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Abstract— The first return map or Poincar é map can be
viewed as a discrete-time dynamical system evolving on a hyper
surface that is transversal to a periodic orbit; the hyper surface
is called a Poincaŕe section. The Poincaŕe map is a standard
tool for assessing the stability of periodic orbits in non-hybrid
as well as hybrid systems. In addition, it can be used for
stabilization of periodic orbits if the underlying dynamics of
the system depends on a set of parameters that can be updated
by a feedback law when trajectories cross the Poincaré section.
This paper addresses an important practical obstacle that arises
when designing feedback laws on the basis of the Jacobian
linearization of the Poincaré map. In almost all practical cases,
the Jacobians must be estimated numerically, and when the
underlying dynamics presents a wide range of time scales, the
numerical approximations of the first partial derivatives are suf-
ficiently inaccurate that controller tuning is very difficult. Here,
a robust control formalism is proposed whereby a convex set of
approximations to the Jacobian linearization is systematically
generated and a stabilizing controller is designed through two
appropriate sets of linear matrix inequalities (LMIs). The result
is illustrated on a walking gait of a 3D underactuated bipedal
robot.

I. I NTRODUCTION

Robotic bipedal locomotion is being profitably studied
with hybrid models [1]-[4]. Steady-state walking and running
gaits correspond to periodic orbits in the hybrid model.
The most fundamental tool for analyzing the existence
and stability of periodic orbits for hybrid systems is the
method of Poincaré’s sections [5]-[7], [1, Chap. 4], [8]. This
method presents an equivalence between stability properties
of transversal periodic orbits for the hybrid system and those
of the corresponding equilibrium points of the discrete-time
system defined by the Poincaré return map on a transversal
hyperplane, referred to as the Poincaré section.

The approach of Poincaré’s sections can also be employed
to stabilize periodic orbits for hybrid systems [9]-[11]. In this
case, the underlying dynamics of the system depends on a
set of adjustable parameters that can be updated by an event-
based law when the trajectories cross the Poincaré section.
In [12]-[15], linear event-based controllers have been suc-
cessfully designed on the basis of the Jacobian linearization
of the Poincaŕe map. In these cases, the dynamic models
had up to18 states and the Jacobians were approximated
numerically. We have been pursuing similar event-based
control designs for ATRIAS, a new 3D bipedal robot with
series-compliant actuators [16], [17] and have encountered
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problems obtaining adequately robust control designs. The
source of the difficulty seems to be that the large springs used
for energy storage in the series-compliant actuators render
the robot’s dynamics numerically stiff, which in turn leads
to inaccurate estimates of the Jacobians when using central
differences.

In this paper, we regard the numerically-determined Jaco-
bians as uncertain estimates of the true Jacobians and apply
methods from robust linear control to design the event-based
controller. In particular, the main contribution of the paper is
to present two LMI-based stabilization approaches for a class
of hybrid systems, composed ofN ≥ 1 phases, to reduce the
sensitivity of the closed-loop system to numerical errors and
also to parametric uncertainties in theN -step Poincaŕe map.
Parameterized and continuously differentiable continuous-
phase feedback laws are employed at the first level of
the control scheme. At the second level, the parameters
of the continuous-phase feedback laws are updated in an
event-based manner to stabilize the periodic orbit for the
closed-loop hybrid system. The results of the paper are then
illustrated on ATRIAS which has13 degrees of freedom
(DOFs) and7 degrees of underactuation (DOUs) during the
single support phase of walking.

II. ROBUST ORBITAL STABILIZATION OF PERIODIC

ORBITS FORHYBRID SYSTEMS

This section addresses robust stabilization of periodic
orbits for a class of hybrid systems, arising from systems
with impulse effects [18], [19] and composed ofN ≥ 1
continuous phases, against numerical errors and parametric
uncertainties in theN -step Poincaŕe map. The results of this
section will be used in Sections III and IV for ATRIAS
2.1. To define a hybrid system withN continuous phases,
let us consider the ordinary differential equationsẋi =
fi(xi) + gi(xi)ui, i = 1, · · · , N defined on the state spaces
Xi, whereXi are embedded submanifolds ofRni for some
ni > 0. The control inputsui, i = 1, · · · , N take values in
Ui, in which Ui ⊂ R

mi represents the set of admissible
control inputs during phasei and 0 < mi < ni. It is
supposed that the following hypothesis is satisfied for the
continuous phases.
H1) The vector fieldsfi and columns ofgi, i = 1, · · · , N

are continuously differentiable (i.e.,C1).
We assume that the phases are executed in the fixed order
1 → 2 → · · · → N → 1. In particular, we define the index
of next phase function asµ : {1, · · · , N} → {1, · · · , N} by

µ(i) :=

{
i+ 1, i = 1, · · · , N − 1
1, i = N.



