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Abstract— Feedback control laws which create asymptotically
stable periodic orbits for hybrid systems are an effective
means for realizing dynamic legged locomotion in bipedal
robots. To address the challenge of designing such control laws,
we recently introduced a method to systematically select a
stabilizing feedback control law from a parameterized family
of feedback laws by solving an offline optimization problem.
The method has been used elsewhere to design a stable gait
based on virtual constraints, and its potential effectiveness was
illustrated via simulation results. In this paper, we present
the first experimental demonstration of a controller designed
using this new offline optimization method. The new controller
is compared with a nominal controller in experiments on
MARLO, a 3D point-foot bipedal robot. Compared to the
nominal controller, the optimized controller leads to improved
lateral control and longer sustained walking.

I. INTRODUCTION

This paper presents experimental implementation of a
novel method to exponentially stabilize periodic orbits in
hybrid systems [1], [2]. The experimental apparatus is the
underactuated 3D bipedal robot shown in Fig. 1, called
MARLO [3], [4]. The robot is equipped with point feet
for the study of mechanical bipedal walking that allows a
natural rolling motion at the “feet,” as opposed to the flat-
footed walking used by the vast majority of bipedal robots
today. Indeed, all of the bipedal robots participating in the
June 2015 DARPA Robotics Challenge relied on flat-footed
walking [5].

The method of Poincaré sections is the primary tool for
analyzing the stability of periodic orbits in a hybrid system,
such as those that arise in bipedal locomotion [6]–[8],
though Lyapunov-based techniques are being developed [9].
Under mild technical conditions, a necessary and sufficient
condition for a periodic orbit in the hybrid model to be
exponentially stable is that the Jacobian of the Poincaré
map evaluated at the corresponding fixed point have its
eigenvalues strictly within the unit circle.

The control design method experimentally implemented
here begins with a parameterized family of continuous-time
controllers that (i) induce a periodic orbit, and (ii) the orbit
is invariant under the choice of controller parameters. The
family of controllers can be constructed using a wide range
of techniques [6], [10]–[15]. Properties of the Poincaré map
and its first- and second-order derivatives are used to translate
the problem of exponential stabilization of the periodic orbit
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into a set of Bilinear Matrix Inequalities (BMIs). A BMI
optimization problem is then set up to tune the parameters
of the continuous-time controller so that the Jacobian of the
Poincaré map has its eigenvalues in the unit circle. While
simulations in [1], [2] indicated the promise of the method
for stabilizing gaits in bipedal robots, here, experimental
proof is provided.

In this paper, we employ the BMI optimization frame-
work to systematically choose exponentially stabilizing vir-
tual constraints for walking of MARLO, an underactuated
bipedal robot. Virtual constraints are functional relations
among generalized coordinates of a robot that are enforced
asymptotically by feedback control; they are used to coor-
dinate the links of the robot within a stride [3], [6], [16]–
[23]. It has been shown that, for mechanical systems with
more than one degree of underactuation, the stability of a
walking gait depends on the choice of virtual constraints.

Fig. 1. MARLO is one of three ATRIAS 2.1 robots designed and built by
Jonathan Hurst at Oregon State University. Its point feet facilitate the study
of dynamic bipedal locomotion. (Photo courtesty BTN LiveB1G)



Reference [24] used physical intuition to formulate a set
of virtual constraints for walking of an underactuated 3D
bipedal robot. However, the same intuition did not work to
stabilize walking gaits of MARLO [3]. Subsequent work [25]
presented preliminary walking experiments with MARLO in
which an alternative heuristic was used to choose virtual
constraints in the lateral plane, but it was very difficult to
tune the controller. The current paper improves the virtual
constraint design of [25] by employing the systematic BMI
optimization algorithm to guarantee exponential stability of
the walking gait.

The remainder of the paper is organized as follows.
Section II presents the hybrid model of 3D walking. Section
III presents a brief review of parameterized nonlinear state
feedback laws and the systematic BMI optimization algo-
rithm. Virtual constraints are presented in Section IV. Sec-
tion V presents the experimental implementation of virtual
constraints and stability analysis without the BMI algorithm.
The BMI optimization for MARLO is presented in Section
VI. Experimental results are provided in Section VII. Finally,
Section VIII contains discussion and concluding remarks.

