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Abstract— The first return map or Poincaré map can be problems obtaining adequately robust control designs. The
viewed as a discrete-time dynamical system evolving on a hyper source of the difficulty seems to be that the large springd use
surface that is transversal to a periodic orbit; the hyper surfae ¢, energy storage in the series-compliant actuators rende
is called a Poincagé section. The Poincag map is a standard ; . . . L.
tool for assessing the stability of periodic orbits in non-hybrid thg robot's dynamlcs numerically St'f,f' which in turn leads
as well as hybrid systems. In addition, it can be used for !0 inaccurate estimates of the Jacobians when using central
stabilization of periodic orbits if the underlying dynamics of differences.
the system depends on a set of parameters that can be updated |n this paper, we regard the numerically-determined Jaco-
by a feedback law when trajectories cross the Poincér section. bians as uncertain estimates of the true Jacobians and apply

\m:np?j%iri;rﬂﬂgeﬁizggcllin ?;v(/ts nct)rﬁ’ rg]célCg;gizsﬁcﬁéh%;igff:n methods from robust linear control to design the eventdbase

linearization of the Poincaré map. In almost all practical cases, controller. In particular, the majr_1 co_ntribution of the pajis
the Jacobians must be estimated numerically, and when the to present two LMI-based stabilization approaches for ascla

underlying dynamics presents a wide range of time scales, the of hybrid systems, composed df > 1 phases, to reduce the
numerical approximations of the first partial derivatives are sui-  gensitivity of the closed-loop system to numerical errors a
ficiently inaccurate that controller tuning is very difficult. Here, . A L
a robust control formalism is proposed whereby a convex set of also to par_ametrlc uncert_alntles n t[’_\éstep _Pomcaaf map.
approximations to the Jacobian linearization is systematically Parameterized and continuously differentiable contiseiou
generated and a stabilizing controller is designed through two phase feedback laws are employed at the first level of
appropriate sets of linear matrix inequalities (LMIs). The result  the control scheme. At the second level, the parameters
nglcl)t:strated on a walking gait of a 3D underactuated bipedal f the continuous-phase feedback laws are updated in an
' event-based manner to stabilize the periodic orbit for the
closed-loop hybrid system. The results of the paper are then
illustrated on ATRIAS which has3 degrees of freedom
Robotic bipedal locomotion is being profitably studied(DOFs) and7 degrees of underactuation (DOUs) during the
with hybrid models [1]-[4]. Steady-state walking and rumpi  single support phase of walking.
gaits correspond to periodic orbits in the hybrid model.
The most fundamental tool for analyzing the existence
and stability of periodic orbits for hybrid systems is the ) ) o o
method of Poincdrs sections [5]-[7], [1, Chap. 4], [8]. This T_h|s section addresse_s robust stab|!|z_at|on of periodic
method presents an equivalence between stability pregertPrPits for a class of hybrid systems, arising from systems
of transversal periodic orbits for the hybrid system andsého With impulse effects [18], [19] and composed &f > 1
of the corresponding equilibrium points of the discreteeii  CONtinuous phases, against numerical errors and parametri
system defined by the Poinéareturn map on a transversal Uncertainties in thev-step Poinca map. The results of this
hyperplane, referred to as the Poireaection. section WI|! be used_ln Sect|ons_ Il and _IV for ATRIAS
The approach of Poindas sections can also be employed?-1- T0 define a hybrid system wittV' continuous phases,
to stabilize periodic orbits for hybrid systems [9]-[11}.this 6t uS consider the ordinary differential equations =
case, the underlying dynamics of the system depends on/d%i) + 9i(2i)us,i =1,---, N defined on the state spaces
set of adjustable parameters that can be updated by an eveht WhereX; are embedded submanifolds Bf' for some
based law when the trajectories cross the Pomcaction, " > 0- The control inputsu;, i = 1,---, N take values in
In [12]-[15], linear event-based controllers have been- suéti» N which ¢; C R™: represents the set of admissible
cessfully designed on the basis of the Jacobian lineapizati CONtrol inputs during phase and 0 < m; < n;. It is
of the Poincaé map. In these cases, the dynamic mode%upposed that the following hypothesis is satisfied for the
had up to18 states and the Jacobians were approximategPntinuous phases.
numerically. We have been pursuing similar event-basddl) The vector fieldsf; and columns ofy;, i = 1,--- , N
control designs for ATRIAS, a new 3D bipedal robot with  are continuously differentiable (i.eC.').