Next, let Si→µ(i) be the switching hypersurface inXi on
which the transition from phasei to phaseµ(i) (i.e., fromXi

to Xµ(i)) occurs, according to the transition map∆i→µ(i) :
Si→µ(i) → Xµ(i) asx+

µ(i) = ∆i→µ(i)(x
−
i ). Here, the super-

scripts “−” and “+” denote the state of the hybrid system
just before and after the corresponding discrete transition. It
is assumed thatSi→µ(i) can be expressed as the zero level
set of theC1 functionHi→µ(i) : Xi → R, i.e.,

Si→µ(i) := {xi ∈ Xi|Hi→µ(i)(xi) = 0}

for which the following hypotheses are satisfied.

H2) For everyxi ∈ Si→µ(i), ∂Hi→µ(i)/∂xi(xi) 6= 0 so that
Si→µ(i) is ani−1 dimensional embedded submanifold
of Xi.

H3) The transition maps∆i→µ(i), i = 1, · · · , N are C1.
Furthermore,∆i→µ(i)(Si→µ(i)) ∩ Sµ(i)→µ◦µ(i) = ∅ to
prevent the chattering of solutions, whereµ ◦ µ(i) :=
µ(µ(i)) and “◦” represents the function composition.

The hybrid system withN continuous phases denoted by
H(Σ1, · · · ,ΣN ) is then defined as

Σ1 :

{
ẋ1 = f1(x1) + g1(x1)u1, x−

1 /∈ S1→2

x+
2 = ∆1→2(x

−
1 ), x−

1 ∈ S1→2

...

ΣN :

{
ẋN = fN (xN ) + gN (xN )uN , x−

N /∈ SN→1

x+
1 = ∆N→1(x

−
N ), x−

N ∈ SN→1.
(1)

A solution of the hybrid system (1) is constructed by
piecing together the trajectories of the flowsẋi = fi(xi) +
gi(xi)ui, i = 1, · · · , N such that the transitions take
place when these flows intersect the switching hypersurfaces
Si→µ(i). Next, let Ai ⊂ R

pi , i = 1, · · · , N be finite-
dimensional parameter spaces, referred to as stabilizing
parameter spaces, for somepi > 0. Define a family of
parameterized feedback lawsui : Xi × Ai → Ui by the
following piecewise policy

ui(xi, αi) :=

{
fcni(xi, α

∗
i ), si(xi) < sth,i

fcni(xi, αi), si(xi) ≥ sth,i.
(2)

In (2), fcni : Xi×Ai → Ui for i = 1, · · · , N areC1 functions
with respect to(xi, αi) on Xi×Ai. Moreover,α∗

i ∈ Ai, i =
1, · · · , N denote a set of nominal parameters.si : Xi → R by
si(xi) is a C1 real-valued function andsth,i ∈ R represents
a threshold value ofsi to be determined. Associated with
si and sth,i, we can define the event-based control surface
during phasei as follows

Sth,i := {xi ∈ Xi| si(xi) = sth,i}. (3)

It is assumed that the following hypothesis is satisfied.

H4) On the surfaceSth,i, i = 1, · · · , N ,

(i) fcni(xi, α
∗
i ) = fcni(xi, αi)

(ii)
∂fcni
∂xi

(xi, α
∗
i ) =

∂fcni
∂xi

(xi, αi)

(iii )
∂fcni
∂αi

(xi, α
∗
i ) = 0mi×pi

,

which in turn implies thatui is C1 with respect to
(xi, αi) on Xi ×Ai.

Remark 1: According to the piecewise policy in (2), the
stabilizing parameterαi is employed after the threshold value
sth,i (see hypothesis H6). The physical intuition behind this
is that human push recovery is mainly done by changing the
step length at the end of the current step.

Next, for everyα1 ∈ A1, · · · , αN ∈ AN , the param-
eterized hybrid systemH(Σcl,1,α1

, · · · ,Σcl,N,αN
) can be

expressed as

Σcl,1,α1
:

{
ẋ1 = fcl,1(x1, α1), x−

1 /∈ S1→2

x+
2 = ∆1→2(x

−
1 ), x−

1 ∈ S1→2

...

