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Abstract The extended Kalman filter is known to have excellent filtering
features. But its convergence is guaranteed only locally, that is, if it is initialized
close enough to the true state value. Numerical differentiation based observers
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1 Introduction

The extended Kalman filter is widely used in practice mainly for its excellent
filtering capability in presence of measurements corrupted by uncertain signals.
But its convergence is local in the sense that it is proved, in the general case, only
when the guess for the initial value of the state being estimated is close enough
to the true one. Numerical differentiation based observers propose estimates
from the expressions of the states in terms of the input, the output, and finitely
many of their derivatives. Such expressions of the state exist by virtue of a quite
weak acceptation of nonlinear observability. The estimation scheme is precisely
to first estimate the data derivatives present in the state expressions, and then
literally use the latter expressions to estimate the state. This approach has the
advantage to potentially yield global state estimators with ultimate convergence.
Because the data derivative estimates are usually designed without reference to
the model of these data, numerical observers lack prediction capability, and thus
their estimates are delayed whenever the data are corrupted by uncertain signals
in a significant way.

We examine the combination of these two techniques into a new class of non-
linear observers. The main result describes a global exponential observer for a
quite large class of nonlinear systems.

The paper is organized as follows. We first make explicit the notion of observ-
ability which is assumed in the design of numerical observers. We next recall
rudiments of numerical differentiation estimation. We provide a formal proof of
the local convergence of the extended Kalman filter in our deterministic setting.
Finally the resettable Kalman filter is presented.

2 On the observability condition

The class of systems we consider is described by the state equations{
ẋ = f(t, u, x) ,
y = h(t, u, x) , (1)

where, for some t0 ≥ 0, and all t ≥ t0, x(t) ∈ IRn is the state with initial
condition x(t0) = x0, u(t) ∈ IRm is the input, and y(t) ∈ IRp is the output.
Some technical arguments will lead us to assume these data to be of some
regularity. This will be made explicit at various moments.

The notion of observability for a system (1) that we need in the the design of
numerical observers is the following.

If f and h are with polynomial components over some given differential field k
then a quite adequate mathematical definition of the notion of observability we
have in mind is: System (1) is observable if each state component is algebraic
over the differential field extension of k generated by the data u, y. In other
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words, our observability notion requires each state component to be able to be
written as a solution of a polynomial equation

Hi (xi, u, u̇, . . . , y, ẏ, . . .) = 0 (2)

in xi, and finitely many time derivatives of the data u, y, with coefficients in k.
The differential field k is a field of functions; it may be reduced to the field of
reals, IR, if the system’s equations do not explicitly depend on time. Details on
this differential algebra approach of observability may be found in [8, 7]. There
is proved, in particular, the equivalence of this definition to a rank condition
on some sort of Lie derivatives of the output equation in (1). The polynomial
assumption on f and h is of course crucial to the validity of this equivalence.

It turns out that the situation where f and h are not necessarily polynomial
may be coped with by merely relaxing the polynomial requirement on Hi (this
function still has to depend on only finitely many data derivatives). Historically,
this nonlinear notion of observability was stated in different terms and appeared
earlier in works including [6, 11, 16].

This definition raises at least three basic questions. First, what if the data
assume some value u, y such that all existing relations (2) for xi degenerate into
the trivial equation 0 = 0? Second, what if all such relations as (2) are known
to have more than one solution in xi? Third, does the definition require more
regularity of the data than the latter are in effect?

The first question is related to the singularity of the observability notion with
respect to the data. The second one is about a so-called local character of the
observability of the system we have at hand. And the third question refers to
some structural coherence issue of this approach of observability. These points
are thoroughly discussed in a separate communication. Here we content our-
selves with the following comment on the uniqueness of the state of an observable
system.

It is a matter of fact that the observability condition (2) for the system (1) may
lead to more than 1 solution in xi for a given input output data. This is a sort
of local character of the observability definition. The eventual ambiguity one
may be left with by the observability condition (2), of course, cannot be resolved
without some supplemental information on the system which will discriminate
the solutions of equation (2). We know that such extra information, if it exists,
is not always practical to be included into the equations describing the system,
but may be used at some point of an observer design.

It remains much desired, at least at theoretical levels, given a system, to be able
to tell whether the observability conditions lead to a unique solution or not.

A system (1) is said to be uniquely observable if it is observable and the observ-
ability conditions (2) have unique solutions xi in terms of u, y and their time
derivatives.

While this definition catches the basic need in practice, it should be clear that
a complete characterization of uniquely observable systems is typically out of
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reach. We provide a characterization of a practical subclass of systems which
are uniquely observable, namely, the class of rationally observable systems.