II. HYBRID MODEL OF 3D WALKING

MARLO is one of three ATRIAS-series bipedal robots
designed at Oregon State University for robust, energetically
efficient 3D walking; a complete description is given in [3].
The robot structure includes a torso and two identical legs
terminating in point feet. Two motors drive each leg in the
sagittal plane. In the frontal plane, one hip motor for each
leg is connected to the body through fixed gear ratios. In
total, the robot has 6 brushless DC motors.

Many of the key coordinates are shown in Fig. 2. In
addition, three Euler angles, qzT (yaw), qyT (roll), and qxT
(pitch) specify the orientation of the torso link with respect
to the world frame. Each sagittal-plane motor is connected
to an upper link of the four-bar linkage legs through a
50:1 harmonic drive and a series spring. The angle of the
output shaft of the harmonic drive is represented by the
subscript “gr”. In particular, we introduce qgr1R, qgr2R, qgr1L,
and qgr2L. In addition, u1R, u2R, u1L and u2L denote the
torques generated by the corresponding motor. The torques
generated by the hip motors are denoted by u3R and u3L.

A vector of generalized coordinates is given by

(qzT, qyT, qxT, q1R, q2R, q1L, q2L,

qgr1R, qgr2R, q3R, qgr1L, qgr2L, q3L).

For the work presented here, MARLO was fitted with stiff
springs which approximately constrain the link coordinates
to be equal to the associated gear coordinates; thus we use
the reduced vector of generalized coordinates

q := (qzT, qyT, qxT, qgr1R, qgr2R, q3R, qgr1L, qgr2L, q3L)> ∈ Q,

in which the first three components are unactuated, whereas
the remaining six are actuated. Moreover, Q ⊂ R9 denotes
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Fig. 2. Mechanical structure and coordinates for MARLO. (a) Conceptual
diagram of rigid body model, with L and R denoting the left and right sides.
(b) Each leg is physically realized by a four-bar linkage. The knee angle
qKA,R is related to the angles of the upper links as qKA,R = q2R − q1R.

the configuration manifold. The control inputs are given by
the six-dimensional vector

u := (u1R, u2R, u3R, u1L, u2L, u3L)
> ∈ U ,

where U ⊂ R6 is the set of admissible control values.
The method of Lagrange is used to describe the evolution

of the mechanical system in the standard form of an input-
affine system ẋ = f(x)+g(x)u, in which x := (q>, q̇>)> ∈
X represents the state vector and X := TQ is the state
manifold. The open-loop hybrid model of walking is then
given by [3]

Σ :

{
ẋ = f(x) + g(x)u, x− /∈ S

x+ = ∆(x−), x− ∈ S,
(1)

in which x+ = ∆(x−) represents the instantaneous impact
model. Furthermore, S is the switching manifold on which
the solutions of the hybrid model (1) undergo an abrupt
change in the velocity coordinates according to the impact
map during walking on flat ground. In addition, x− and
x+ denote the states of the system just before and after the
impact event, respectively.

III. BMI OPTIMIZATION FOR STABILIZATION OF
WALKING GAITS

This section briefly reviews the systematic optimization
framework of [1], [2] involving BMIs and LMIs to expo-
nentially stabilize periodic orbits for parameterized closed-
loop models of bipedal locomotion. We consider a class of
parameterized nonlinear state feedback laws as

u = Γ (x, ξ) , (2)

where Γ(·, ·) is at least C2 and ξ ∈ Ξ ⊂ Rp represents the set
of tunable parameters for some p > 0. We assume that by
employing the smooth feedback law (2), there is a period-one
orbit (i.e., waking gait) O for the closed-loop hybrid model
which is (i) transversal to the switching manifold S, and (ii)
invariant under the choice of the controller parameters ξ.



The invariance property can be expressed as ∂f cl

∂ξ (x, ξ) = 0

for all (x, ξ) ∈ O×Ξ, where f cl(x, ξ) := f(x)+g(x)Γ(x, ξ)
and O denotes the set closure of O. The objective is then
to tune the free parameters ξ to exponentially stabilize O
for the closed-loop hybrid model. For this goal, we use the
method of Poincaré sections.