Σcl,N,αN
:

{
ẋN = fcl,N (xN , αN ), x−

N /∈ SN→1

x+
1 = ∆N→1(x

−
N ), x−

N ∈ SN→1,
(4)

in which fcl,i(xi, αi) := fi(xi)+gi(xi)ui(xi, αi). Through-
out this paper, we shall assume that the following hypotheses
are met.
H5) Associated with the nominal stabilizing parameters

α∗
i ∈ Ai, i = 1, · · · , N , the parameterized hybrid

systemH(Σcl,1,α∗

1
, · · · ,Σcl,N,α∗

N
) has a nontrivial pe-

riodic orbit O = ∪N
i=1Oi transversal to the switching

manifoldsSi→µ(i) and also to the event-based control
surfacesSth,i, i = 1, · · · , N , whereOi := O ∩ Xi.
In particular, {x∗

i } := Oi ∩ Si→µ(i) and {x∗
th,i} :=

Oi ∩ Sth,i for i = 1, · · · , N are singletons and

∂Hi→µ(i)/∂xi(x
∗
i ) fcl,i(x

∗
i , α

∗
i ) 6= 0

∂si/∂xi(x
∗
th,i) fcl,i(x

∗
th,i, α

∗
i ) 6= 0,

whereOi is the set closure ofOi.
H6) On the periodic orbitO, si(xi) is a strictly increasing

function of time. Moreover in (2),sth,i can be chosen
in the interval(s∗+i , s∗−i ), wheres∗+i and s∗−i are the
initial and final values ofsi during phasei of O.

Next, for a given initial conditionxi(0) ∈ Xi and a given
stabilizing parameterαi ∈ Ai, let ϕi(t;xi(0), αi) represent
the solution of the parameterized closed-loop differential
equationẋi = fcl,i(xi, αi) with the initial conditionxi(0)
over the maximal interval of existence. Suppose thatΓi is
a hypersurface inXi. Associated with the pair(xi(0), αi) ∈
Xi ×Ai, the flow of ẋi = fcl,i(xi, αi), evaluated onΓi, can
be expressed asFΓi

i : Xi ×Ai → Γi by

FΓi

i (xi(0), αi) := ϕi(T
Γi

i (xi(0), αi);xi(0), αi), (5)

in which TΓi

i : Xi × Ai → R≥0 represents the time of the
first impact ofϕi with the hypersurfaceΓi, i.e.,

TΓi

i (xi(0), αi) := inf{t ≥ 0|ϕi(t;xi(0), αi) ∈ Γi}. (6)

Now we are in a position to present theN -step Poincaŕe
map. For this goal, without loss of generality, letSth,1 be the
Poincaŕe section during phase1. Then, theN -step Poincaŕe
mapP : Sth,1 ×A1 × · · ·AN → Sth,1 can be defined as

P(x1(0), α1, · · · , αN ) :=

F
Sth,1

1 ◦∆N→1 ◦ F
SN→1

N ◦ · · · ◦ FS2→3

2 ◦∆1→2 ◦ F
S1→2

1 ,



wherex1(0) ∈ Sth,1 andαi, i = 1, · · · , N is employed for
si(xi) ≥ sth,i during phasei. According to the construction
procedure,x∗

th,1 (see hypothesis H5) is the fixed point of
P, i.e., P(x∗

th,1, α
∗
1, · · · , α

∗
N ) = x∗

th,1. Linearization of the
N -step Poincaŕe map around(x∗

th,1, α
∗
1, · · · , α

∗
N ) yields the

following discrete-time system with the state spaceSth,1

which is updated inN -step fashion

δx1[k+1] = Aδx1[k]+B






δα1[k]
...

δαN [k]




 , k = 0, 1, · · · , (7)

whereδx1[k] := x1[k]− x∗
th,1, δαi[k] := αi[k]− α∗

i and

A :=
∂P

∂x1(0)
(x∗

th,1, α
∗
1, · · · , α

∗
N )

B :=
∂P

∂(α1, · · · , αN )
(x∗

th,1, α
∗
1, · · · , α

∗
N ).

(8)

Due to the high dimension and range of time scales in models
describing walking of3D robots like ATRIAS, there may be
significant errors during numerical differentiating of theN -
step Poincaŕe map to obtain the Jacobian matricesA andB.
This complicates the design of the gain matrixK to stabilize
(A,B). To overcome this problem, we present two LMI-
based gain design approaches. In particular, assume thatA(ε)
andB(ε) represent numerical approximations of the Jacobian
matricesA andB which are obtained based on the two-point
difference approach with the perturbation valueε. Next, we
present the following Theorem.