A rationally observable system is one for which the observability conditions (2)
are linear in the xi’s. The following characterization certainly generalizes to non
differential algebraic systems, but we restrict ourselves to differential algebraic
systems for simplicity.

Proposition 1 A differential algebraic system (1) is rationally observable iff its
defining differential field extension, k〈u, x, y〉, is equal to its external behavior
differential field extension k〈u, y〉.

If system (1) is rationally observable then for each state component xi the
observability condition (2) reduces to

xi =
hi(u, y)
qi(u, y)

(3)

where hi and qi are differential polynomials with coefficients in k. The assertion
is thus immediately proved.

For example, the system 
ẋ1 = −x2

2 ,
ẋ2 = u ,
y = x1 ,

(4)

is rationally observable since  x1 = y ,

x2 = − ÿ

2u
.

(5)

But the system 
ẋ1 = −x2

2 ,
ẋ2 = ux2 ,
y = x1 ,

is not rationally observable since{
x1 = y ,

x2
2 = −ẏ ,

and there is no means to reduce the degree of the observability condition of x2.

3 On regularized numerical differentiation

We refer the reader to [9] for more details on numerical differentiation algo-
rithms, their theory as well as implementation. For the sake of completeness of
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the present paper we provide the following as a basis for error bound analysis
in regularized numerical differentiation.

We limit ourselves to the mollification approach of regularization. A mollifier [1,
12] is a nonnegative function ϕ of a single variable with integral 1 over the reals.
An example is the so-called Gaussian kernel

ϕ(t) =
1√
π
e−t2 (t ∈ IR) .

Given a mollifier ϕ, we constructs the family ϕλ(t) = 1
λϕ( t

λ ) (t ∈ IR), where
λ ∈ IR. Mollified numerical differentiation is then defined as

̂̇y(t) = Rλy(t) = (ϕ̇λ ∗ y)(t) ,

where,

ϕ̇λ(τ) =
d
dτ
ϕλ(τ) ,

and ∗ denotes convolution of functions, and where y assumes a compact support.

The main reason for using mollification is the following set of results, which
may be found in [1, 13], for instance. The filtered data ϕλ ∗ y is infinitely
differentiable. Moreover, for the Gaussian mollifier

||Rλy||L2 ≤ 4
λ
√
π
||y||L2

||RλKx||L2 ≤ 2||x||L2 ;

i.e., the family of (Rλ)λ>0 is uniformly bounded. Now the regularization error
with uncertain data is bounded by

||ẏ − ̂̇y||L2 = ||x−Rλy||L2 ≤ 2
√

2λ||ẋ||L2 +
4σ
λ
√
π

= 2
√

2λ||ÿ||L2 +
4σ
λ
√
π
.

Under the assumption ||ÿ||L2 ≤ E , this bound is minimized (optimal) for

λ = λ(σ) =

√
2√
2π

√
σ

E

which yields the error bound

||ẏ − ̂̇y||L2 ≤ 8
4
√

2π

√
σE

that is an admissible differentiation scheme for the first order differentiation
operator.

This rough presentation of numerical differentiation via mollification is a quite
adequate setting to understand the main problems and get an idea on how they
can be circumvented. But we usually do not implement it as is. One reason is
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that the signal to be differentiated is available only sampled, so that we need
to consider issues stemming from the approximation of the continuous time
convolutions by their discrete time versions. Another reason is the memory size
which is necessary to implement even the discrete time convolution.

In practice, the mollification is implemented through the fast Fourier transfor-
mation (fft), and mainly seen as a device for the regularization of the data for
later use in differentiation schemes which are simpler than the above mollified
differentiation one. The use of fft necessarily implies delays in the mollified
data. And, as an example of a simple regularized differentiation scheme we may
use the so-called Savitzky-Golay or the averaged finite difference differentiation
schemes as depicted in [9]. This differentiation scheme will contribute to the
overall estimation delay by an additional term, generally smaller than the delay
from the mollification.

4 On numerical observers design

The basic scheme of numerical observers is to feed the observability condi-
tions (2), and (3) with estimates of the first derivatives of u and y that are
invoked in such relations. One has to bear in mind that this is only the short
way of introducing the idea of numerical observers. There are, generally, a lot
of flexibility and two main issues: the simplicity of the observability conditions
which are selected as to be used for the state estimate, and the differentiability
of the data. The flexibility mainly results from the fact that there are generally
different presentations of the observability condition. The simplicity refers to
two different aspects: one is the usual intuitive notion of simplicity which refers
to numbers of operations necessary to evaluate a given quantity, and the other
one stems from well-posedness of expressions. It may happen that one observ-
ability condition is ill-posed while another one is not. The differentiability of
the data becomes an issue in that, if part of the data is not enough differentiable
to allow standard differential field axioms

(a+ b). = ȧ+ ḃ ,

(a · b). = bȧ+ aḃ ,

then either there is no observability conditions in the function spaces thus con-
sidered, or we are left with more complex relations in the observability con-
ditions. With a specific example on one’s hands one has to choose the most
appropriate relations as observability conditions.