series-compliant actuators [16], [17] and have encoudterdVe assume that the phases are executed in the fixed order
1—-2—..-— N — 1. In particular, we define the index
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Next, let S;_, ;) be the switching hypersurface i; on
which the transition from phaseto phaseu(i) (i.e., from X;
to X,(;)) occurs, according to the transition may_, ;) :
Sicon(i) = Xy as o::(i) = Ai i) (z;). Here, the super-

which in turn implies thatu; is C' with respect to
(:vi,ai) onX; x A,.
Remark 1. According to the piecewise policy in (2), the
stabilizing parametet; is employed after the threshold value

scripts “=” and “+” denote the state of the hybrid systems, ; (see hypothesis H6). The physical intuition behind this

just before and after the corresponding discrete tramsitio

is that human push recovery is mainly done by changing the

is assumed tha$;_, ;) can be expressed as the zero levestep length at the end of the current step.

set of theC' function H,_, ,; : X; —» R, i.e,,
Sicop(i) =1z € K| Hyy 0y (i) = 0}

for which the following hypotheses are satisfied.
H2) For everyz; € S;_, i), OH,;— (i) /0zi(2;) # 0 so that

Siu(i) 1s an; — 1 dimensional embedded submanifold

of X;.

H3) The transition maps\;_,,;), i = 1,---,N are cl.
Furthermore,AH#(Z-) (Siﬁ;t(i)) N Su(i)ﬁuc,u(i) =0to
prevent the chattering of solutions, wheie (i) :
wu(u(i)) and “” represents the function composition.

Next, for everya; € Ay, - ,ay € Ay, the param-
eterized hybrid systen(X¢ 1,0, , X, N.ay) Can be
expressed as

> &= faa(zn, o), ] ¢ S1o2
cla; v = Ay o(x]), x] € Sio2
>  in = fan(zN,an), Ty &SN
c,N,an - :L‘l'l‘ = AN_H(‘Z;[)’ :)j& € SN—)l»

in which fC'J (SCZ‘, Oéi) = fl (1‘7) +9; (l’l) W (Ii, Oéi). ThrOUgh'
out this paper, we shall assume that the following hypothese

The hybrid system withV continuous phases denoted byare met.

H(Xq, - ,2y) is then defined as

D { il:fl(xl)""gl(xl)uh ‘T;¢Slﬂg

' x;— = Al_)2<.’111_), 371_ € Sl—>2

Sy { iy = fn(ezn) +gnv(en)un, =y € Snoa
= Ansi(zy), Ty € SNt 0

H5) Associated with the nominal stabilizing parameters
of € A, i = 1,---, N, the parameterized hybrid
systemH (Xei, 1,015+ » X, N,az,) has a nontrivial pe-
riodic orbit © = UY_,O; transversal to the switching
manifolds S;_, ,;y and also to the event-based control
surfacesSi;, ¢ = 1,---, N, whereO; := O N A,.

In particular, {z;} = O; NS, and {zf,,} =
O; NS fori=1,---, N are singletons and

A solution of the hybrid system (1) is constructed by

piecing together the trajectories of the flows= f;(x;) +
gi(xi) ug, i 1,---,N such that the transitions take

place when these flows intersect the switching hypersusface

Sisu@y- Next, let A, € R, i = 1,---, N be finite-

dimensional parameter spaces, referred to as stabilizing

parameter spaces, for somg > 0. Define a family of
parameterized feedback laws : X; x A; — U; by the
following piecewise policy

(i, o) == {

In (2), fen; : X;x A; — U; fori =1,---, N areC! functions
with respect to(x;, ;) on X; x A;. Moreover,af € A;,i =
1,---, N denote a set of nominal parametess: X; — R by
si(z;) is aC' real-valued function andy,; € R represents
a threshold value of; to be determined. Associated with

fcn; (%i, Oé?),
fcni((Ei, Cki),

8i(7i) < Sth,i
8i(Ti) > Sth,i-

)

s; and sy ;, we can define the event-based control surface

during phase as follows

Sni = {z; € X 5i(i) = sni}- 3
It is assumed that the following hypothesis is satisfied.
H4) On the surfac&y,;, i =1,--- , N,

fCﬂZ‘ (I’i, Oé;k) = fcnl' (I’i, Oéi)

.. ofcn; « _ Ofcng
(I|) Oz (xivai) - o, (],‘Z,Odz)
(i) M (0 af) = O,

8(11‘

OH; sy /Ozi(x7) fai(ai, of) # 0
05/ 0xi (x4 ;) fori(win ;o ;) # 0,
whereO; is the set closure of);.
On the periodic orbitD, s;(x;) is a strictly increasing
function of time. Moreover in (2)sw,; can be chosen
in the interval(s; ™, s; ), wheres;™ ands;~ are the
initial and final values of; during phase of O.