Theorem 1 (Robust Stabilization of O): Assume that hy-
potheses H1-H6 are satisfied for the open-loop hybrid model
(1). Let FPA := {εAp }

MA

p=1 andFPB := {εBq }
MB

q=1 be two
feasible sets of perturbations used for numerical differentiat-
ing of theN -step Poincaŕe map to obtainA andB matrices,
respectively. DefineAp := A(εAp ) for p = 1, · · · ,MA and
Bq := B(εBq ) for q = 1, · · · ,MB . Moreover, assume that
due to numerical problems or parametric uncertainty, the
Jacobian matricesA and B are unknown and belong to
some convex polytopeA and B. In particular,A ∈ A :=
conv{A1, · · · , AMA

} andB ∈ B := conv{B1, · · · , BMB
}.

Set up the following two optimization problems,

ηmin := min
η,S,W

η

s.t. Fp,q :=

[
−S Ap S +Bq W
⋆ −S

]

≤ η I

p = 1, · · · ,MA, q = 1, · · · ,MB

(9)

and

ξmin := min
ξ,Pp,q,G,L

ξ

s.t. Jp,q := −

[
Pp,q Ap G+Bq L
⋆ G+G′ − L

]

≤ ξ I

p = 1, · · · ,MA, q = 1, · · · ,MB .

(10)

Then, the following statements are true.

1) (LMI stability with known Lyapunov matrix): If ηmin <
0 in the optimization problem (9), theN -step update

policy 




α1[k]
...

αN [k]




 =






α∗
1
...

α∗
N




−K δx1[k], (11)

employed on the surfaceSth,1 during phase1, expo-
nentially and robustly stabilizes the periodic orbitO
for the closed-loop hybrid model of walking, where
K := −W S−1. Moreover,V (δx1) := δx′

1 S
−1 δx1 is

the corresponding Lyapunov function for (7).
2) (LMI stability with unknown Lyapunov matrix): If

ξmin < 0 in problem (10), the update policy (11)
exponentially and robustly stabilizes the periodic or-
bit O for the closed-loop hybrid model of walking,
where K := −LG−1. Moreover, there existsP ∈
conv{Pp,q| p = 1, · · · ,MA, q = 1, · · · ,MB} such that
V (δx1) := δx′

1 P δx1 is the corresponding Lyapunov
function for (7).
Proof: Hypotheses H1, H3, H4 and H5 im-

ply that the N -step Poincaŕe map is C1 with re-
spect to (xth,1, α1, · · · , αN ) in an open neighborhood of
(x∗

th,1, α
∗
1, · · · , α

∗
N ). Consequently, the Jacobian matricesA

andB in (8) are well-defined. Moreover from H6, there is
an open neighborhoodN of O, such that inN \ O, the
feedback lawsui, i = 1, · · · , N are piecewise in the sense
that the solutions intersect the threshold manifoldSth,i. Thus,
the stabilizing parameterαi can be employed during phase
i, which is a necessary condition for∂P

∂αi
(.) 6= 0 .

Part (1): ηmin < 0 implies that Fp,q < 0 for p =
1, · · · ,MA and q = 1, · · · ,MB . Next for a givenA ∈
conv{A1, · · · , AMA

} and B ∈ conv{B1, · · · , BMB
}, there

are ap ≥ 0, p = 1, · · · ,MA and Bq ≥ 0, q = 1, · · · ,MB

such thatA =
∑MA

p=1 ap Ap andB =
∑MB

q=1 bq Bq. Moreover,
∑MA

p=1 ap = 1 and
∑MB

q=1 bq = 1. Thus,

MA∑

p=1

MB∑

q=1

ap bq Fp,q =

[
−S AS +BW
⋆ −S

]

< 0. (12)

Using Schur’s Lemma, the LMI problem (12) is equivalent
to (i) −S < 0 and (ii)

−S − (S A′ +W ′ B′)(−S)−1(AS +BW ) < 0.

Defining P := S−1 andK = −W S−1 translates this into
P > 0 and(A−BK)′ P (A−BK)−P < 0. Thus,δx1 =
0n1−1 is exponentially and robustly stable for (7). Finally,
Theorem 4.7 of [1] completes the proof of the exponential
stability of O for the closed-loop hybrid model.

Part (2): ξmin < 0 yields Jp,q < 0 for p = 1, · · · ,MA

and q = 1, · · · ,MB . The exponential stability ofδx1 =
0n1−1 for (7) then follows from [20]. Furthermore,P =
∑MA

p=1

∑MB

q=1 ap bq Pp,q is the corresponding Lyapunov ma-
trix. Similar to part (1), applying Theorem 4.7 of [1] com-
pletes the proof.