Of course, as a potential alternative, one may always embed system signals
in larger function spaces where the derivation operation commutes with field
operations so that one recovers the simpler observability conditions.

Let us consider the example of system (4). Here, y is twice differentiable since
x2 is differentiable and ẏ = −x2

2. If u is never small then the advantage of
observability condition (5) is that it provides estimates of x2 without further
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knowledge of the system. Moreover, x2 may change sign, and the estimation
scheme remains valid.

Now assume that the estimation scheme did have time to fully start functioning
before u goes small so that we can no more keep on using the observability
condition (5). In this situation the only remaining observability condition is

x2
2 = −ẏ ,

and, here, by continuity of x2 (recall, x2 is differentiable, so that it must be
continuous) we know the sign of x2, i.e, we are able to tell which one of

√
−ẏ,

or −
√
−ẏ is the correct value for x2. Now note that, in this simple example,

instead of using the latter observability condition, we might have noticed that
when u is small then x2 is approximately constant, and then we merely maintain
constant our current estimate of x2.

Finally, assume that the estimation scheme starts with u small. Then we are
unable to deduce the sign of x2 from the system’s model.

Let us illustrate the potential data differentiability issue through the following
simple example. Consider the system

ẋ1 = x2 + u ,
ẋ2 = x3 ,
ẋ3 = −x2

1 + u ,
y = x1 .

(6)

If u is once differentiable then y is twice differentiable and we may easily find
that 

x1 = y ,
x2 = ẏ − u ,
x3 = ÿ − u̇ .

But if u is not differentiable the latter observability condition of x3 is not usable.
We again easily find that we will use the following one

x3 = (ẏ − u). ,

instead.

5 The local convergence of the extended
Kalman filter

We consider the system {
ẋ = f(t, x, u) ,
y = h(t, x, u) , (1)

where f and h satisfy the following conditions.
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Assumption 2 f and h are C2. Moreover, there exist positive constants L1,
L2f , L2h such that for all t ≥ t0, x ∈ IRn and u ∈ IRp and i, j ∈ IN, 1 ≤ i, j ≤ n

‖∂f
∂x

‖ < L1 ,

‖∂h
∂x

‖ < L1 ,

‖ ∂2f

∂xi∂xj
‖ < L2f ,

‖ ∂2h

∂xi∂xj
‖ < L2h .

This assumption guarantees the existence, uniqueness and absolute continuity
of the solution x(t) = φ(t, t0, x0, u) of system (1) for all t ≥ t0 and for any
continuous input u(t), and initial condition x0 ∈ IRn.

The extended Kalman filter (EKF) for system (1) is defined by the following
specifications (7–10)

˙̂x = f(t, x̂, u) +K(y − h(t, x̂, u)) (7)

K = PH ′R−1 , (8)

Ṗ = FP + PF ′ − PH ′R−1HP +Q , (9)


F =

∂f

∂x
(t, x̂, u)) ,

H =
∂h

∂x
(t, x̂, u) ,

(10)

with initial conditions x̂(t0) = x̂0, P (t0) = P0 ≥ 0, and where Q = Q(t),
R = R(t) and R−1 are assumed to be continuous, bounded, positive definite
matrices.

By Assumption 2 the EKF is well-defined for all t ≥ t0. Classical results on
differential equations [2] may be invoked to prove the existence, uniqueness and
absolute continuity of the solution x̂ with respect to initial conditions x̂0, P0 > 0,
for any y that is a solution of system (1) and for any finite time interval.

The pair (F,G) is said to be uniformly controllable if there exist positive con-
stants αc, βc and σc satisfying, for all t ≥ t0,

βcI <

∫ t+σc

t

Φ(τ, t+ σc)G(τ)Q(τ)G′(τ)Φ′(τ, t+ σc)dτ < αcI ,
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where Φ is the transition matrix of F .

If F is bounded then the pair (F, I) is known to be uniformly controllable.

The pair (F,H) is said to be uniformly observable if there exist positive constants
αo, βo and σo satisfying, for all t ≥ t0,

βoI <

∫ t+σo

t

Φ′(τ, t+ σo)H ′(τ)R−1(τ)H(τ)Φ(τ, t+ σc)dτ < αoI .