Next, for a given initial conditionz;(0) € X; and a given
stabilizing parameter; € A;, let p;(t; 2;(0), ;) represent
the solution of the parameterized closed-loop differéntia
equationt; = fqu.(z;, ;) with the initial conditionz;(0)
over the maximal interval of existence. Suppose thais
a hypersurface it;. Associated with the paifz;(0), «;) €
X; x A;, the flow of &; = fu(xi, ), evaluated oT;, can
be expressed ag; ' : X; x A; — T; by

Fli(2i(0), 05) = i (T} (24(0), 000); 23(0), i), (5)
in which Tfi : X x Ay — R represents the time of the
first impact ofy; with the hypersurfacé’;, i.e.,

T} (2:(0), o) == inf{t > 0] ¢;(t; 2:(0), o) € Ti}.  (6)

Now we are in a position to present thé-step Poinca
map. For this goal, without loss of generality, &f ; be the
Poincaé section during phask Then, theN-step Poincd
map?P : S x A1 x --- Ay — Sin,1 can be defined as

P(x1(0), a1, ,an) :

S
™o AN o]:l‘\S,NHl o -~-o]:§s2H3 o A1_9 o}—flﬁz,

H6)
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wherez1(0) € Sy anda;,i = 1,--- , N is employed for
si(z;) > s, during phase. According to the construction
procedure,zy, ; (see hypothesis H5) is the fixed point of
P, ie., P(zp .07, - ,ay) = x4, Linearization of the
N-step Poinca map aroundzy, ,, a7, ,ay) yields the
following discrete-time system with the state spafig:
which is updated inV-step fashion

policy
o [K] o]

— K Sa1[k], (11)

an k] ay
employed on the surfac&y,; during phasel, expo-
nentially and robustly stabilizes the periodic orld

for the closed-loop hybrid model of walking, where

doy [K] K := —W S~1. Moreover,V (§z;) := 6z} S~ §z; is
oxq1[k+1] = Adx,[k]+ B : , k=0,1,---,(7) the corresponding Lyapunov function for (7).
San[k] 2) (LMI stability with unknown Lyapunov matrix): If

Emin < 0 in problem (10), the update policy (11)
exponentially and robustly stabilizes the periodic or-
bit © for the closed-loop hybrid model of walking,

wheredz [k] := z1[k] — x, 1, dai[k] := ai[k] — af and

A= oP (Th1, 07, -, ay) where K := —LG~'. Moreover, there existd® €
9, (0) " (8) conAP,,|p=1,--- ,Ma,qg=1,---, Mg} such that

B .= a—P(xt*th;{, o). V(dzq) := éx Pdx; is the corresponding Lyapunov
o, an) function for (7).

Due to the high dimension and range of time scales in models Proof:  Hypotheses H1, H3, H4 and H5 im-
describing walking 08D robots like ATRIAS, there may be Ply that the N-step Poinc& map is C' with re-
significant errors during numerical differentiating of the ~ SPect t0 (zt,1, 1, -+ ,an) in an open neighborhood of
step Poincd map to obtain the Jacobian matricésnd B.  (¢ih1, 1, -+ ,ajy). Consequently, the Jacobian matricés
This complicates the design of the gain matkixto stabilize and B in (8) are well-defined. Moreover from H6, there is
(A, B). To overcome this problem, we present two LMI-an open neighborhood/” of O, such that inA"\ O, the
based gain design approaches. In particular, assumd thpt feedback Iavymi, i=1,---,N are piecewise in the sense
andB(¢) represent numerical approximations of the Jacobiaifiat the solutions intersect the threshold manitgig;. Thus,
matricesA and B which are obtained based on the two-pointhe stabilizing parameter; can be employed during phase
difference approach with the perturbation valueNext, we ¢ Which is a necessary condition f%(-) #0.

present the following Theorem.
Theorem 1 (Robust Sabilization of @0): Assume that hy-

Part (1): 7min < O implies thatF,, < 0 for p
1,---, M4 and ¢ = 1,---,Mp. Next for a givenA €

potheses H1-H6 are satisfied for the open-loop hybrid mod6P™{ A1, -+, Ax,} and B € conyBy, - -, By, }, there

(1). Let FP* = {2104 and FPP = {F})17 be two
feasible sets of perturbations used for numerical difféaén
ing of the N-step Poinca& map to obtaimd and B matrices,
respectively. Defined,, := A(s{}) forp=1,---,M4 and
By := B(eF) for ¢ = 1,---, Mp. Moreover, assume that

due to numerical problems or parametric uncertainty, the

Jacobian matricesi and B are unknown and belong to
some convex polytopé& and B. In particular,A € A :=
conf{A, -+, Ay, } and B € B := con{By, -+, By }-
Set up the following two optimization problems,

TImin Znﬂb{}{}vn
st Fp, = [‘f ApS +SB‘1W} <n1 (9
p:17 aMAa q:17 7A[B

_ {Pp,q

APG-l-BqL} <¢l (10)
" <

G+G —-L
pzla 7MA7 (]:L 7MB'
Then, the following statements are true.