The evolution of the system on the switching manifold S
is given by the parameterized Poincaré map

x[k + 1] = P (x[k], ξ) , (3)

in which x[k] denotes the system’s state on the Poincaré
section S and k = 0, 1, · · · denotes the step number.
According to the invariance property, x∗ := O ∩ S is an
invariant fixed point for P . Let ξ∗ ∈ Ξ be a nominal vector
of controller parameters. The first-order approximation of the
Jacobian of the Poincaré map ∂P

∂x (x∗, ξ) around ξ = ξ∗ is
given by

∂P

∂x
(x∗, ξ) ≈ A0 +

p∑
i=1

Ai ∆ξi =: A(∆ξ), (4)

where A0 := ∂P
∂x (x∗, ξ∗) is the nominal Jacobian matrix,

the sequence Ai := ∂2P
∂ξi∂x

(x∗, ξ∗), i = 1, . . . , p denotes the
sensitivity matrices, and ∆ξ := ξ − ξ∗ is a small increment
in controller parameters. Effective numerical approaches to
calculate A0 and Ai for i = 1, · · · , p are presented in [2].

A BMI optimization problem can then be formulated as

min
W,∆ξ,µ,η

− wµ+ η (5)

s.t.
[
W A(∆ξ)W
? (1− µ)W

]
> 0 (6)[

I ∆ξ
? η

]
> 0 (7)

µ > 0, (8)

in which W = W> > 0 and µ > 0 are decision variables
introduced to express stability of A(∆ξ) in terms of the BMI
(6). Indeed, by Schur’s lemma,

√
1− µ is an upper bound for

the spectral radius of A(∆ξ) when (6) and (8) are satisfied.
Similarly, (7) implies that η is an upper bound on ‖∆ξ‖22.
The optimization tries to minimize a linear combination of
µ and η; adjusting the weight w affects the tradeoff between
improving the convergence rate (i.e., minimizing

√
1− µ)

and ensuring that A(∆ξ) remains a reasonable approximation
of ∂P

∂x (x∗, ξ) (i.e., minimizing ‖∆ξ‖2).

IV. VIRTUAL CONSTRAINTS FOR 3D WALKING

Virtual constraints are relations on the state variables of
the robot’s model that are achieved through the action of
actuators and feedback control instead of physical contact
forces. They are called virtual because they can be re-
programmed on the fly without modifying any physical
connections among the links of the robot or its environment.
Virtual constraints can be used to synchronize the evolution
of a robot’s links to create periodic motion, such as walking
[3], [6], [16]–[23]. They are implemented as output functions
which are in turn regulated to zero by feedback laws.

A. Parameterized Virtual Constraints

In this paper, we consider parameterized holonomic virtual
constraints as follows

y(x, ξ) := h0(q, ξ)− hd(θ(q), ξ)

:= H(ξ) (q − qd (θ(q))) ,
(9)

where h0(q, ξ) := H(ξ) q represents the set of controlled
variables and hd(θ, ξ) := H(ξ) qd(θ) denotes the desired
evolution of the controlled variables along the desired gait
O. In addition, H(ξ) ∈ R6×9 is an output matrix to be
determined and qd(θ) represents the desired evolution of the
generalized coordinates on the desired walking gait. The
function θ(q) denotes the gait phasing variable that is a
strictly monotonic (increasing or decreasing) quantity along
the orbit O. In particular, θ plays the role of time, which is a
key to obtaining time-invariant feedback laws. By designing
the output y(x, ξ) to have vector relattive degree (2, · · · , 2)
with respect to u, an I/O linearizing controller of the form

Γ(x, ξ) = − (LgLfy)
−1

(
L2
fy +

KD

ε
Lfy +

KP

ε2
y

)
,

(10)
where KD,KP , ε > 0, can be used to zero the outputs rep-
resented by the virtual constraints. It can be shown that the
feedback law of (10) satisfies the invariance assumption of
Section III and hence, we can employ the BMI optimization
framework to properly choose the output matrix H(ξ) to
guarantee the asymptotic stability of the walking gait O. For
later purposes, we define the parameterized zero dynamics
manifold corresponding to the output y as

Z(ξ) := {x ∈ X | y(x, ξ) = Lfy(x, ξ) = 0}, (11)

on which the output y is identically zero. We also remark
that the I/O linearizing feedback law (10) renders the zero
dynamics manifold Z forward invariant and attractive.