III. B ACKGROUND: HYBRID MODEL FOR3D WALKING

OF ATRIAS

This section extends the results of Section II to a
26-dimensional hybrid model describing3D walking by



ATRIAS 2.1. During the single support phase (one point
foot on the ground), ATRIAS is an underactuated mechanical
system with13 DOFs and7 DOUs. The double support phase
(both point feet on the ground) of walking is assumed to be
instantaneous. ATRIAS exploits four mechanical springs to
drive the legs in the sagittal plane for energy efficiency. In
particular, the springs absorb the energy during the impact
and release it within the step. To develop the hybrid model
of walking by ATRIAS, a convenient set of configuration
variables is presented. To achieve this goal, let us attach
the torso frame rigidly to the torso link with the origin on
its center of mass (COM). Next, the rotation of the torso
frame with respect to the world frame can be expressed as
R0

T := Rz(qzT)Ry(qyT)Rx(qxT), whereRx, Ry andRz are
the basis rotations about thex, y and z axes, respectively.
Moreover, qzT, qyT and qxT are the yaw, roll and pitch
angles of the robot (see Fig. 1). In the frontal plane of
the robot, the angles of the right and left hips relative to
the torso link are expressed byq3R and q3L , respectively,
where the subscripts “R” and “L” denote the right and
left. Furthermore, in the sagittal plane of the robot, the
angles of the shin and thigh links relative to the torso are
given by q1R and q2R for the right leg andq1L and q2L for
the left leg (see Fig. 1). The motors in the sagittal plane
are series-elastic actuators and connected through springs.
Consequently, we denote the corresponding angle of the
output shafts (i.e., position of springs) byqgr1R, qgr2R, qgr1L

andqgr2L . This completes the configuration variables for the
single support phase of ATRIAS asq := (q′u, q

′
a) ∈ Q, in

which qu and qa are unactuated and actuated components
of q, i.e., qu := (qzT, qyT, qxT, q1R, q2R, q1L , q2L)

′ and qa :=
(qgr1R, qgr2R, q3R, qgr1L , qgr2L , q3L)

′ andQ is the configura-
tion space. The torque input of the mechanical system can
also be expressed asu := (u1R, u2R, u3R, u1L , u2L , u3L)

′ ∈
R

6, whereu1R, u2R, u3R, u1L , u2L andu3L are motor torques
to drive qgr1R, qgr2R, q3R, qgr1L , qgr2L and qgr3L through
fixed gear ratio systems, respectively.

A. Continuous phases of walking

To simplify the analysis and to present the main idea,
we will omit the stance phase indexi ∈ {R,L}. Next, the
evolution of the mechanical system during continuous phases
of walking can be expressed as

D(q) q̈ + C(q, q̇) q̇ +G(q) + Γspring(q) + Γdamper(q, q̇)

+ Γfriction(q, q̇) = Binputu,
(13)

whereD(q) ∈ R
13×13 is the positive-definite mass-inertia

matrix and C(q, q̇) q̇ ∈ R
13 represents the Coriolis and

centrifugal terms. Furthermore,G(q) ∈ R
13, Γspring(q) ∈

R
13 and Γdamper(q, q̇) ∈ R

13 are the terms associated with
the gravity, spring and damping forces of the compliant
elements, respectively.Γfriction(q, q̇) ∈ R

13 denotes the ro-
tational friction with respect to the yaw motion about the
stance leg end. Finally,Binput ∈ R

13×6 is the input matrix
with the property rankBinput = 6.

Fig. 1: ATRIAS2.1, a bipedal prototype. (a) Rotation matrix
R0

T together with the yaw, roll and pitch angles. (b) Hip
angles and motor torques in the frontal plane. (c) Shin and
thigh angles with respect to the torso and corresponding
motor torques in the sagittal plane.

B. Discrete transitions of walking

Following the developments of reference [14], to present
the discrete transition models, conservation of momentum
together with stationary position for the swing leg end
while preserving the yaw rotation about the swing leg end
during impact yields instantaneous impact maps(q+, q̇+) =
∆R→L(q

−, q̇−) and (q+, q̇+) = ∆L→R(q
−, q̇−).

C. Hybrid model of walking

Let us define the state vector of the mechanical system
as x := (q′, q̇′)′ ∈ X , in which X := TQ is the
26-dimensional tangent bundle of the configuration space
Q. Next, the evolution of the mechanical system during
walking by ATRIAS can be expressed by a hybrid system
composed of two continuous phases to represent the right
and left stance phases and two discrete transitions between
the continuous phases to denote the right to left and left to
right instantaneous impact maps. In particular,

ΣR :

{
ẋ = fR(x) + gR(x)u, x− /∈ SR→L

x+ = ∆R→L(x
−), x− ∈ SR→L

ΣL :

{
ẋ = fL(x) + gL(x)u, x− /∈ SL→R

x+ = ∆L→R(x
−), x− ∈ SL→R.