1) (LMI stability with known Lyapunov matrix): If n,:, <
0 in the optimization problem (9), théV-step update

area, > 0,p=1,--- ,MqandB;, > 0,¢g = 1,--- ,Mp

such thatd = Y7 a,, A, andB = Y°."% b, B,. Moreover,
S ap =1 and Y )" b, = 1. Thus,
Ma Mg
-S AS+BW
Zzapqup,ﬁ[* _g <0. (12
p=1q=1

Using Schur's Lemma, the LMI problem (12) is equivalent
to (i) =S < 0 and (ii)

—S —(SA +W'B)(-S)""(AS+BW) < 0.

Defining P := S~ and K = —W S~! translates this into
P>0and(A—-BK) P(A—BK)—P <0. Thus,éx; =
0,,-1 is exponentially and robustly stable for (7). Finally,
Theorem 4.7 of [1] completes the proof of the exponential
stability of O for the closed-loop hybrid model.

Part (2): &min < 0 yields J,, < 0 forp =1,--- My
andq = 1,---,Mp. The exponential stability obx,

O”Ml for (7) then follows from [20]. FurthermoreP =
ol fyjl a, by P, 4 is the corresponding Lyapunov ma-

trix. Similar to part (1), applying Theorem 4.7 of [1] com-
pletes the proof. |

IIl. BACKGROUND: HYBRID MODEL FOR3D WALKING

OF ATRIAS

This section extends the results of Section Il to a
26-dimensional hybrid model describingD walking by



ATRIAS 2.1. During the single support phase (one point

foot on the ground), ATRIAS is an underactuated mechanical Yaw
system with13 DOFs and7 DOUs. The double support phase
(both point feet on the ground) of walking is assumed to be
instantaneous. ATRIAS exploits four mechanical springs to ¢
drive the legs in the sagittal plane for energy efficiency. In
particular, the springs absorb the energy during the impact
and release it within the step. To develop the hybrid model
of walking by ATRIAS, a convenient set of configuration
variables is presented. To achieve this goal, let us attach
the torso frame rigidly to the torso link with the origin on
its center of mass (COM). Next, the rotation of the torso
frame with respect to the world frame can be expressed as
RY := R.(q.7) Ry(qy7) Rs(qu7), WhereR,, R, and R, are
the basis rotations about the y and =z axes, respectively.
Moreover, ¢.1, ¢, and ¢,7 are the yaw, roll and pitch
angles of the robot (see Fig. 1). In the frontal plane o
the robot, the angles of the right and left hips relative t

Roll
Y

T
Pitch

%g' 1: ATRIAS 2.1, a bipedal prototype. (a) Rotation matrix
> ; : X
the torso link are expressed lyr and gz, respectively, 7 together with the yaw, roll and pitch angles. (b). Hip

. — N - ngles and motor torques in the frontal plane. (c) Shin and
where the subscripts “R” and “L” denote the right and" . .

. . thigh angles with respect to the torso and corresponding
left. Furthermore, in the sagittal plane of the robot, themotor torques in the sagittal plane
angles of the shin and thigh links relative to the torso are g 9 P '
given by ¢ir and ¢or for the right leg andy;. and gy for
the left leg (see Fig. 1). The motors in the sagittal plan
are series-elastic actuators and connected through sprin .
Consequently, we denote the corresponding angle of theFollowing the developments of reference [14], to present
output shafts (i.e., position of springs) by.1r, ggr2r, ggrit the discrete transition models, conservation of momentum
andg,,2. . This completes the configuration variables for thdogether with stationary position for the swing leg end
single support phase of ATRIAS as:= (¢,,q,) € Q, in while preserving the yaw rotation about the swing leg end
which ¢, and ¢, are unactuated and actuated componengd!ring impact yields instantaneous impact méps, ¢*) =
of q, i.e., Qu = (q,zT>QyTa qzT, 91R; 2R, 1L, q2L)/ and qa ‘= ARHL(q_vq'_) and (q+7q+) = AL%R(q_aq'_)'

(Qgr1R7 4gr2R; 43R, dgrilL; dgr2L s QSL)/ and Q is the Conﬁgura' : :
tion space. The torque input of the mechanical system c§1 Hybrid model of walking

%. Discrete transitions of walking

also be expressed as:= (uir, Usr, UsR, 1L, UL, usL)’ € Let us define the state vector of the mechanical system

RS, whereu g, usr, usr, u1L, us. andusz, are motor torques as =z = (¢',¢’)’ € X, in which X := TQ is the

to drive ggr1r, Ggr2rs 93R» GgriL, dgroL @nd gy through 26-dimensional tangent bundle of the configuration space

fixed gear ratio systems, respectively. Q. Next, the evolution of the mechanical system during
walking by ATRIAS can be expressed by a hybrid system