B. Nominal Controlled Variables

This section presents a nominal set of controlled variables
(H(ξ∗) q) for MARLO around which the BMI optimization
of (5) will be solved. The nominal controlled variables in the
sagittal plane are selected as the swing and stance leg and
knee angles [3]. For each leg, the virtual leg is defined as the
the virtual line connecting the leg end to the corresponding
hip joint. The leg angle is then defined as the angle of
the virtual leg with respect to the torso link. As stated in
Sect. I, the choice of controlled variables in the lateral plane
is critical for stability. Intuition and analysis both suggest that
stability is unlikely to be achieved when virtual constraints
ignore lateral motion of the robot [24], [3] [25]. For the
lateral plane, two controlled variables are chosen in this
paper. The first one is taken as the stance hip angle, whereas
the second one is defined for the swing hip angle based on
the concept of SIMBICON of [26]. Taken together, the vector
of nominal controlled variables during the right stance phase



becomes

H(ξ∗) q =



1
2 (qgr1R + qgr2R)
1
2 (qgr1L + qgr2L)
qgr2R − qgr1R
qgr2L − qgr1L

q3R
q3L − (1 + cp)qyT − cpq3R

 , (12)

in which the first two components represent the stance and
swing leg angles, and the third and fourth components denote
the stance and swing knee angles, respectively. The fifth
component is the stance (i.e., right) leg hip angle. Finally,
the sixth component represents the linearized version of
the SIMBICON-based controlled variable introduced in [25],
where cp := 0.85 is a constant. While the SIMBICON-based
virtual constraint effectively stabilized the walking gait in
[25], tuning the parameters of the the output was a delicate
task. Indeed, the collective analytical and experimental re-
sults of [24], [3] and [25] motivated the development of the
BMI optimization method for systematically selecting virtual
constraints.

The gait phasing variable is defined as the angle of the
hip with respect to the stance foot. In addition, the periodic
walking motion O is designed using the motion planning
algorithm of [3].

V. EXPERIMENTAL IMPLEMENTATION OF
VIRTUAL CONSTRAINTS AND STABILITY

ANALYSIS

This section presents and analyzes several variations on
the I/O linearizing control law which will be used in exper-
iments.

A. Feedback Linearization

Employing the input-output linearizing feedback law in
simulation permits us to study the effects of different choices
of virtual constraints on the stability of an orbit. Because,
when this feedback law is combined with the event-based
updates described below, the zero dynamics manifolds be-
come hybrid invariant, we can isolate the stabilizing effect
of the choice of virtual constraints from the effect of PD
control.

B. Event-Based Update

Following the approach of [27] to achieve hybrid invari-
ance of the zero dynamics manifold, we first parameterize
the outputs with the second set of parameters α, referred to
as the hybrid invariance parameters, as follows

y(x, ξ, α) := h0(q, ξ)− hd(θ(q), ξ, α). (13)

Then we employ an event-based law to update α to zero
the output function y(x, ξ, α) and its time-derivative at the
beginning of the step. The parameters α also remain constant
until the next impact. Further details on this approach can
be found in [27].

C. PD + Feedforward

Feedback linearization can be sensitive to parametric un-
certainty in the model. For this reason we will only use (10)
for gait design and stability analysis. Following [28], we
make use of a modified version of (10) for experimental
implementation. The modification consists of substituting
regressed torques for the nominal torque on the orbit, i.e.,
u∗, and a constant matrix T for the decoupling matrix
LgLfy. The nominal (i.e., feedforward) torque is determined
from the simulation model by regressing the torques along
the periodic orbit as 5th order Bézier polynomials in the
normalized gait phasing variable s. Thus the feedback law
used is given by

uexp = u∗(s)− T−1

(
KD

ε
ẏ +

KP

ε2
y

)
. (14)

It can be shown that the modified feedback law of (14)
satisfies the invariance property of the orbit with respect to
controller parameters ξ as stated in Section III.

D. Stability Analysis

To evaluate the stability of the designed gait under various
choices of feedback we compute the linearized Poincaré
maps of the corresponding closed-loop systems. Jacobians
are estimated by symmetric differences with a uniform step
size of 10−4 radians. Feedback gains KP , KD, and ε were
chosen based on walking experiments.