(14)

In (14), the input-affine systeṁx = fi(x) + gi(x)u repre-
sents the evolution of the mechanical system during phase
i ∈ {R,L}. Moreover, Si→j denotes the25-dimensional
switching manifold during the transition from phasei to
phasej, where i 6= j ∈ {R,L}. We note thatSi→j :=
{x ∈ X | pzsw(q) = 0}, in which pzsw : Q → R is the
vertical component (i.e.,z component) of the swing leg end
Cartesian coordinates. The impact maps are then expressed
by ∆i→j : Si→j → X , i 6= j ∈ {R,L}. For later purposes,



we assume thatO := OR ∪ OL is a periodic orbit of the
hybrid model (14) to be stabilized.

IV. HZD AND LMI- BASED CONTROL STRATEGY FOR

EXPONENTIAL AND ROBUST STABILIZATION

This section presents a dual-level and time-invariant con-
trol strategy based on virtual constraints [7], hybrid zero
dynamics (HZD) [1, Chap. 6] and Theorem 1 to exponen-
tially and robustly stabilize periodic orbits for3D walking
by ATRIAS. At the first level of the control strategy,6
virtual constraints are defined as parameterized holonomic
output functions in both the sagittal and frontal planes of
the mechanical system and imposed to be zero by using
the within-stride controller. The within-stride controller is a
parameterized time-invariant and continuously differentiable
feedback law which creates a family of parameterized at-
tractive and forward invariant zero dynamics manifolds. On
these manifolds, the mechanical system has7 DOFs and its
evolution can be expressed by the unactuated components.
Moreover, the evolution of the controlled variables can be
expressed in terms of a strictly increasing holonomic quantity
referred to as the phasing term, defined in the sagittal plane.
Virtual constraints coordinate the links of the robot during
3D walking. In particular, four components of the virtual
constraints are defined in the sagittal plane of the robot
and they are capable to stabilize periodic orbits for the
planar model of walking by ATRIAS. The two remaining
components are defined in the frontal plane to synchronize
the stance hip angle as well as the distance between the
horizontal components of the swing leg end and robot’s COM
with the phasing term in the sagittal plane.

At the second level of the control strategy, the parameters
of the virtual constraints are updated by two discrete-time
loops. The first loop updates the parameters of the output
function to render the family of the zero dynamics manifolds
hybrid invariant under the closed-loop system. This restricts
the state of the hybrid model to a14-dimensional reduced-
order hybrid system referred to as the HZD. According
to Theorem 1, the second loop exponentially stabilizes the
corresponding fixed point of the two-step Poincaré return
map on the basis of a two-step event-based correction.

A. Within-stride controller

During continuous phases of walking, let us define the
following parameterized holonomic output function

y(x;αhi, αst) := h(q;αhi, αst)

:= hnom(q)− hhi(θ;αhi)− hst(θ;αst)

:= hc(q)− hd(θ)
︸ ︷︷ ︸

hnom(q)

−hhi(θ;αhi)− hst(θ;αst).

(15)

In (15), y(x;αhi, αst) := h(q;αhi, αst) ∈ R
6 represents the

holonomic output function to be regulated. Furthermore,αhi

and αst are the parameters of the output function corre-
sponding to the hybrid invariance and stabilization issues.
hnom(q) ∈ R

6 is a nominal output function vanishing on the

desired periodic orbitO. In particular,hnom(q) := hc(q) −
hd(θ), wherehc(q) ∈ R

6 denotes the controlled variables
consisting of a set of holonomic quantities to be controlled.
The desired evolution of the controlled variables on the
periodic orbitO can be given by the vectorhd(θ) ∈ R

6 in
terms of the phasing termθ(q). For the ATRIAS structure,
θ is chosen as the angle of the virtual leg with respect to
the ground, where the virtual leg is defined as a virtual
line in the sagittal plane of the robot which connects the
stance leg end to the stance hip joint. We note that on
the periodic walking motionO, θ is a strictly increasing
function of time (hypothesis H6).hd(θ) can be obtained
by regressing the controlled variableshc(q) versusθ on O.
Furthermore,hhi(θ;αhi) and hst(θ;αst) are additive terms
to create hybrid invariant zero dynamics manifolds and to
stabilizeO, respectively. These terms are zero on the periodic
orbit. The parameters of the hybrid invariance and stabilizing
terms, i.e.,αhi ∈ Ahi and αst ∈ Ast, are updated in a
step-by-step fashion, in whichAhi and Ast represent the
corresponding finite-dimensional parameter spaces.