A. Continuous phases of walking composed of two continuous phases to represent the right

and left stance phases and two discrete transitions between

To simplify the analysis and to present the main ide . .
we will omit the stance phase indéxe {R,L}. Next, the athehtcpntmuous phas_es to denote the rlght tlo left and left to
ght instantaneous impact maps. In particular,

evolution of the mechanical system during continuous masg

of walking can be expressed as s &= fR(@) +gr(@)u, 27 ¢ St
.. N . R: xt = AR—)L(x_), 7 € SRL
D(Q) q+ O((L Q) q+ G(‘]) + Fspring(Q) + Fdampen((b Q) (14)
+ Ffriction(CL Q) = Binputua 5 T=fL (I) + gL(m) u, T ¢ S R
(13) L 2zt = AL‘)R(xi)7 = € SLR.

where D(q) € R'¥*13 is the positive-definite mass-inertia In (14), the input-affine system = fi(z) + g;(z) u repre-
matrix and C(q,¢)¢ € R!® represents the Coriolis and sents the evolution of the mechanical system during phase
centrifugal terms. Furthermore?(q) € R'?, Ispringlq) € @ € {R,L}. Moreover, S;_,; denotes the25-dimensional

R'3 and Cgampefq, ¢) € R'® are the terms associated withswitching manifold during the transition from phaseto

the gravity, spring and damping forces of the complianphasej, wherei # j € {R,L}. We note thatS,_,; :=
elements, respectivelfsiction(q,d) € R'® denotes the ro- {z € X|pZ,(q) = 0}, in which pZ, : Q@ — R is the
tational friction with respect to the yaw motion about thevertical component (i.e; component) of the swing leg end
stance leg end. FinallyBinpu € R'3*6 is the input matrix Cartesian coordinates. The impact maps are then expressed
with the property raniBinpu = 6. by Ai; : Sinj = X, i # j € {R,L}. For later purposes,



we assume tha® := Ogr U O is a periodic orbit of the desired periodic orbitD. In particular,hnom(q) := he(q) —
hybrid model (14) to be stabilized. ha(6), whereh.(q) € RS denotes the controlled variables
consisting of a set of holonomic quantities to be controlled
IV. 'HZD AND LMI-BASED CONTROL STRATEGY FOR  The desired evolution of the controlled variables on the
EXPONENTIAL AND ROBUST STABILIZATION periodic orbit® can be given by the vectdr;(d) € RS in
This section presents a dual-level and time-invariant cotterms of the phasing termi(q). For the ATRIAS structure,
trol strategy based on virtual constraints [7], hybrid zerd is chosen as the angle of the virtual leg with respect to
dynamics (HZD) [1, Chap. 6] and Theorem 1 to exponenthe ground, where the virtual leg is defined as a virtual
tially and robustly stabilize periodic orbits f&D walking line in the sagittal plane of the robot which connects the
by ATRIAS. At the first level of the control strategyy stance leg end to the stance hip joint. We note that on
virtual constraints are defined as parameterized holononiiee periodic walking motionO, 6 is a strictly increasing
output functions in both the sagittal and frontal planes ofunction of time (hypothesis H6)L.(¢) can be obtained
the mechanical system and imposed to be zero by usity regressing the controlled variables(q) versusf on O.
the within-stride controller. The within-stride contmillis a  Furthermore,hni(0; ani) and hs(6; as;) are additive terms
parameterized time-invariant and continuously diffeisdsie  to create hybrid invariant zero dynamics manifolds and to
feedback law which creates a family of parameterized astabilizeO, respectively. These terms are zero on the periodic
tractive and forward invariant zero dynamics manifolds. Owrbit. The parameters of the hybrid invariance and stabdiz
these manifolds, the mechanical system hd3OFs and its terms, i.e.,an € Ap and ag € Ag, are updated in a
evolution can be expressed by the unactuated componerstep-by-step fashion, in whictly and Ag represent the
Moreover, the evolution of the controlled variables can beorresponding finite-dimensional parameter spaces.
expressed in terms of a strictly increasing holonomic gtiant ~ The within-stride controller is obtained based on input-
referred to as the phasing term, defined in the sagittal plangutput linearization. To this end, differentiating the mwit
Virtual constraints coordinate the links of the robot dgrin function y with respect to time and along the trajectories of
3D walking. In particular, four components of the virtualthe continuous phases results in
constraints are defined in the sagittal plane of the robot . ) ]
and they are capable to stabilize periodic orbits for the § = LgLyh(q; ani, ast) u+ Liph(g, g; i, ast)-
planar model of Wal_king _by ATRIAS. The two remaining Consequently, the parameterized feedback law
components are defined in the frontal plane to synchronize
the stance hip angle as well as the distance between ther; api, ag) = _(Lgth(QQahi,ast))71(L?h/(q,q;@hi,ast)
horizontal components of the swing leg end and robot's COM K e
with the phasing term in the sagittal plane. + =L Lh(q,q; ani, ost) + TP h(q, g; ahi,ast))
At the second level of the control strategy, the parameters € € (16)
of the virtual constraints are updated by two discrete-time
loops. The first loop updates the parameters of the outpyields the following output dynamics
function to render the family of the zero dynamics manifolds . Kp . Kp
hybrid invariant under the closed-loop system. This restri j+—ut—Zv=0, (17)
the state of the hybrid model to lal-dimensional reduced-
order hybrid system referred to as the HZD. Accordingy"here Kp = kploxe > 0, Kp = kilgxs > 0 a}nd
to Theorem 1, the second loop exponentially stabilizes tHe > 0- The zero dynamics manifold associated with the
corresponding fixed point of the two-step Poireeaeturn CUtPUt function (15) can be expressed as the following