Feedback linearization with event-based update. For
this feedback law the dominant eigenvalues of the lin-
earized Poincaré map for the closed-loop system are
{−1.84,−1, 0.75,−0.49, 0.43}. The eigenvalue -1 corre-
sponds to yaw, and is expected as neither the robot dynamics
nor the feedback controller depend on yaw [29, Prop. 4], [30,
Thm. 3].

Feedback linearization without event-based update.
For this feedback law the dominant eigenvalues are
{−1.64,−1, 0.75,−0.46, 0.35}.This feedback law will be
used in conjunction with BMI optimization to determine
how the virtual constraints should be modified to achieve
exponential stability of the orbit.

PD + feedforward with event-based update.
For this feedback law the dominant eigenvalues are
{−1.99,−1, 0.72,−0.54, 0.24}. One practical motivation
for using event-based updates is to reduce the magnitude of
discontinuities in the torque at step transitions.

PD + feedforward without event-based update. Dis-
abling the event-based updates leads to a simpler control
law which nevertheless approximately enforces the virtual
constraints. The dominant eigenvalues in this case are
{−1.77,−1, 0.74,−0.54, 0.23}.

VI. BMI OPTIMIZATION OF CONTROLLED
VARIABLES

This section employs the BMI optimization algorithm of
Section III as a systematic means to search for a set of
controlled variables to exponentially stabilize the walking
gait for the closed-loop model of the robot.



A. Parametrization of the Constraints

For the experiments reported here, we consider the param-
eterized virtual constraints of (9) with H selected to allow
each virtual constraint to depend on the torso roll angle. The
motivation for this is based on [24], [3] and [25], where
various heuristics used the roll angle to achieve “stability in
the lateral motion of the robot”. We therefore have

H(ξ) =


0 ξ1 0 1

2
1
2 0 0 0 0

0 ξ2 0 0 0 0 1
2

1
2 0

0 ξ3 0 −1 1 0 0 0 0
0 ξ4 0 0 0 0 −1 1 0
0 ξ5 0 0 0 1 0 0 0
0 ξ6 − (1 + cp) 0 0 0 −cp 0 0 1

 .
(15)

The nominal controlled coordinates in (15) are simply
H(ξ∗)q, where ξ∗ = 0 is the nominal choice of parameters.

Because we have chosen not to make the virtual con-
straints yaw-dependent, the linearized Poincaré map of the
closed-loop system will have an eigenvalue of -1 for all
values of ξ. Thus, to proceed with an optimization “mod-
ulo yaw”, we eliminate the yaw coordinate by a sim-
ple projection. Specifically, after computing the Jacobian
A0 = ∂P

∂x (x∗f , ξ
∗) of the corresponding Poincaré map and

the sensitivities Ai, i = 1, . . . , 6 of A0 with respect to
perturbations in ξi, we remove the first row and column of
each. The resulting matrices are assembled into the affine
matrix function A(∆ξ) = A0 +

∑6
i=1Ai ∆ξi comprising

the model data needed for the BMI optimization problem
(5). Using PENBMI and YALMIP this optimization problem
is solved with the cost weight w = 10.

B. Computational Results

The optimal perturbation of ξ is found to be ∆ξ =
(−0.26, 0.20, 0.30,−0.23,−0.06, 0.24), and the correspond-
ing spectral radius of A(∆ξ) is 0.28.

When the revised virtual constraints are used in each
of the closed-loop systems described in Section V-
D, the eigenvalues of the linearized Poincaré map
are: Feedback linearization with event-based update:
{−1,−0.68, 0.68,−0.32, 0.08}; Feedback linearization
without event-based update: {−1, 0.58,−0.42,−0.42, 0.32};
PD + feedforward with event-based update:
{−1,−0.34,−0.34, 0.56,−0.39}; PD + feedforward without
event-based update: {−1,−0.34,−0.34, 0.53,−0.04}. As
before, the eigenvalue -1 corresponds to yaw.

We see that the revised virtual constraints stabilize the
orbit for the closed-loop system with any of the control laws
considered.

