[k] and corresponding andy components of
the columns2 — 7 and 13. Next, the optimization problem the COM velocity deviatiorbvem[k] for the optimal solution.
(53) with wy; = 1, we = 1 anddnax = 1 (cm) is solved An animation of this simulation can be found at [37].
for exponential and robust stability. The optimal conkdll  2) Yaw Stability: Next, our objective is to improve the
variables, i.e.H' ¢, are then given by controlled variables (69) for full exponential stabilitycluding
yaw. For this goal, the sensitivity analysis is done around

~- 1 - -
i(qg“R + darom) 0.1193 g7 = 0.1277 gs1 the improved output function (69). Figure 10 depicts the 2-
3 (dgriL + dgrat) +0.0786 gy7 + 0.0842 g5, norm of the extended Jacobian matrices. Since, the orbit is
dgr2R — dgriR —0.0313 g7 — 0.0334 gsL already stabilized modulo yaw, we only & parameterizes
Qgral — QgriL * 40.0400 g7 +0.0428 g3 |~ the first f:plumn of ther/! matrix WhiCh corresponds to the
R +0.0038 g7 + 0.0041 g yaw position. Next, the opt|m|zat|o_n problem (53) is. solved
o . with w; = 1 andws = 0. The optimal perturbation in the
L5g (@sw—acom) (27)q]  [-0.2731 g,7 — 0.2923 q3L(69) controlled variables is then given by
Corresponding to these controlled variables, the dominant [ 0.0263 ¢.1 ]
eigenvalues of the5 x 25 Jacobian of the half Poincaré 0.0230 gut
map, calculated based on the Taylor series expansion (21), ) N
are {—1.0000, —0.9033, 0.8087, 0.5410, —0.1128}. For com- —0.0112 g1
parison, the dominant eigenvalues of the real Jacobian of —0.0186 ¢.1
13For this optimal solution, the elements Af¢ corresponding to columns —0.0729 g1
3 — 7 are very small and are not reported here. | 0.1065 g1 |
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Fig. 10: Plot of the2-norm of the extended sensitivity matrices

= 08 Q versus the components of tifex 13 H' matrix around the
e G improved nominal output function (69).
.;_05 -gi—o.s
4 stabilization of other nominal output functions. We staithw
o os o 0w 002 004 006 008 01 nominal controlled variables as in (68) in which the sixth
Gar (rad) ¢sr (rad) component is replaced by
Fig. 8: Phase portraits of the closed-loop hybrid system for 9 /1
the Euler angles and right hip during) consecutive steps 94 (§xsw_ ivcom) () q (70)

corresponding to the optimal solutions of (53) for stapilit
modulo yaw. The circles represent the initial condition foé t where zsw(q) — zcom(q) represents the distance between
simulator. the COM and the point midway between the the leg ends
in the frontal plan&. In (70), the distance function has been
linearized around the orbi®); just before the impact. The
- 0021 Hr ‘ .1 ‘ 1 Hr ‘ .1 ‘ 1 Hr ‘ .1 ‘ 1 Hr ‘ .11 dominanteigenvalues of the Jacobian of the half Poincang m
S ool T TETITIIIET IO are{—1.0000, 1.0499, —0.8455, 0.8430, ~0.1130} and hence,
10 20 20 20 50 50 70 zeroing the output function cannot stabilize the o®it The
optimization problem (40) is then solved for exponential st

0

= 0.5 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ]

B -T""TJI'.'-’ T.'."”-HH’.'-' T.’."TJ-TJl'.'-' TJ.T'TJ-TJl'.'-' Lt bility modulo yaw. The dominant eigenvalues of the Jacobian
= -0.08; 5 20 % - = o I of the half Poincaré map based on the linear approximation
= 0.05F ‘ ‘ ‘ : ‘ : ‘ E of (21) are{—1.0000, —0.8702,0.8359 + 0.0851¢, —0.1329}.

“:%_o o _‘lll_rTTTvr.'rrrT.rr.ll‘.TTTTrT.nrrT.Tr'1l‘.TTTTrT.r'mT.Thw.TTTTrT.t Next, the dominant eigenvalues of the real Jacobian of the

L — = 2 ‘ ‘ ‘ ‘ half Poincaré map corresponding to this perturbation eco

%Step Number -~ 0 ° {—1.0000, —0.8623, 0.8630 = 0.0713i, —0.1465}.