map on the basis of a two-step event-based correction. dimensional attractive and forward invariant manifold

A. Within-stride controller Zanoq = {7 € Xly(w; ani as) = Lyy(x : ani, ast) = Og}-

During continuous phases of walking, let us define th8. Hybrid invariance

following parameterized holonomic output function In order to render the zero dynamics manifolds hybrid
y(@; o, ast) = h(q; omi, st) invariant, the parameters of the hybrid invariance term
= hnom(q) — hni(0: i) — het(6; vs) hni(0; api) are updated at the beginning of each step to satisfy

= he(q) — ha(0) —hni(0; ani) — hst(6; ast). hii(07; i) = hnom(q™)
~—_—— : .
nom(4) %(W; ani) 07 = 8hnom((f) i, (18)
(15) 00 0q

In (15), y(z; i, as)) == h(g; ani, as) € R® represents the which in turn implies that

holonomic output function to be regulated. Furthermarg,
and ag are the parameters of the output function corre-
sponding to 'Fhe hybnpi invariance anq stab|I.|za.t|on ISSUES 1according to (2) and hypothesis H4, the stabilizing tehgy6; as;) is
hnom(q) € R® is @ nominal output function vanishing on thedesigned to be zero at the beginning of the step.

y(z; ani, as)) = Lyy(z™; omi, ast) = Og. (19)



In this paper, it is assumed thati(6; ay) is a fifth-order s 31
polynomial on the intervah™, 6y;], wheredy; := %(0++9f)

is the hybrid invariance threshold afg is the final value SN IV 1B, llse
of @ on O. Moreover,hni(0; ap) is identically zero ford > 20
6y while continuity of position, velocity and acceleration is 109
met atd = 0. Consequently, the family of zero dynamics

28
10 HBLSHX

manifolds Z := {Z,, aql ani € Ani,ast € Ast} is hybrid 1Assl 27
LS||loo

invariant under the flow of the closed-loop hybrid system. o5

C. Sabilization

25
To exponentially stabilize the desired periodic orlit i
based on Theorem 1, the parameters of the stabilizing tet 8 s 10 15w X% s 10 15
hst(0; ast) are updated in a two step manner. In particular, w b ¢
assume thahs(0"; as) = 05 and Gha(0F;0s) 07 = 05 Fig. 2: Plot of||A,]|s and ||B,|l« (solid curves) versug

to preserve the hybrid invariance condition of Section IVandg together with|| A5l and||Brs||« (dashed curves).
B. Moreover, to define a Poindarsection for stabilization

issue, we consider a stabilization threshold vafdewith

the propertyh < fs < 0y and suppose thais(; as) = 0s || B, ||, obtained based on the two point difference approach,
for 6 < 0s. Furthermoreisi(0; ast) is assumed to be a third yersysp = 1,--- M, andg = 1,--- , Mg, respectively. It
order polynomial with parameters for ¢ > s while twice 3150 present§ A 5| and||B.s]|~, obtained based on the
differentiability is satisfied ats. Next, define the event- |gast square approach over the sE®* and FPP.

based control surfacéi, as the level set(q) = 0s;, i.e., 1) Inadequacy of Discrete LQR approach: Figure 2 illus-