We have the following result

Lemma 3 If the pair (F,H) is uniformly observable and the pair (F, I) is uni-
formly controllable then the solution of the Riccati equation (9) satisfies, for all
t ≥ t0 +max(σo, σc), the following inequality

βc

1 + βcαo
≤ P (t) ≤ 1 + βoαc

βo

The proof follows immediately from Theorem 2.1 of [4]. We actually have

[CQ(t, t− σ)−1 +WR(t, t− σ)]−1 ≤ P (t) ≤WR(t, t− σ)−1 + CQ(t, t− σ)

for all t ≥ t0 + max (σo, σc), and

WR(t0, t1) =
∫ t1

t0

Φ′(τ, t1)H ′(τ)R−1(τ)H(τ)Φ(τ, t1)dτ

and

CQ(t0, t1) =
∫ t1

t0

Φ(t1, τ)Q(τ)Φ′(t1, τ)dτ .

The local convergence of the EKF then is stated as follows.

Proposition 4 If (F,H) is uniformly observable and (F, I) is uniformly con-
trollable then the EKF is locally exponentially convergent in the sense that there
are positive constants a, λ and δ such that

∀t ≥ t0, ‖x0 − x̂0‖ ≤ δ =⇒ ‖x̂(t) − x(t)‖ ≤ a‖x0 − x̂0‖e−λ(t−t0) .

Moreover, an estimate of δ is given by

δ =
e−M max(σo,σc)σQβ

2
oβc

(1 + βoαc)(βoL2f + (1 + β0αc)L1L2hσR−1)(1 + βcαo)

with αo, βo, σoαc, βc and σc associated, respectively, with the uniform observ-
ability and the uniform controllability, σQ = ‖Q‖, σR−1 = ‖R−1‖ and M =
L1σR−1(e2L max(σo,σc)‖P0‖ + αc(σc

σo
+ 1)).
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The estimation error, x̃ = x− x̂, assumes the following dynamics

˙̃x = f(t, x̂, u) +K (y − h(t, x̂, u)) − f(t, x, u) , (11)

By Lemma 3, the solution P of the Riccati equation (9) has uniform a priori
upper and lower bounds, which implies that K is also uniformly bounded with
respect to time.

Expanding f(t, x, u) +K (y − h(t, x, u)) around the current state estimate, x̂ =
x̂(t) the error dynamics can be rewritten as follows{ ˙̃x(t) = (F −KH)x̃+ g(t, x̃, u)

x̃(t0) = x̂0 − x0
(12)

where g represents the Taylor expansion remainder which satisfies

‖g(t, x̂− x, u)‖ ≤ 1
2

(L2f + σ̄KL2h) ‖x̃‖2

by Assumption 2, and the fact that ‖K‖ ≤ ‖P‖‖H‖‖R−1‖ = σ̄K .

We now associate with equation (11), a function V defined from IRn into IR by

V (x̃) = x̃′P−1x̃ .

Classical Lyapunov calculations then lead to

V̇ = −x̃′P−1ṖP−1x̃+ 2x̃′P−1 ((F −KH)x̃+ g(t, x̃, u))

= x̃′P−1
(
−Ṗ + (F −KH)P + (F −KH)′P

)
P−1x̃+ 2x̃′P−1g(t, x̃, u)

= x̃′P−1QP−1 + 2x̃′P−1g(t, x̃, u)

By Lemma 3, there are σ1, σ2 such that σ1 ≤ P−1 ≤ σ2 , thence

V̇ ≤ −σ2
1 x̃

′Qx̃+ σ2M‖x̃‖3

where M = L2f + σ̄KL2h.

This ensures that there are λ > 0 and δ > 0 such that for all initial value
‖x̃(t0 + max (σo, σc))‖ ≤ δ,

V̇ < −λ̃V
with δ = σ1σQ

(L2f +σ̄KL2h)σ2
and for any t ≥ t0 + max(σo, σc), and for some positive

λ̃.

Let σ = max(σo, σc). It remains to consider the interval of time between t0 and
t0 + σ. The dynamics of equation (11) is Lipschitz and continuous:

‖f(t, x̂, u) − f(t, x, u) +K (h(t, x, u) − h(t, x̂, u)) ‖ ≤ (L1 + σKL1)‖x̃‖
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since f and h are Lipschitz continuous andK is bounded. Indeed, by Lemma 5.1
of [5], we have

P (t0 + σ) ≤ Φ(t0 + σ, t0)P0Φ(t0 + σ, t0) + CQ(t0, t0 + σ) .