The within-stride controller is obtained based on input-
output linearization. To this end, differentiating the output
function y with respect to time and along the trajectories of
the continuous phases results in

ÿ = LgLfh(q;αhi, αst)u+ L2
fh(q, q̇;αhi, αst).

Consequently, the parameterized feedback law

u(x;αhi, αst) = −(LgLfh(q;αhi, αst))
−1

(

L2
fh(q, q̇;αhi, αst)

+
KD

ǫ
Lfh(q, q̇;αhi, αst) +

KP

ǫ2
h(q, q̇;αhi, αst)

)

(16)

yields the following output dynamics

ÿ +
KD

ǫ
ẏ +

KP

ǫ2
y = 0, (17)

where KP = kp I6×6 > 0, KD = kd I6×6 > 0 and
ǫ > 0. The zero dynamics manifold associated with the
output function (15) can be expressed as the following14-
dimensional attractive and forward invariant manifold

Zαhi,αst := {x ∈ X |y(x;αhi, αst) = Lfy(x : αhi, αst) = 06}.

B. Hybrid invariance

In order to render the zero dynamics manifolds hybrid
invariant, the parameters of the hybrid invariance term
hhi(θ;αhi) are updated at the beginning of each step to satisfy

hhi(θ
+;αhi) = hnom(q

+)

∂hhi

∂θ
(θ+;αhi) θ̇

+ =
∂hnom

∂q
(q+) q̇+,

(18)

which in turn implies that1

y(x+;αhi, αst) = Lfy(x
+;αhi, αst) = 06. (19)

1According to (2) and hypothesis H4, the stabilizing termhst(θ;αst) is
designed to be zero at the beginning of the step.



In this paper, it is assumed thathhi(θ;αhi) is a fifth-order
polynomial on the interval[θ+, θhi], whereθhi :=

1
2 (θ

++θf )
is the hybrid invariance threshold andθf is the final value
of θ on O. Moreover,hhi(θ;αhi) is identically zero forθ >
θhi while continuity of position, velocity and acceleration is
met atθ = θhi. Consequently, the family of zero dynamics
manifolds Z := {Zαhi,αst|αhi ∈ Ahi, αst ∈ Ast} is hybrid
invariant under the flow of the closed-loop hybrid system.

C. Stabilization

To exponentially stabilize the desired periodic orbitO
based on Theorem 1, the parameters of the stabilizing term
hst(θ;αst) are updated in a two step manner. In particular, we
assume thathst(θ

+;αst) = 06 and ∂
∂θ
hst(θ

+;αst) θ̇
+ = 06

to preserve the hybrid invariance condition of Section IV-
B. Moreover, to define a Poincaré section for stabilization
issue, we consider a stabilization threshold valueθst with
the propertyθhi < θst < θf and suppose thathst(θ;αst) ≡ 06
for θ < θst. Furthermore,hst(θ;αst) is assumed to be a third
order polynomial with parametersαst for θ > θst while twice
differentiability is satisfied atθst. Next, define the event-
based control surfaceSth as the level setθ(q) = θst, i.e.,
Sth := {x ∈ X | θ(q) = θst} (see (3)). According to the
construction procedure of the hybrid invariance and stabi-
lizing terms, the stabilization term is active forθ(q) ≥ θst

while h in (15) is twice continuously differentiable (i.e.,C2)
with respect to its arguments. This together with the within-
stride controller (16) implies hypothesis H4. Furthermore,
sincehd(θ) is obtained by regressing the controlled variables
on O and the additive terms are zero onO, H5 is met. By
definingsi = θ, it can be concluded that H6 is satisfied and
consequently, Theorem 1 can be employed.