Fig. 9: Plot of the ground height profitk] (m) and the cor- If th_e sixth pompqnent of the no.minall controlled vari-
respondingr andy components of the deviation in ATRIAS's@Ples in (68) is defined as the swing hip anglg, the

COM velocity (i.e.,6vem|k]) (M/s) for the optimal solution of Periodic orbit O is extremely unstable and the dominant
(53) versus the step numbkr eigenvalues of the Jacobian of the half Poincaré map are

{—1.0000, —2.4587,0.8414, —0.4228}. Next, for exponential
stability modulo yaw, the optimization problem (40) is sedv
for which the dominant eigenvalues of theThe optimal perturbation values are then plugged in thewutp

estimated  and  real  Jacobian  matrices becorﬂ.glctions. However, the values are not small enough to have
{—0.8836 + 0.05297,0.8694 + 0.10517,—-0.1109} and a good approximation based on the Taylor series expansion

{0.8854, —0.8854, 0.8757,0.8757, —0.1109}, respectively and as a consequence, the odiis not stable. In particular,

Figure 11 illustrates the phase portraits of the closeqirloge don)lnant slgenvalulego(())(l; tthrGeozl (‘)]Zggsﬁno 38;26 half
system corresponding to the optimal solution durigg oncare map ecqn{e ST PR -
ext, an alternative sensitivity analysis is done around

consecutive steps of walking. During the fourth step, Atﬁ ltant wurbed outbut funcii Th timal
external horizontal force with a magnitude &D(N) is € resuftant perturbed output function. € optimal So-

applied to the side of the robot to its COM ov&i% of the Iu_tion Olf (40)]‘ ij thﬁf‘ cal;:ulﬁte(:{ Irirl:l)al]y, the domirl;ant d
step. Finally, Fig. 12 depicts the trajectory of the COM angldenvaiues ot Jacobian o the hall Poincare map, ase
the foot step locations in they-plane of the world frame. on Taylor series expansion (21) anq real calculations,
Convergence to the periodic orbit even in the yaw position ?ge {~1.0000, ~0.8561,0.8418 £ ,0'103027 —0.1084} _and
clear. —1.0000, —0.8764, 0.777340.10564, —0.1308}, respectively.

3) Other Nominalll(.)utput FunctionsTo demonstrate the 14 expression (70) assumes that the stance leg end is omigfie af
power of the sensitivity and BMI approach, we study thee world frame.
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Differentiating both sides of (71) with respettnd next with
a a4 respect to the time yields the following matrix differemtia
0 0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08 0.1 H
@ (rad) @sr (rad) equation
. . . _ . . ofc
Fig. 11: Phase portraits of the closed-loop hybrid system fo  ; ;. ¢) — 9 (z,€) W(t, zo,¢)
the Euler angles and right hip durirg) consecutive steps Oz =0 (t,70,§)
corresponding to the optimal solutions of (53) for full stin ofe (72)
The circles represent the initial condition of the simutato + o€ (z,¢) o= (t,20,€)
\IJ(O,‘To,g) =0.

Since f¢ is C*, the solutions of (72) are unique over the
_ . o . maximal interval of existence. Consequentlyt, z,&) = 0

~ This paper introduced a method for designing continuoug-ang only if %:(x’g) =0 for all z = p(t, 2o, £).

time controllers to robustly and exponentially stabilizzipdic '

orbits for hybrid systems. In contrast with previous method APPENDIX B

that rely on recomputing the Jacobian of the Poincaré map at PROOF OFTHEOREM 3

each step of a nonlinear optimization, the proposed method,l.he proof of (48) is immediate from (46). To extract

employs a sensitivity analysis to approximate the Jacobi . N s =
by an affine function of the control parameters. The resyilti Jb)’ from Assumption LT (x5, ¢, 0) = T for all € € =.

optimization problem involves LMI and BMI constraints an
can be solved efficiently with existing software packagése T s(p(Te(x,&,d),x,£)) = d. (73)
power of this approach was illustrated in the design of rob
and stabilizing virtual constraints for two underactuagl
bipedal robots witt8 and 13 DOF. The approach can handle D s(x}) D1 (T, 25,€) D3 Te(75,€,0) =1 =0
both full-state stability and stability modulo yaw. . . . .
The algorithm presented in this paper can be extended-[tp)IS latter equation together with (27) results in
more general form of robust stabilization problems, ingigd Dy T2 (5, £,0) = - 1 .
robustness against uncertainties rising from externateor 52 (23) f(@%,€7)
acting on the robot. In future research, we will investightese Finally, from Assumption 4,2, depends oni only through
forms of uncertainties. We will also investigate the result[he extended time-to-reset functidh, and hence,
for stable and 3D underactuated running by ATRIAS with
32 states and actuators. Furthermore, the BMI optimization D3 Pe(27,€,0) = D1 (T, 25, €) D3 Te (24, €, 0).

of this paper can be extended to improve stability of biped\?\his together with (74) and (27) completes the proof.
walking by designing proper phasing variables.

VII. CONCLUSION

urthermore, the Implicit Function Theorem is applied to

uf‘?’om which, it can be concluded that

(74)

APPENDIXC
APPENDIXA PROOF OFTHEOREM4
PROOF OFLEMMA 1 According to (1), ?%'(I,gl) — 0 for all # €
Let us definel (¢, g, &) := g_sa(tvxovg)eR(HJrl)xp. From O1 follov(\ﬁcI ltem 1 of Assumption 1. In_ an analogous
the definition of the solutiorp(t, zo, £), manner, 5 (z,§?) = 0 for all @ € O, results in

. g—fg(t,AHg(x}yl),ﬁ) =0 for all + > 0, and hence,
_ cl
QO(LLL‘(),&) = Zo +A f (SO(Ta ané—)ag) dr. (71) P1_>2(x?71,§2) = 30;'727 V§2 c 52_
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