Sin = {z € X[0(q) = b} (see (3)). According t0 the trates that there is extensive variability in the numerést-
construction procedure of the hybrid invariance and stabjpates of the Jacobian linearization of the Poikcasap. We
lizing terms, the stabilization term is active fé(q) > 6st  tried designing DLQR controllers for several pajts,, B,)
while 7. in (15) is twice continuously differentiable (i-€27) in the “flat region” of the figure, and all of them failed. We
with respect to its arguments. This together with the withinghen emabarked on a tedious iterative process, exhaystivel
stride controller (16) implies hypothesis H4. Furthermoresearchingl over the collection of paisl,, B,) for a range

sinceh,(#) is obtained by regressing the controlled variablegy weights {Q”}MQ and {Rl}MR solving for the DLQR
on O and the additive terms are zero 6h H5 is met. By =l =1

. ) : o Cﬁain. A stabilizing gait was found using this approach, but i
definings; = ¢, it can be concluded that HE is satisfied andh4q 4 small basin of attraction. In particular, this stabit
consequently, Theorem 1 can be employed.

gain could only ensure stability for an external horizontal
D. Closed-loop simulation results disturbance in the frontal plane with the magnitude16f
dN) acts on the robot's COM over0% of the gait.
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In order to confirm the analytical results obtained in th : )
paper, this section presents simulation of the closed-loo 2) LMI approach. Each_o_f the LM_I approaches in The-
hybrid system. For this goal, the sagittal components of tH¥€M 1 resulted in stabilizing solutions. To show the ro-

controlled variables during the right stance phase are etfinPuStness of the resulting closed-loop system againstreaiter
8 he1(q) = (dgrir + dgrar)s ho2(q) = L(ggriL + dgrat) disturbances, the simulation of the closed-loop system is
5 2 ’ y 2 ]

hes(q) = doror — Ggrir aNd he.a(q) = qyror — qgriL. We started at the end of the left stance phas&@oNext during
C, - qar qr C, - gar gr .

have observed that these components can stabilize perioa?@ﬂ,st step, a h.orizonFaI force in the 'frontal plane with the
orbits for the2D model of ATRIAS. Here, we stabilize a magnitudes0 (N) is applied to the robot's COM ovei0% of

periodic orbit® on which the robot has the average speel{’® St€p- Figure 3 depicts the phase portraits of the yaW, rol
1 (m/s). The event-based surfade is also defined in2 and pitch angles and also the COM and foot steps in:fie
of the nominal gait. Letrsy(q) and zem(q) represent the plane during60 consecutive steps of walking. Convergence

horizontal Cartesian coordinates of the swing leg end arfg the Periodic orbit and yaw (heading) stability is clear.

robot's COM in the frontal plane with respect to the stance V. CONCLUSION
leg end, respectively. If the frontal components /of are
defined ash. 5(q) = gsr @andhc6(q) = xsw(q) — zem(q), the
three biggest eigenvalues of the averaged Jacoljgn:=
TS A, are A = 11745, Ay = 1.0000 and A; =
0.8987. Here the feasible set of perturbations &@“ =
{107% x {1,5},10~* x {1,5},1073 x {1 : 1 : 15}} and
FPB = {1075x{1,5},10~*x{1:1:10},5x1073,102x
{1,5}}. Figure 2 illustrates the variation dfA,|/.. and

During stabilization of3D dynamic walking and running
locomotion for legged robots with high degrees of freedom
and underactuation, there are important practical problem
arising from numerical approximation of the Jacobian matri
ces for the corresponding Poinéareturn map. Due to the
existence of a wide range of time scales in the underlying
nonlinear dynamics, the Jacobian matrices, which are mainl
calculated using numerical differentiation algorithms;lsas

2During the left stance phase, a similar definition can be piteseby the two point difference or the least square approaches, are
swapping the role of the right and left legs. sensitive to the perturbation values used during cal@anati
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Fig. 3: Phase portraits for (a) the yaw, (b) roll, and (c) Ipitc
angles together with (d) the COM and foot steps duig [12]
consecutive steps of walking. At thid st step, a horizontal
force in the frontal plane with the magnitud# (N) is
applied to the robot’s COM ovei0% of the step. [13]

This numerical sensitivity, which can be formulated as unH4l
certainty in the Jacobian matrices or the Poiga&turn map,
complicates the design of stabilizing controllers for pdit  [15]
orbits. To overcome this problem, the paper has presented
an LMI-based nonlinear control scheme to exponentially
and robustly stabilize periodic orbits for a class of hybridie]
systems, namely systems with impulse effects. In particula

a robust control formalism has been presented whereby a
convex set of approximations of the Jacobian linearizason
generated and the feedback law is designed through two sEt8
of LMIs. The results of the paper were illustrated o2
dynamic walking motion of a novel bipedal robot, ATRIAS
2.1. The resulting controller had much greater disturbandgsl
rejection capability than a corresponding DLQR controller [19]

The results of this paper were developed on the basis of
the N-step Poincd return map which in turn yields &-  [5q
step update law for stabilizing parameters. It would be very
interesting to develop one-step robust and stabilizingategpd
laws. It is conjectured that this will result in larger domsi
of attraction for the periodic orbit.