D. Closed-loop simulation results

In order to confirm the analytical results obtained in the
paper, this section presents simulation of the closed-loop
hybrid system. For this goal, the sagittal components of the
controlled variables during the right stance phase are defined
ashc,1(q) =

1
2 (qgr1R + qgr2R), hc,2(q) =

1
2 (qgr1L + qgr2L),

hc,3(q) = qgr2R − qgr1R and hc,4(q) = qgr2L − qgr1L . We
have observed that these components can stabilize periodic
orbits for the2D model of ATRIAS2. Here, we stabilize a
periodic orbitO on which the robot has the average speed
1 (m/s). The event-based surfaceSth is also defined in2

3
of the nominal gait. Letxsw(q) and xcm(q) represent the
horizontal Cartesian coordinates of the swing leg end and
robot’s COM in the frontal plane with respect to the stance
leg end, respectively. If the frontal components ofhc are
defined ashc,5(q) = q3R andhc,6(q) = xsw(q)−xcm(q), the
three biggest eigenvalues of the averaged JacobianAave :=
1

MA

∑MA

p=1 Ap are λ1 = 1.1745, λ2 = 1.0000 and λ3 =

0.8987. Here the feasible set of perturbations areFPA =
{10−5 × {1, 5}, 10−4 × {1, 5}, 10−3 × {1 : 1 : 15}} and
FPB = {10−5×{1, 5}, 10−4×{1 : 1 : 10}, 5×10−3, 10−2×
{1, 5}}. Figure 2 illustrates the variation of‖Ap‖∞ and

2During the left stance phase, a similar definition can be presented by
swapping the role of the right and left legs.
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Fig. 2: Plot of‖Ap‖∞ and ‖Bq‖∞ (solid curves) versusp
andq together with‖ALS‖∞ and‖BLS‖∞ (dashed curves).

‖Bq‖∞, obtained based on the two point difference approach,
versusp = 1, · · · ,MA and q = 1, · · · ,MB , respectively. It
also presents‖ALS‖∞ and‖BLS‖∞, obtained based on the
least square approach over the setsFPA andFPB .

1) Inadequacy of Discrete LQR approach: Figure 2 illus-
trates that there is extensive variability in the numericalesti-
mates of the Jacobian linearization of the Poincaré map. We
tried designing DLQR controllers for several pairs(Ap, Bq)
in the “flat region” of the figure, and all of them failed. We
then emabarked on a tedious iterative process, exhaustively
searching over the collection of pairs(Ap, Bq) for a range
of weights {Qr}

MQ

r=1 and {Rl}
MR

l=1 , solving for the DLQR
gain. A stabilizing gait was found using this approach, but it
had a small basin of attraction. In particular, this stabilizing
gain could only ensure stability for an external horizontal
disturbance in the frontal plane with the magnitude of10
(N) acts on the robot’s COM over50% of the gait.

2) LMI approach: Each of the LMI approaches in The-
orem 1 resulted in stabilizing solutions. To show the ro-
bustness of the resulting closed-loop system against external
disturbances, the simulation of the closed-loop system is
started at the end of the left stance phase ofO. Next during
the21st step, a horizontal force in the frontal plane with the
magnitude60 (N) is applied to the robot’s COM over50% of
the step. Figure 3 depicts the phase portraits of the yaw, roll
and pitch angles and also the COM and foot steps in thexy-
plane during60 consecutive steps of walking. Convergence
to the periodic orbit and yaw (heading) stability is clear.

V. CONCLUSION

During stabilization of3D dynamic walking and running
locomotion for legged robots with high degrees of freedom
and underactuation, there are important practical problems
arising from numerical approximation of the Jacobian matri-
ces for the corresponding Poincaré return map. Due to the
existence of a wide range of time scales in the underlying
nonlinear dynamics, the Jacobian matrices, which are mainly
calculated using numerical differentiation algorithms, such as
the two point difference or the least square approaches, are
sensitive to the perturbation values used during calculation.
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Fig. 3: Phase portraits for (a) the yaw, (b) roll, and (c) pitch
angles together with (d) the COM and foot steps during60
consecutive steps of walking. At the21st step, a horizontal
force in the frontal plane with the magnitude60 (N) is
applied to the robot’s COM over50% of the step.

This numerical sensitivity, which can be formulated as un-
certainty in the Jacobian matrices or the Poincaré return map,
complicates the design of stabilizing controllers for periodic
orbits. To overcome this problem, the paper has presented
an LMI-based nonlinear control scheme to exponentially
and robustly stabilize periodic orbits for a class of hybrid
systems, namely systems with impulse effects. In particular,
a robust control formalism has been presented whereby a
convex set of approximations of the Jacobian linearizationis
generated and the feedback law is designed through two sets
of LMIs. The results of the paper were illustrated on a3D
dynamic walking motion of a novel bipedal robot, ATRIAS
2.1. The resulting controller had much greater disturbance
rejection capability than a corresponding DLQR controller.

The results of this paper were developed on the basis of
the N -step Poincaŕe return map which in turn yields aN -
step update law for stabilizing parameters. It would be very
interesting to develop one-step robust and stabilizing update
laws. It is conjectured that this will result in larger domains
of attraction for the periodic orbit.
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