VII. EXPERIMENTAL EVALUATION
A. Method

The controller design based on BMI-optimized constraints
was evaluated on MARLO and compared to the controller
based on the nominal virtual constraints. Experiments were
performed on flat ground in the laboratory, where MARLO
can walk approximately 7-8 meters during a single exper-
iment. Power was supplied by an off-board battery bank

carried on a mobile gantry. The gantry is designed to catch
the robot when power is cut at the end of an experiment, or
in the event of an early failure. It does not support the robot
or provide any stabilization during the walking experiments.

In each experiment the control software executes a gait
initiation sequence as follows:

1) Posing. The robot is placed in its initial pose and then
lowered from the gantry to the ground where it begins
supporting its own weight. Because the toroidal feet are
not large enough to achieve static balance, an experi-
menter manually stabilizes the robot’s COM over the
feet. The control software waits for the experimenter
to release the robot before entering the Injection phase.
Release is detected by comparing the pitch rate to a
pre-specified threshold of -3 degrees per second.

2) Injection. When the pitch rate crosses the threshold,
the controller initiates a lateral rocking motion away
from the left leg by rapidly extending the left knee 5
degrees from the posing configuration.

3) Transition. The software then enters the Transition
phase, in which it initiates a short first step to accel-
erate the robot forward. The transition step employs
hand-modified virtual constraints originally based on
an optimization [31].

4) Walking. After a single transition step, the walking
virtual constraints are activated and remain in use for
the duration of the experiment. Swing leg impact is
detected using the knee angle spring deflection on the
swing and stance legs. During the first five steps of
the Walking phase, the torso is offset several degrees
forward to help the robot gain speed.

Prior to the experiments reported here, a series of ex-
periments were run in which the virtual constraints were
minimally adjusted to achieve walking. This is necessary
due to current discrepancies between the model and the
robot. The swing knee angle virtual constraint, in particular,
required the most tuning. It is hypothesized that this is due
to a combination of stiction in the harmonic drives and
limitations in peak motor torque. The swing knee angle
feedforward torque was also adjusted by hand to improve
tracking. These modifications caused the actual trajectory
followed by the robot to more closely match the originally
designed trajectory.

In each experiment the robot was allowed to walk until:
1) the robot approached the perimeter of the walking area;
2) the state of the robot left a (conservative) safe operating
region; or 3) an experimenter cut motor power. The last of
these occurred twice; in both cases the robot lost forward
momentum and appeared to be on the verge of falling when
the power was cut.

B. Results

Eighteen experiments were performed as reported in Ta-
ble I. The superiority of the BMI-optimized outputs in stabi-
lizing the gait is evident. Ten of the experiments with event-
based updates enabled are described here: five using the
nominal outputs, and five using the BMI-optimized outputs.



TABLE I
SUMMARY OF SEVERAL WALKING EXPERIMENTS

IDa Controlled
coordinates

Event-based
update

Total steps Reason ended

N1 nominal enabled 14 power cut
B1 optimized enabled 19 end of lab
B2 optimized enabled 14 end of lab
N2 nominal enabled 11 power cut
B3 optimized enabled 4 power cut
N3 nominal enabled 10 power cutb

B4 optimized enabled 15 end of lab
N4 nominal enabled 4 power cut
B5 optimized enabled 13 end of lab
N5 nominal enabled 3 power cut
B6 optimized disabled 15 end of lab
B7 optimized disabled 20 end of lab
N6 nominal disabled 6 power cut
N7 nominal disabled 14 power cut
B8 optimized disabled 19 end of lab
B9 optimized disabled 19 end of lab

a Experiments are listed in the order they were performed. Additional
runs (including runs for filming by BTN LiveB1G) were performed
between some of the experiments listed above.

b Safety stop preceded by external disturbance from the safety cable.

See [32] for details and additional experiments with event-
based updates disabled.

In four of the five experiments using BMI-optimized
outputs, the robot reached the perimeter of the walking
area in the lab. A video of the experiments is available on
YouTube [33]. Because yaw is not directly regulated, the
robot tended to turn gradually while walking. There was less
yaw motion when using the nominal outputs.