REFERENCES

E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. HoiCtand
B. Morris, Feedback Control of Dynamic Bipedal Robot Locomotion,
Boca Raton: CRC Press, June 2007.

J. W. Grizzle, C. Chevallereau, A. D. Ames, and R. W. Sinnet
“3D bipedal robotic walking: Models, feedback control, anden
problems,”Proceedings of the IFAC Symposium on Nonlinear Control
Systems, Bologna, September 2010.

A. D. Ames, R. Sinnet and E. Wendel, “Three-dimensional dche
bipedal walking: A hybrid geometric approach?toceedings of the
12th International Conference on Hybrid Systems: Computation and
Control, Lecture Notes in Computer Science (HSCC 2009), vol. 5469,
pages 16-30, April 2009.

K. Akbari Hamed, N. Sadati, W. A. Gruver, and G. A. Dumontt&S
bilization of periodic orbits for planar walking with nonstantaneous
double support phaselEEE Transactions on Systems, Man, and
Cybernetics, Part A, vol. 42, issue 3, pp. 685-706, May 2012.

V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differ-
ential Equations, Springer-Verlag, 1988.

T. S. Parker and L. O. Chu&ractical Numerical Algorithms for
Chaotic Systems, Springer-Verlag, New York, 1989.

J. W. Grizzle, G. Abba, and F. Plestan, “Asymptoticallsitse walking
for biped robots: Analysis via systems with impulse effect&EE
Transactions on Automatic Control, vol. 46, issue 1, pp. 51-64, January
2001.

W. M. Haddad and V. Chellaboina\onlinear Dynamical Systems
and Control: A Lyapunov-Based Approach, Princeton, NJ, Princeton
University Press, 2008.

J. W. Grizzle, E. R. Westervelt, and C. Canudas, “Eveadda PI
control of an underactuated biped walkePfoceedings of the 2003
IEEE International Conference on Decision and Control, Maui, HlI,
pp. 3091-3096, December 2003.

E. R. Westervelt, J. W. Grizzle, and C. Canudas, “Svirtghand PI
control of walking motions of planar biped walker$EEE Transac-
tions on Automatic Control, vol. 48, issue 2, pp. 308-312, February
2003.

J. W. Grizzle, “Remarks on event-based stabilizatiop@fodic orbits
in systems with impulse effectsSecond International Symposium on
Communications, Control and Sgnal Processing, 2006.

E. R. Westervelt, G. Buche, and J. W. Grizzle, “Experitatnalida-
tion of a framework for the design of controllers that inducabte
walking in planar bipeds,"The International Journal of Robotics
Research, vol. 24, no. 6, pp. 559-582, June 2004.

K. Sreenath, H. W. Park, J. W. Grizzle, “Design and ekpental
implementation of a compliant hybrid zero dynamics controll@hw
active force control for running on MABEL Proceedings of the 2012
IEEE International Conference on Robotics and Automation, Saint
Paul, MN, pp. 51-56, May 2012.

C. Chevallereau, J. W. Grizzle, and C. L. Shih, “Asymiuaity
stable walking of a five-link underactuated 3-D bipedal tgbtEEE
Transactions on Robotics, vol. 25, issue 1, pp. 37-50, February 2009.
K. Akbari Hamed, N. Sadati, W. A. Gruver, and G. A. Dumont,
“Exponential stabilisation of periodic orbits for runnirgf a three-
dimensional monopedal robotlET Control Theory & Applications,
vol. 5, issue 11, pp. 1304-1320, 2011.

A. Ramezani and J. W. Grizzle, “ATRIAS 2.0, a new 3D bipeda
robotic walker and runner,Proceedings of the 2012 International
Conference on Climbing and walking Robots and the Support Tech-
nologies for Mobile Machines, Baltimore, MD, pp. 467-474, July
2012.

J. A. Grimes and J. W. Hurst, “The design of ATRIAS 1.0 aqud
monoped, hopping robotProceedings of the 2012 International Con-
ference on Climbing and walking Robots and the Support Technologies
for Mobile Machines, Baltimore, MD, pp. 548-554, July 2012.

D. D. Bainov and P. S. Simeono&stems with Impulse Effects:
Sability, Theory and Applications, Ellis Horwood Limited, April 1989.
H. Ye, A. N. Michel, and L. Hou, “Stability theory for hyl
dynamical systems,JEEE Transactions on Automatic Control, vol.
43, no. 4, pp. 461-474, 1998.

M. C. de Oliveira, J. Bernussou, and J. C. Geromel, “A néscrete-
time robust stability condition,Systems & Control Letters, vol. 37,
pp. 261-265, 1999.