Moreover Φ(t0 +σ, t0) ≤ eL1σ and CQ(t0, t0 +σ) ≤ αc(σc

σo
+1). By the Bellman-

Gronwall’s lemma we have

‖x̃(t0 + σ)‖ ≤ x̃(t0)eMσ

where M = L1σR−1(e2Lσ‖P0‖ + αc(σc

σo
+ 1)). Therefore, if ‖x̃(t0)‖ < δ with

δ = δ
eMσ , then x(t+ σ) < δ.

The main assumption in the previous lemma is the uniform observability of the
linearizations of the system along the current value of the estimate. This appar-
ently strong assumption is actually implicitly to be satisfied by many existing
nonlinear observers. We first weaken this uniform observability assumption us-
ing the following lemma which corresponds to a first step in the search of a
detectability condition on the linearization (in the same way as in the linear
discrete time varying case [3]).

Lemma 5 If there exists a bounded matrix K(t) such that the system:

ξ̇ = (F −KH)ξ

is exponentially stable, then the solution of the following differential Riccati
equation:

Ṗ = FP + PF ′ − PH ′R−1HP +Q

is uniformly lower and upper bounded.

Since there exists an output injection gain which imposes the exponential sta-
bility of the observer, the same arguments as in [3] can be used to prove that
there exists at least one output injection gain which ensures the boundedness
of the cost and which is associated with the linear time varying criterion in the
Kalman filter problem. Moreover, noting that the output injection gain of the
Kalman filter is the optimal one, the Riccati equation is thus well-defined. By
the previous discussion, its solution has both upper and lower bounds if the pair
(F,Q) is controllable.

The previous lemma indicates that many classical observers implicitly satisfy
the assumption of the EKF local convergence. To illustrate this point, we just
consider the case of a quadratic type observers. The quadratic type observer
is classical in the literature (see, e.g., [18, 17]): as a matter of fact, the main
idea is to use a specific quadratic Lyapunov function to prove the exponential
stability of the nonlinear observer. The same type of observer is also considered
by Safonov in [15, 14], where the properties of the observer are characterized
with respect to the disturbance acting on the output. More recent works [19, 10]
are devoted to the search of an observability condition which a priori ensures
the existence of quadratic observers.
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Theorem 6 If there exist a positive definite matrix P , a constant matrix K,
and a positive real α such that

P

(
∂f

∂x
(t, x, u) −K∂h

∂x
(t, x, u)

)
+

(
∂f

∂x
(t, x, u) −K∂h

∂x
(t, x, u)

)′
P ≤ −αI

for all t ≥ t0, x ∈ IRn and u ∈ IRm then the observer
˙̂x = f(t, x̂, u) +K(y − h(t, x̂, u)) (7)

initialized at t0 is exponentially stable.

Corollary 7 If there exists an observer satisfying the assumption of Theorem 6
then the EKF is locally exponentially stable.

6 The resettable Kalman filter

The following theorem provides foundations for the combination of the EKF
with numerical differentiation observers.

Theorem 8 If for any ε > 0, there exists a finite time, ti, such that

‖xd(ti) − x(ti)‖ ≤ ε
and the system satisfies the assumption of Lemma 4 then there exists a global
exponential stable observer.

Typically, xd stands for a numerical differentiation based estimate of the state,
and ti for the delayed instant where this estimate is made. The observer will
exponentially converge if it is initialized at ti with ε at most equal to the numer-
ical differentiation based state estimation error. We then consider the following
combined observer

x̂(t) =
{
x̂1(t0), t ∈ [t0, ti)
x̂2(t), t ∈ [ti,∞)

where x̂1(t) is given by equation (7) initialized at t = t0 by x̂(t0) and where
K = 0 and x̂1(t) is given by equation (7) initialized at t = ti with x̂(ti) = xd(ti).

For all t ∈ [t0, ti), the estimation error, x̃, satisfies the following inequalities

‖x̃‖ ≤ ‖x̂(t0) − x(t)‖eL(t−t0) .

The error dynamics is then given by
˙̃x = f(t, x̂, u) − f(t, x, u)

and one has ‖f(t, x̂, u)−f(t, x, u)‖ ≤ L1‖x̃‖ and the upper bound by the Bellman
Gronwall’s lemma.

On the other hand, for all t ≥ ti, one has, by Lemma 4,

‖x̂(t) − x(t)‖ ≤ a‖xd(ti) − x(ti)‖e−b(t−ti)

given that ε ≤ δ0. Therefore, there exist α, β > 0 such that

‖x̂(t) − x(t)‖ ≤ α‖x̂(t0) − x(t0)‖e−β(t−t0) .
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