Figure 3 shows the motion of the torso. Here the gradual
turning is evident. The average yaw rate was around -9.8
degrees per second with the nominal outputs and −11.0 de-
grees per second with the optimized outputs. The torso pitch
oscillates with each step. The amplitude of the oscillation
(between 6–10 degrees peak to peak) is somewhat larger
than in simulation (5.5 degrees peak to peak).

The most notable difference in the torso motion is in the
roll angle. From the simulation, we expect the peak-to-peak
torso roll to be about 4.4 degrees. The nominal controller
fails to effectively stabilize the torso roll. On the other
hand, after a transient following gait initiation, the optimized
controller brings the torso oscillation to between 4 and 6
degrees peak to peak.

The stabilizing effect is further evident in the motion of
the COM. Figure 4 shows the linearized COM position with
respect to the right foot.1 From these plots we see that the
relative motion of the COM in the sagittal plane is very

1Computed as p̂COM(q) = JCOM (q − q0) where JCOM =
∂pR

COM
∂q

(q)
∣∣
q=q0

is a constant matrix, pR
COM(q) is the position of the COM

with respect to the right leg, and q0 is a symmetric, upright nominal
configuration.

Fig. 3. Torso Euler angles with event-based updates enabled. The plots
compare the results from ten walking experiments, five of which used the
nominal outputs (left column; experiments N1, N2, N3, N4, N5) and five of
which used the optimized outputs (right column; experiments B1, B2, B3,
B4, B5).

Fig. 4. Linearized position of the COM with event-based updates enabled.
The plots compare the results from ten walking experiments, five of which
used the nominal outputs (left column; experiments N1, N2, N3, N4,
N5) and five of which used the BMI-optimized outputs (right column;
experiments B1, B2, B3, B4, B5).



Fig. 5. Tracking of desired evolutions when using the nominal outputs.
The data are from experiment N1, and are representative of the other
experiments. The dashed lines show the desired evolution of the controlled
variables, and the solid lines represent their actual evolution.

similar for all four controllers tested. However, the motion
of the COM in the lateral plane is quite exaggerated when
the nominal outputs are used. When the optimized outputs
are used, the COM is maintained very close to the nominal
position.

The low-level joint tracking errors were generally com-
parable. Figures 5 and 6 compare the desired evolutions
with the actual trajectories of the controlled coordinates for
experiments N1 and B1, respectively.

VIII. DISCUSSION AND CONCLUSIONS

The experimental results indicate that the virtual con-
straints designed on the basis of the BMI optimization
algorithm are more effective at lateral stabilization than the
nominal constraints. The robot walked farther, more consis-
tently, and with less torso and COM oscillation in the lateral
plane with the optimized virtual constraints compared to the
nominal virtual constraints. A potential physical mechanism
by which this is achieved is given next. In the lateral plane,
the optimal perturbation ∆ξ primarily affects the swing hip
angle. It effectively reduces the SIMBICON gain cp, yielding
less swing hip abduction in response to the robot rolling to
the inside of the stance foot. This in turn will lead the swing
foot to impact the ground earlier, reducing the magnitude of
step-to-step oscillations in the lateral plane. In the sagittal
plane, increased roll motion toward the swing leg causes the
stance leg to shorten and swing leg to lengthen, terminating
the step earlier in the gait.

Fig. 6. Tracking of desired evolutions when using the optimized outputs.
The data are from experiment B1, and are representative of the other
experiments. The dashed lines show the desired evolution of the controlled
variables, and the solid lines represent their actual evolution.

While the results of these experiments are promising, lim-
itations are acknowledged. In particular, due to the relatively
short walking distance available in the lab, it is difficult to
separate the effects of initial conditions from the long-term
behavior of the robot under a particular controller. Variability
in the initial conditions may be caused by small differences in
how the robot is posed, how the robot initially falls forward,
and where it takes its first step during the injection phase.
While the magnitudes of these differences should be similar
for each of the controllers, and one of them did yield consis-
tently more steps than the other, it is nevertheless important
to repeat the experiments outdoors with much longer runs.
Recent work has shown how to include disturbance rejection
directly into the design problem for the periodic orbit [34],
[35]. In addition, the BMI optimization algorithm presented
in [2] also allows for disturbance rejection metrics to be
incorporated into the problem formulation, allowing one to
search for stabilizing solutions with enhanced disturbance
rejection capabilities. Each of these methods will be explored
on the robot.
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